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Abstract
Acute Lymphoblastic Leukaemia (ALL), presents a potential risk to human health due to its rapid
progression and impact on the body’s blood-producing system. The accurate diagnosis derived through
investigations plays a crucial role in formulating effective treatment plans that can influence the likelihood
of patient recovery. In the pursuit of improving diagnostic accuracy, diverse Machine Learning (ML)
and Deep Learning (DL) approaches have been employed, demonstrating significant improvement in
analyzing intricate biomedical data for identifying ALL. However, the complex nature of these algorithms
often makes them difficult to comprehend, posing challenges for patients, medical professionals, and the
wider community. To address this issue, it is essential to clarify the functioning of these ML/DL models,
strengthen trust and providing users with a clearer understanding of diagnostic outcomes. This paper
introduces an innovative framework for ALL diagnosis by incorporating the EfficientNet-B7 architecture
with Explainable Artificial Intelligence (XAI) methods. Firstly, the proposed model accurately classified
the ALL utilizing C-NMC-19 and Taleqani Hospital datasets. The efficacy of the proposed model was
rigorously validated utilizing established evaluation metrics notably AUC, mAP, Accuracy, Precision,
Recall, and F1-score. Secondly, the XAI approaches namely, Grad-CAM, LIME and IG were applied to
explain the proposed model decision. Our contributions on pioneering the explanation of EfficientNet-B7
decisions using XAI for the diagnosis of ALL, set a new benchmark for trust and transparency in the
medical field.
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1. Introduction

The hematological composition of humans is primarily comprised of erythrocytes (Red blood
cells, or RBCs), with leukocytes (White blood cells, or WBCs) and thrombocytes (platelets) also
playing crucial roles. These components are indispensable for transporting vital substances
throughout the body [1]. Thrombocytes are crucial in the clotting mechanism, erythrocytes
are essential in conveying oxygen, and white blood cells (WBCs) are essential for infection
prevention and defence. Variations in the WBC count can have a substantial impact on the
human immune system, although it accounts for only 1% of the blood volume, highlighting the
diagnostic and therapeutic significance of blood [2].
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Leukaemia is categorised as an oncological condition and epitomises a significant threat
within the broad spectrum of life-threatening pathologies afflicting humans. This is particularly
noticeable when WBCs proliferate abnormally and uncontrolled, this malady disrupts normal
hematopoietic function [3]. In the light of projections by the World Health Organization, a
significant rise of nearly 50% in cancer incidence and death rates is expected by 2040 1. Thus,
there is an urgent need for advances in detection techniques and diagnosis of this disease [4].

Microscopic differentiation between leukaemia and normal cells presents significant chal-
lenges, that are made more difficult by technical problems including illumination mistakes and
staining noise [5]. These obstacles make it difficult to accurately characterize the cellular traits
that are essential for a leukaemia diagnosis, particularly acute lymphoblastic leukaemia (ALL),
which is notorious for its aggressive progression and its impact on haematopoiesis within bone
marrow [6]. Traditional diagnostic approaches, despite their utility, suffer from being invasive,
time-intensive and prone to diagnostic inaccuracies. The advent of medical imaging technology
and computational have provided a non-invasive alternative; however, radiologists’ manual
review of large image datasets is time-consuming, error-prone, and ineffective for the subtle
differences needed for leukaemia diagnosis.

DL-based approaches have been widely applied in the extant literature for the identification
and classification of ALL. As illustrated by Abir [7], Mondal [4], Amin [8], and Kasani [9],
scholarly investigations have explored many DL models, including VGG19, ResNetV2, Inception-
ResNetV2, DenseNet-121, Xception, MobileNet, VGG-16, and EfficientNet-B3, as well as general
frameworks like CNN and DNN. These studies have used extremely detailed evaluation metrics
to ascertain the efficiency of their models. However, a noticeable gap exists in explaining the
effectiveness and operation of these models [10]. In particular, patients, healthcare providers,
and the general public may encounter difficulties in grasping the nuanced outcomes, which
could undermine their confidence in the judgements made by DL models. Consequently, it is
imperative to demystify the particular components and features that drive the decision-making
process of these DL models. This initiative aimed to enhance the understanding level of patients,
medical practitioners and the wider community to grasp the inner workings of DL models.
Thereby, it can promote a deeper comprehension, confidence and trust in these cutting-edge
technologies. It paves the way for incorporating the interpretability of these models into Clinical
Decision Support Systems (CDSS) and bringing technological advancements in line with their
useful applications in healthcare.

In response to the critical need for advanced diagnostic approaches in the battle against Acute
Lymphoblastic Leukaemia (ALL) [11], our work employs the sophisticated EfficientNet-B7 [12],
an Avant-grade CNN framework. This model is fine-tuned to accurately identify and classify
white cells in the microscopic image as either ALL or normal. To reconcile the EfficientNet-
B7’s high performance with explainability, we integrated Explainable Artificial Intelligence
(XAI) techniques such as Local interpretable model explanation (LIME)[13], Gradient-weighted
class activation map (Grad-CAM) [14] and Integrated Gradients (IG)[15]. The XAI approaches
provide elucidation on the model’s decision-making pathway, enriching the explainability of the
diagnostic process for medical professionals and patients, thereby increasing trust and ensuring

1https://platform.who.int/mortality/themes/theme-details/topics/indicator-groups/indicator-group-
details/MDB/leukaemia



diagnostic veracity. This paper is structured as follows: a review of the extant literature is
found in Section 2, Section 3 outlines the methodology employed, Section 4 represents the
discussion/results and Section 5 concludes the paper with an overview of future research.

2. Relveant Studies

In the arena of current research, this study explored a myriad of architectural methodologies,
evaluation criteria and explanations: the employment of EfficientNet-B7 with the integration
of XAI stands as a novel contribution. In the extant literature, various CNN-based approaches
presented in Table 1 such as VGG-16/19, Inception-V3, ResNetV2/50, DenseNet121, EfficientNet-
B3 and aggregation-based were applied. The choice of EfficientNet-B7 is strategic and is
distinguished by its balance scaling offering a potent combination of accuracy and efficiency. In
contrast to focusing only on established evaluation metrics, this work utilized comprehensive
metrics namely AUC and mAP as well for providing the granular and nuanced analysis of
the model performance. Moreover, the utilization of the C-NMC-19 dataset aligns this study
with the available implementations for an immediate comparison of findings. Additionally, we
employed another dataset, namely the Taleqani Hospital dataset, in our experimental work,
and our proposed model demonstrated remarkable performance on this dataset as well. In
stark contrast to the broader field, this study distinguishes itself from the prevailing trends
by weaving in XAI, an aspect frequently neglected by others. The integration of Grad-CAM,
LIME and IG with EfficientNet-B7 showcased additional clarity and explanation of the model’s
decision. The existing literature shows limited examples of XAI, with notable Abir et.al [7] and
Uysal et.al [16] who used LIME and SHAP. Therefore, this study not only pushes the boundaries
of evaluation and validation but also acts as a pioneer in the sphere of XAI, potentially setting a
new standard for future research in Leukaemia.

Table 1
Comparison with Extant Literature

Researchers Architecture Perf-Metrics Dataset Integration
with XAI

Mondal et al.[4]
VGG-16, InceptionResNet-V2,
MobileNet, DenseNet-121

Accuracy, AUC C-NMC-19 No

Amin et al.[8] ECA-Net utilizing VGG-16
Accuracy, Sensitivity,
Specificity

C-NMC-19 No

Khandekar et al.[17]
Res-Net50, Resnext-50, VGG-16,
YOLOv4

mAP, Recall, F1-score C-NMC-19 No

Kasani et al.[9]
Aggregation-based architecture
of VGG19 and NASNetLarge

Accuracy, Precision,
Recall, F1-score

ISBI-19 No

El-ghani et al.[18] EfficientNetB3
Accuracy, Precision,
Recall, F1-score

C-NMC-19 No

Ying et al.[19] Deep Ensemble Learning F1-score ISBI-19 No
Jiang et al. ViT-CNN Accuracy, Precision ISBI-19 No
Abir et al.[7] Inception-V3 Accuracy, F1-score ISBI-19 LIME
Uysal et al.[16] Decision Tree Regressor Accuracy, F1-score ChEMBL version SHAP

Proposed work EfficientNet-B7
Accuracy, Precision,
Recall, F1-score,
AUC, mAP

C-NMC-19, Tale-
qani Hospital

Grad-CAM,
LIME, IG



Figure 1: Workflow of the Proposed Methodology.

3. Methodology

The proposed workflow is illustrated in Figure 1, highlighting the key steps in the training and
testing phases. In the training phase, the workflow comprises pre-processing, feature extraction
and model training, while in the testing, the workflow transitions from image resizing to model
prediction and concludes with XAI approaches.

3.1. Description of Datasets

Our study utilized two different datasets. Firstly, a refined dataset [20] that contains either
cancerous or normal cells derived from real-world microscopic images, comprising 60% ALL
and 40% Normal images. Noise and illumination errors in the images were corrected using an
stain colour normalization technique [21]. The ground truth provided by the expert oncologist
underpins the reliability of the dataset for validating the computational models. The second
dataset considered in this study was prepared at the bone marrow laboratory of Taleqani
Hospital in Tehran [22]. It comprises 3,256 peripheral blood smear (PBS) images from 89
patients suspected of having ALL; the dataset is imbalanced. These images were meticulously
prepared and stained by skilled laboratory staff. The datasets were divided into two parts:
training images (75%) and testing images (25%), used to ensure a sufficient amount of data for
both training and testing purposes.

3.2. Preprocessing

In the pre-processing stage, the considered datasets underwent a systematic filtration based
on image file extension pinpointing PNG, JPG, JPEG and GIF. After the previous step, the
dataset was divided into two subsets training and testing. A necessary adjustment to ensure
compatibility aligns with the input requirement of the CNN [23], the images were uniformly
scaled to a dimension of 224x224 in the final phase.



3.3. EfficientNetB7

In this study, we carefully selected the methods and hyperparameters based on a combination
of empirical methods and established best practices to optimize performance. We used the
EfficientNet-B7 base model [12], trained on the Image-Net dataset was utilized via the Keras
framework. The baseline model was able to utilize the pre-trained weights using the features of
Image-Net and to instantly improve the performance of image recognition. EfficientNet-B7 is
a CNN with feed-forward training that starts from the input layer to the classification layer
illustrated in Eq. 1. Backpropagation error starts at the classification phase to the starting input
layer as one pass is complete. As described by Eq. 1, information is passed from neuron 𝑞 of
(𝑙 − 1)th to the neuron 𝑝 of the 𝑙th layer, where 𝑊 𝑙

𝑝𝑞 is the connections’ weight between the two
neurons within the 𝑙th layer [24].

𝐼 𝑙𝑝 =
𝑛
∑
𝑞=1

𝑊 𝑙
𝑝𝑞𝑎𝑝 + bias𝑝 (1)

The base model was configured without the top layer specifically tailored to our task re-
quirements, allowing for a customized output layer. In order to facilitate feature map reduction
and abstraction, we applied maximal pooling after the base model output. Maximal pooling
significantly enhanced the most silent features through spatial down-sampling, which not only
reduced the computational load but also ensured robustness to variations in input images. After
the initial output, batch normalization were employed, to normalized the inputs for subsequent
layers using adjustment and activation scaling. Following this, a dense layer was integrated with
L1 and L2 regularization [25] illustrated in Eq. 2 to curtail the overfitting. The regularization
parameters were selected precisely to find balance between the model complexity and the
fidelity of the training data.

𝐿1(𝜃) = 𝜆
𝑛
∑
𝑖=1

|𝜃𝑖| | 𝐿2(𝜃) = 𝜆
𝑛
∑
𝑖=1

|𝜃𝑖|2 (2)

Where 𝜃 represent weights, 𝑛 is number of parameters in the model and the regularization
strength is 𝜆. The integration of mentioned techniques batch normalization, regularization
and then the utilization of dropout [26] illustrated in Eq. 3: effectively fine-tuned the balance
between reducing overfitting andmaintaining the complexity and integrity of the model aligning
closely with the unique aspect of the training dataset.

𝑥(𝑙)𝑗 = 𝑟 (𝑙)𝑗 ⋅ 𝑓 (𝑥(𝑙)𝑗 ) (3)

Where, 𝑗 denotes a neuron within the layer 𝑙th which employs activation function 𝑓. Here, 𝑟 (𝑙)𝑗
is a random variable, input is 𝑥(𝑙)𝑗 and �̂�(𝑙)𝑗 represents the output of this neuron. The EfficientNet-
B7 concludes with an output layer that integrated dense layer with a sigmoid activation function
for classification. In the model compilation phase, the Adamax optimizer is applied due to its
proven effectiveness, especially in dealing embeddings and enhancing the model optimization
process [27].



3.4. Explainability

EfficientNet-B7 with its complex architecture extracts intricate features from the input cancerous
images essential for high accuracy in ALL identification and classification. However, due to
the deep architecture of this model, understanding the decision process for the Non-Tech
community is challenging. In response to this gap, we employed XAI approaches namely Local
Interpretable Model-agnostic Explanation (LIME) [28], Gradient-weighted Class Activation
Mapping (Grad-CAM) [29], and Integrated Gradients (IG) [15] to provide the visual explanation
and interpretation of the image features which are influencing the model’s prediction. Grad-
CAM utilises the gradients of the last convolutional layer (top_activation) to generate a heatmap
illustrated in Eq. 4 that illuminates the critical region within the image which affects the model
decision.

𝐿𝑐𝐺𝐶 = ReLU (∑
𝑘
𝛼 𝑐𝑘 ⋅ 𝑓

𝑘) (4)

The Eq. 4 represents this localization map for class 𝑐, where 𝐿𝑐𝐺𝐶 highlights important regions,
ReLU ensures non-negative output, 𝛼 𝑐𝑘 indicates the importance of feature map 𝑓 𝑘 for class 𝑐,
and 𝑓 𝑘 are the feature maps from convolutional layers.

LIME provides an explanation by perturbing the input images, observing the changes in the
model prediction, and pinpointing the image features that substantially impact the model’s
prediction as shown in Eq. 5 [30].

𝐿(𝑓 , 𝑔, 𝜋𝑥) + Ω(𝑔) =
𝑁
∑
𝑖=1

𝑤𝑖 ⋅ (𝑓 (𝑥′𝑖 ) − 𝑔 (𝑥′𝑖 ))
2 + Ω(𝑔) (5)

In Eq. 5, 𝐿(𝑓 , 𝑔, 𝜋𝑥) measures the difference between the original model 𝑓 and the interpretable
model 𝑔, with 𝜋𝑥 as the proximity measure. Weights 𝑤𝑖 are for perturbed samples 𝑥′𝑖 . Ω(𝑔) is
the complexity penalty for 𝑔.

IG is an XAI approach that offers a way to attribute the prediction of the model to its input
features, notably pixels for images by integrating the output gradients from a baseline to the
actual image; thereby highlighting the role of an individual pixel in image analysis as shown in
Eq. 6.

𝐼𝐺𝑖(𝑥) = (𝑥𝑖 − 𝑥′𝑖 ) × ∫
1

𝛼=0
(
𝜕𝑓 (𝑥′ + 𝛼 × (𝑥 − 𝑥′))

𝜕𝑥𝑖
) 𝑑𝛼 (6)

.
Here, 𝐼𝐺𝑖(𝑥) is the integrated gradient for feature 𝑖, 𝑥𝑖 is the actual input, 𝑥′𝑖 is the baseline

input, and 𝛼 scales the difference between inputs.

4. Results and Discussion

In this study, we employed the EfficientNet-B7, a forefront CNN architecture for the vital task of
identification and classification of ALL utilizing the microscopic images. Following the model’s
training and validation phase, we integrated the XAI methodologies to demystify and explain
the model’s prediction decision.



4.1. Classification

The EfficientNet-B7 exhibited remarkable performance presented in Table 2 across all considered
metrics. The proposed model demonstrated its high level of reliability in accurately detecting
ALL, achieving an accuracy of 97.13% on the C-NMC-19 dataset and 96.78% on the Taleqani
Hospital dataset. The precision metric recorded at 99.32% for C-NMC-19 dataset and 97.00% for
Taleqani Hospital dataset , the model proves its adeptness at significantly reducing the false
positive, which is crucial in diagnosis to avoid unnecessary anxiety and medical intervention
for patients. The recall score of 92.42% and 96.25% on C-NMC-19 dataset and Taleqani Hospital
dataset respectively, indicates its strength in identifying the vast majority of genuine ALL cases,
ensuring minimal missed diagnosis.
Table 2
EfficientNet-B7 classification performance scores on all datasets.

Dataset Accuracy% Precision% Recall% F1-score% AUC% mAP%

C-NMC-19 97.13 99.32 92.42 95.75 96.04 94.45

Taleqani Hospital 96.78 97.00 96.25 96.57 99.85 99.56

Furthermore, the F1-scores of 95.75% on C-NMC-19 dataset and 96.57% on Taleqani Hospital
dataset , demonstrated the robust and harmonious balance between the recall and precision.
Additionally, the AUC score of 96.04% on C-NMC-19 dataset and 99.85% on Taleqani Hospital
dataset highlights the superior performance of the model in distinguishing between ALL and
healthy classes accurately. Furthermore, the last evaluation metric mAP scores according to
Table 2 are 94.45% on C-NMC-19 dataset and 99.56% on Taleqani Hospital dataset, emphasising
the model’s consistent and reliable performance across different threshold levels.
4.2. Explanation

XAI approaches namely LIME, Grad-CAM and IG were applied to the classification model to
explain the predictive decision and enhance the trust of medical professionals and patients.
Comparative visualization with the original image of the mentioned techniques is illustrated in
Fig 2 and 3.

The Grad-CAM generated heatmaps in Fig 2(B) and Fig 3 (F), which offered a visual rep-
resentation of the areas within the original ALL image that contribute most to the model’s
prediction. The process involves the extraction of gradient values from the last convolutional
layer (top_actovation) concerning ALL cancer, which indicates the non-functional white cells
in the Leukaemia imagery. According to heatmap (B) in Fig 2, the red area indicates the highest
contribution, whereas the areas in blue contribute the least. Similarly, the heatmap (F) shown in
the Fig 3 illustrates that the areas marked in white are the highest contributors to the model’s
decision making process, whereas areas in other colors contribute less significantly.

In the LIME explanation Fig 2 (C) and Fig 3 (G), the yellow areas are identified as key
influencers in steering the model’s decision. LIME provided an explanation based on the
perturbation of the input ALL image and observed the effect on the output.LIME was initially
utilized to explain the Inception-V3 by[7]; however, it has shown enhanced effectiveness with



(A) (B) (C) (D)

Figure 2: Comprehensive Visualization of XAI Techniques on C-NMC-19 dataset: (A) Original Image,
(B) Grad-CAM, (C) LIME and (D) IG.

(E) (F) (G) (H)

Figure 3: Comprehensive Visualization of XAI Techniques on Taleqani Hospital dataset: (A) Original
Image, (B) Grad-CAM, (C) LIME and (D) IG.

the EfficientNet-B7. In Fig 2 (D) and Fig 3 (H), the regions highlighted in green represent positive
contributions to the model, as determined by the IG method.

Conclusively, the Grad-CAM offered more precise localization of influential regions as com-
pared to LIME and IG, often better for the identification and detection of un-functional white
cells in the microscopic image.

5. Conclusion and Future research directions

In this study, we have effectively presented the integration of EfficientNet-B7with Explainable AI
methods on two different datasets (C-NMC-19 and Taleqani Hospital) to improve the diagnosis
process and explain the model’s decision through Grad-CAM, LIME and IG for ALL. The
incorporation of comprehensive evaluation metrics namely AUC , mAP, Accuracy, Precision,
Recall and F1-score further validated the efficacy and reliability of our proposed framework
presented in Table 2, setting a new phase for AI-driven diagnostic in oncology.

Conclusively, this work not only proposed a novel framework for the diagnosis of ALL but
also set a new trend for the future of AI in medicine, balancing the scales between computational
innovation and the imperative for explainability, clarity and trust in medical diagnostics. In
future, we aim to implement different architectures andXAI approaches to extend this framework
to diverse haematological diseases for enhancing the diagnostic process.
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