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Abstract
Algorithmic diagnosis using Electrocardiogram (ECG) signals for various cardiovascular diseases is an important

step towards developing AI-assisted healthcare systems. Explaining the predictions of algorithmic decision

through machine learning models seems to be absolutely necessary for practical purposes to inculcate trust and

transparency. Shapley value-based additive feature importance explanation is supported with game theoretical

axioms. In this paper, we demonstrate that the Shapley value-based features do indeed directly impact the

model predictability under subtractive counterfactual setup. It is validated through adversarial machine learning

condition as removal-based explanations that quantify the influence of each of the inputs through simulating

input removal process. We show that the model’s prediction capability degradation and the model hardening with

adversarial training are coupled with Shapley value attributed important features as subtractive counterfactual

reasoning. Specifically, we empirically confirm that the Shapley value attributed important features put the

model under lesser stress under the evasion attack and the model hardening outcome becomes more robust. We

substantiate our claim with empirical results, which are demonstrated on diverse ECG data of publicly available

UCR time series dataset.
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1. Introduction

According to WHO
1
,

2
cardiovascular diseases (CVDs) are the leading cause of death globally. In 2019, it

was about 32% of all deaths. 38% of the premature deaths (below the age of 70) due to noncommunicable

diseases were caused by CVDs. It is also accepted that most CVDs can be prevented by addressing

behavioral risk factors. Roughly 48.6% of above 20 years of age Americans have CVD [1]. Atrial

fibrillation (AF) condition, a critical CVD has reached the dimension of a 21st-century epidemic with

large number of reported incidents and increasing prevalence. [2]. The prevalence of CVDs, lack of

treatment adherence and high-rate of later stage CVD condition detection (including life threatening

Arrhythmias like Atrial Fibrillation, Ventricular Tachycardia, Atrial Flutter) highlight the urgent need for

transformation of the conventional cardiac care not only due to the worldwide scarcity of cardiologists,

but also to leverage the advancements in AI, sensing technologies, Internet for efficient delivery of

cardiac care.

In order to develop smart cardiovascular healthcare with AI-assisted alert system as depicted in Fig 1

[3] [4], the AI-assistant needs to accurately detect the cardiovascular disease condition from the ECG
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sensor (mostly single-lead ECG sensor) as well as to provide explanatory basis towards the machine

learning prediction such that emergency care service can be deployed which can potentially lead to

reduced mortality rate and to avoid the clinical burden of delayed intervention. Further, we need

to ensure trust, data security and privacy of the smart healthcare eco-system [5], [6], [7], [8]. The

main motivation is to introduce AI into medical practice to speed up the clinical decision-making

process of critical CVDs like Atrial Fibrillation, Myocardial Infarction, etc to enable other specialists (for

e.g., primary care physicians) or the medical care givers to reliably make necessary clinical decisions

using cardiac marker signal analysis (for e.g., ECG analysis) by the AI assistant for immediate clinical

intervention. In fact, algorithmic diagnosis is an important component in the development of an AI

assistant to treat various heart diseases. Currently, AI models or more specifically, deep learning models

have shown human expert level capability of different CVD condition identification like Arrhythmias

including life threatening Atrial Fibrillation condition detection using single-lead ECG signals [9], [10].

It is clinically accepted that ECG is one of the fundamental markers of cardiac health and ECG-based

automated analysis and algorithmic decision pave ways towards timely diagnosis and intervention

as we are experiencing severe shortage of trained cardiologists [11]
1
. In fact, convolutional neural

network with skip connection-based deep learning model, proposed from Stanford claimed to provide

cardiologist-level Arrhythmia condition detection capability [10].

In our context, AI-assistant is primarily a deep learning model that analyzes the single-lead ECG and

generates algorithmic prediction on the plausible CVD condition of the user along with alert generation,

when necessary. While accuracy of the CVD condition detection is important, the pure data-driven

approach is not sufficient for the acceptance by the medical fraternity. An explanation of the results is

of utmost importance [12, 13] and we need to build explainable deep learning model. There are two

basic types of model explainability exists- global and local. We consider local explanation, as it is more

suitable over global explanation, which considers all the statistical units among all the explanatory

variables, whereas local explanation provides explanation of the explanatory variables for a focused

statistical unit [14]. Shapley value-based local explanation approach (Shapley statistics was introduced

in [15] and implemented in [16] as Shapley Additive explanation (SHAP) is one of the most important

local explanation methods owing to its strong theoretical foundation from cooperative game theory

and backed by axiomatic relevance. Shapley value-based feature attribution, a kind of additive feature

attribution method, provides a single and unique solution defined under the axioms of local accuracy,

consistency, and missingness [16]. Shapley value-based feature attribution is demonstrating remarkable

results [17] and it is a state-of-the-art model explanation method for ECG analysis with Shapley

Additive explanation (SHAP) [18, 19].

However, the model explanation’s validation is not studied well to confirm the efficacy of the SHAP

method. In this paper, we consider ECG analysis as the exemplary application to demonstrate that the

SHAP or Shapley value-based additive feature explanation provides consistent and intuitive explanation

through adversarial machine learning set up under counterfactual robustness through explanation

by removal [20]. We are further motivated by CXPlain [21] that removes single or a group of

inputs to measure the function’s loss as the causal objective. Consequently, we follow subtractive

counterfactualization. In additive counterfactuals, extra information is added to study the response, and

in subtractive counterfactuals some of the given information is removed to study the response. From

the understanding that additional information provisioning is an expensive exercise when medical

data collection and annotation are concerned, we focus on subtractive counterfactuals. For empirical

study, we experiment with different ECG data from UCR time series [22], which is the benchmark

archive for time series classification problems, and we demonstrate empirical support for the consistent

explanation capability of Shapley value-based explanation method.

1
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Figure 1: Smart cardiovascular healthcare with AI-assisted alerting system for emergency care service delivery.

2. Problem statement, background, and solution sketch

ECG is a time series signal which is an ordered set of real values collected over time intervals and

it is represented as: x = [𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑇 ], x ∈ R𝑇 , where x consists of scalar measurements over

a time period indexed by 1, 2, 3, ...., 𝑇 . Training ECG dataset X𝑇𝑟𝑎𝑖𝑛 = [x(1), x(2), . . . , x(N)], where

each of x(𝑛), 𝑛 = 1, 2, . . . ,N consists of N number of ECG signals with corresponding labels of disease

class Y𝑇𝑟𝑎𝑖𝑛 and the complete training dataset is 𝐷𝑇𝑟𝑎𝑖𝑛, where 𝐷𝑇𝑟𝑎𝑖𝑛 = [X𝑇𝑟𝑎𝑖𝑛,Y𝑇𝑟𝑎𝑖𝑛]. Here we

consider supervised learning problem to classify the given ECG signal into predicted disease class, where

we construct a model ℎ𝜃(.), which is parameterized by 𝜃 describing the joint distribution 𝒟𝑑𝑎𝑡𝑎(x,y)
and we generate trained model 𝑀 .

The first problem is to build an accurate classification model from 𝐷𝑇𝑟𝑎𝑖𝑛 under different practical

challenges like less number of training examples, etc. Previously, it is demonstrated that sophisticated

deep neural network model like𝐵𝑙𝑒𝑛𝑑𝑅𝑒𝑠2𝑁𝑒𝑡 is a suitable choice as the baseline deep neural network

model [23, 17]. 𝐵𝑙𝑒𝑛𝑑𝑅𝑒𝑠2𝑁𝑒𝑡 is a two channel blended ResNet architecture that describes the unput

into both time domain and spectral domain. In general,𝐵𝑙𝑒𝑛𝑑𝑅𝑒𝑠2𝑁𝑒𝑡works as a push-pull mechanism

that pushes the model towards sophisticated representation with blended ResNet and pulls down to lesser

network capacity with restrained learning principle. We understand the capability of a typical residual

network (ResNet [24]) to minimize the vanishing gradient issue. Consequently, 𝐵𝑙𝑒𝑛𝑑𝑅𝑒𝑠2𝑁𝑒𝑡 model

provides considerable accuracy in analyzing ECG signals, but to incorporate model-level explanation,

we use SHAP as the post-hoc explanation method by estimating the contribution of each of the training

samples or players (player is the one who participates in the game or deal, under the game theory

context) x(𝑛) ⊂ X𝑇𝑟𝑎𝑖𝑛 towards the predictability impact of the model. To compute the Shapely value

for each of the training samples, we define transferable utility game and marginal contribution from

cooperative game theory concept [15, 25].

1. (Definition I) (Transferable utility game). A game that maps v: 2N → R such that v(∅) = 0 with

the interpretation of v(𝜓) where 𝜓 in 2N
, as the estimated value of coalition 𝜓 and the value

function v(𝜓) finds out the collective payoff for each of the player in the cooperation assumption.

In our context, the model 𝑀 is trained with n𝑡ℎ sample on all possible subset 𝜓 ⊆ 2N
and we

estimate for each of training samples.

2. (Definition II) (Marginal contribution). The marginal contribution ∆v(n, 𝜓) of player n with

respect to the coalition 𝜓 is defined as ∆v(n, 𝜓) = v(𝜓 ∪ n)− v(𝜓).

We define Λ to be the integer permutations up to total number of given inputs (N) and 𝜆 ∈ Λ and

the predecessor set of players preceding n𝑡ℎ player in 𝜆 is represented as: 𝜓𝑛,𝜆 = {𝑚 : 𝜆(𝑚) < 𝜆(𝑛)}.

Accordingly, Shapley value 𝜑v(n) of n𝑡ℎ player with the function v is:



𝜑v(n) = 1
N!
∑︀

𝜆∈Λ∆v(n, 𝜓𝑛,𝜆).
The Shapley value 𝜑v(n) of n𝑡ℎ is computed through permutation logic for each of the training sample

as [15]:

𝜑v(n) = 1
N!
∑︀

𝜓⊆{1,2,3..,N} |𝜓|!(N − |𝜓| − 1)!∆v(n, 𝜓).
The training samples with higher values of 𝜑v(n) are the ones that contribute more to the learning of

the model 𝑀 [17]. Consequently, it is straightforward to assume that the model that learns without

(say, top 20%) of the high contributing samples, would learn poor and that results in lesser accurate

prediction. However, the response of the model 𝑀 that gets trained with all the training samples

including the high contributing samples (from the estimated Shapley values) and the response of the

model ℳ that gets trained without high contributing samples (say, with 10%, 15%, 20% removal of

top contributing input samples) under adversarial machine learning conditions with evasion attack

and model hardening, provide more insights on the adversarial robustness of the model 𝑀 and ℳ.

We expect adversarial robustness of 𝑀 is higher than ℳ and establish the counterfactual-based

causal reasoning in support of the Shapley value-based model explanation, where we show that that

quantum of change that requires to change the prediction is more in 𝑀 than in ℳ. In other words,

we demonstrate that the resistance towards the counterfactuals is less when the high Shapley values

training samples are removed from the model training process, which directly presents the worth

of Shapley value-based explanation equivalent of subtractive counterfactual based explanation with

the notion of causality understanding. In ECG-based clinical diagnosis, monitoring and intervention

such model-level explainability helps to build the trust for its use in practical purposes as depicted in Fig 1.

3. SHAP under conterfactual setup

Counterfactual setup is typically expressed as 𝑝(𝑦𝑥|𝑥′, 𝑦′) which represents the probability that the

outcome 𝑌 = 𝑦 is observed when the input is 𝑋 = 𝑥 under the actual observation of 𝑋 = 𝑥′ and

𝑌 = 𝑦′. A valid counterfactual is the one which is in fact classified as the desired class. Under a

counterfactually robust classifier, the resistant to changes in 𝑋 is high and the classifier attempts

to classify as 𝑦, instead of 𝑦′, i.e. the distance between the actual observation 𝑥 and counterfactual

observation 𝑥′ should be high for an adversarially robust model. The Shapley value-based explanation

can simulate each of the input feature not being present in the distribution 𝒟 such that the prediction

outcome is explained under the cooperative game scenario contrasting to the distribution change due

to the absence of that input. Basically, Shapley value-based explanation is performed by asking a set of

contrastive questions. Therefore, we encounter five types of data conditions.

• Training dataset 𝐷𝑇𝑟𝑎𝑖𝑛 which is the given labelled training set 𝐷𝑇𝑟𝑎𝑖𝑛 = [X𝑇𝑟𝑎𝑖𝑛,Y𝑇𝑟𝑎𝑖𝑛]
with X𝑇𝑟𝑎𝑖𝑛 = [x(1), x(2), . . . , x(N)], and corresponding labels Y𝑇𝑟𝑎𝑖𝑛.

• Test dataset 𝒯𝑇𝑒𝑠𝑡 is the given testing dataset that is independent from the training dataset.

• Shapley value estimated feature attributed negative dataset 𝐷−𝑆ℎ𝑎𝑝
𝑇𝑟𝑎𝑖𝑛 which consists of

training set (𝐷−𝑆ℎ𝑎𝑝
𝑇𝑟𝑎𝑖𝑛 ⊂ 𝐷𝑇𝑟𝑎𝑖𝑛) discarding the top 𝛼% of the positive (important) inputs (𝛼 can

be 5, 10,15,20,.., practically 𝛼 is to be restricted <50).

• Contrasting test inputs simulating counterfactuals 𝒯 𝑐𝑜𝑢𝑛𝑡𝑒𝑟
𝑇𝑒𝑠𝑡 which is the simulated counter-

factual test inputs generated using (for e.g.) DeepFool algorithm [26].

• Model hardening training dataset 𝐷ℎ𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔
𝑇𝑟𝑎𝑖𝑛 which is the adversarial training input that

provides the model 𝑀 (this model is trained with 𝐷𝑇𝑟𝑎𝑖𝑛) or ℳ (this model is trained with

𝐷−𝑆ℎ𝑎𝑝
𝑇𝑟𝑎𝑖𝑛 ) to train with augmentation through adversarial examples to counter the degradation of

performance on 𝒯 𝑐𝑜𝑢𝑛𝑡𝑒𝑟
𝑇𝑒𝑠𝑡 .

These datasets set the stage to understand the robustness of the Shapley value-based explanation under

adversarial machine learning with subtractive counterfactual set up. These datasets condition the base

model𝑀 and ℳ. The outcomes in terms of test accuracy (𝑎𝑐𝑐) deliver the required understanding of the

capability and robustness of the Shapley value-based explanation when measured under counterfactuals.



We consider model’s classification performance loss in the absence of an input or a subset of the inputs

to compute the explanations as a function and the associated outcome as: 𝛾 : 𝒴(x) → R. The value 𝛾
that is associated with the input x indicates the behavior of the model. The following outcomes provide

us the quantified idea of the Shapley value-based explanation.

• Baseline test accuracy is 𝑎𝑐𝑐𝑏𝑎𝑠𝑒, which is the test accuracy when the model is trained with

𝐷𝑇𝑟𝑎𝑖𝑛 and tested over 𝒯𝑇𝑒𝑠𝑡 and the corresponding trained model is 𝑀 .

• Test accuracy with Shapley value estimated feature attributed negative dataset is

𝑎𝑐𝑐−𝑆ℎ𝑎𝑝, which is the test accuracy when the model is trained with 𝐷−𝑆ℎ𝑎𝑝
𝑇𝑟𝑎𝑖𝑛 and tested over

𝒯𝑇𝑒𝑠𝑡 and the corresponding trained model is ℳ.

• Test accuracy over counterfactuals tested with 𝑀 is 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑏𝑎𝑠𝑒 , which is the test accuracy of

𝑀 when tested over 𝒯 𝑐𝑜𝑢𝑛𝑡𝑒𝑟
𝑇𝑒𝑠𝑡 .

• Test accuracy over counterfactuals tested with ℳ is 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑆ℎ𝑎𝑝 , which is the test accuracy

of the model ℳ when tested over 𝒯 𝑐𝑜𝑢𝑛𝑡𝑒𝑟
𝑇𝑒𝑠𝑡 .

• Test accuracy over counterfactuals with 𝑀 trained with model hardening training

dataset is 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑏𝑎𝑠𝑒−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑, which is the test accuracy of the model 𝑀 hardened with adversarial

training input 𝐷ℎ𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔
𝑇𝑟𝑎𝑖𝑛 and tested over 𝒯 𝑐𝑜𝑢𝑛𝑡𝑒𝑟

𝑇𝑒𝑠𝑡 .

• Test accuracy over counterfactuals with ℳ trained with model hardening training

dataset is 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑆ℎ𝑎𝑝−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 which is the test accuracy of the modelℳ hardened with adversarial

training input 𝐷ℎ𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔
𝑇𝑟𝑎𝑖𝑛 and tested over 𝒯 𝑐𝑜𝑢𝑛𝑡𝑒𝑟

𝑇𝑒𝑠𝑡 .

Our hypothesis of Shapley value-based explanation efficacy under counterfactuals is stemmed from

the intuition that explanations are strongly related with the counterfactual explanations and adversarial

robustness. The model 𝑀 which consists of all the training inputs including the high Shapley-valued or

the important ones is superior not only over the given test inputs 𝒯𝑇𝑒𝑠𝑡, but also over the contrasting

test inputs simulating counterfactuals 𝒯 𝑐𝑜𝑢𝑛𝑡𝑒𝑟
𝑇𝑒𝑠𝑡 than the model ℳ that is trained by discarding the

important inputs according to SHAP. Consequently, when the model gets hardened with augmented

data 𝐷ℎ𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔
𝑇𝑟𝑎𝑖𝑛 , the response of 𝑀 should be similarly better than ℳ over counterfactual test inputs.

More specifically, we need to establish that:

1. 𝑎𝑐𝑐𝑏𝑎𝑠𝑒 ≧ 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝,

2. 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑏𝑎𝑠𝑒 ≧ 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑆ℎ𝑎𝑝
3. 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑏𝑎𝑠𝑒−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 ≧ 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑆ℎ𝑎𝑝−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑

Furthermore, consider 𝜇1 > 𝜇2, 𝜇1, 𝜇2 ∈ N+
and we denote −𝑆ℎ𝑎𝑝(𝜇1),−𝑆ℎ𝑎𝑝(𝜇2) as the top

𝜇1% and 𝜇2% Shapley valued inputs removed in the model training. Our second hypothesis is:

1. 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(𝜇2) ≧ 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(𝜇1),

2. 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑆ℎ𝑎𝑝(𝜇2) ≧ 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑆ℎ𝑎𝑝(𝜇1)
3. 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑆ℎ𝑎𝑝−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑(𝜇2) ≧ 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑆ℎ𝑎𝑝−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑(𝜇1)

While the above hypotheses are not proven, we establish our claim with empirical support over

practical ECG datasets, given the model explainability is an important aspect of AI-assistive cardiac

care that uses automated ECG analysis for diverse decision making and taking related actions.

4. Empirical results

In this study, we experiment with four ECG datasets, publicly available in the UCR archive, which is a

benchmark dataset for timeseries classification
2

[27]. Dataset description is described in the Table 1.

These datasets (Table 1) consist of separate training and testing parts. As per the general convention,

2
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the classification performance or efficacy of the model is quantified by the test accuracy measure [28]).

The training and test datasets are publicly available [27], which are standard timeseries classification

benchmark data. Training-test partitioning are done by the database creator
3

.

Table 1
Experimental ECG dataset description

Dataset name Training size Testing size Data length CVD type

ECG200 100 100 96 Myocardial Infarction

ECGFiveDays 23 861 136 Change detection

ECG5000 500 4500 140 Congestive Heart Failure

TwoLeadECG 23 1139 82 Change detection

The model is developed in Python 3.5.4 on Tensorflow 1.4.0 and Keras 2.1.2 libraries. The model is

trained in two Nvidia GeForce GTX 1080 GPUs of 10 GB memory with 64-bit x86 architecture, 2.60GHz

clock speed 16 core Intel Xeon E5-2623 v4 CPU. For SHAP implementation, we use DeepLIFT algorithm

[29] through DeepExplainer implementation
4
. To minimize the impact of non-reproducibility due to

run-to-run variability owing to the non-determinism in typcal neural networks [30]
5
, we experiment

with more than 40 different random seeds and the reported empirical results are the highest occurring

test accuracy values.

Firstly, we depict the performance of the deep neural network model for ECG classification. We design

the ECG classification model following Residual Network (ResNet) architecture with novel restrained

learning principle [23]. ResNet transforms the conventional layered representation learning and learns

𝐻(x) = 𝐹 (x) + x at every layer of the network [24] so that the information in x gets a direct path to

flow into the network benefiting better learnability of the model. While ResNet provides substantial

advantage, we intend to ensure that the learing of ECG signals to get better as ECG is also well-defined

in the spectral domain. Thus, following the 𝐵𝑙𝑒𝑛𝑑 − 𝑅𝑒𝑠2𝑁𝑒𝑡 architecture [23], the deep neural

network is formed with two parallel ResNet channels, where the 𝑐ℎ𝑎𝑛𝑛𝑒𝑙1 𝐻
1

learns as:

𝐻1(x) = 𝐹 (x) + 𝐹𝑟𝑒𝑞(x)
and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙2 𝐻

2
learns as:

𝐻2(x) = 𝐹𝑟𝑒𝑞(x) + x
that ensures more detailed learning from the given ECG signals, where, 𝐹𝑟𝑒𝑞(x) refers to the Fast

Fourier Transform of input vector x. These two parallel ResNet channels are merged together to

constitute the final block of representation 𝐻𝐵𝑙𝑒𝑛𝑑(x), which is followed by a Global Average Pooling

layer. Cross-entropy is the loss function and softmax function is the final classification output layer.

The model architecture as two parallel ResNet channels is shown in Fig 2. The model hyperparameters

are inspired from [23] and we have not performed any additional hyperparameter searching methods.

Since ECG classification is part of time series classification task, we consider the baseline and

state-of-the-art algorithms that are well-studied in time series classification tasks. More importantly,

we choose the state-of-the-art algorithms that use UCR [27] for their experimental study forexact

comparison. The state-of-the-art comparison includes 1NN-DTW-based model [31], COTE [32],time

series ResNet [33], TS-Chief [34], Proximity Forest (PF) [35] and Catch22 [36]. In Table 2, the

comparative study of the test accuracies from the state-of-the-art algorithms and our proposed model

are shown. We can positively conclude that the proposed model performs ECG classification effectively

and it is in fact a state-of-the-art model.

Next, we perform the important study to understand the empirical support to form the basis of Shapley

3

https://timeseriesclassification.com/, https://timeseriesclassification.com/dataset.php

4

https://github.com/slundberg/shap

5

https://glaringlee.github.io/notes/randomness.html

https://timeseriesclassification.com/
https://timeseriesclassification.com/dataset.php
https://github.com/slundberg/shap
https://glaringlee.github.io/notes/randomness.html


Figure 2: ECG classification model as blended ResNet architecture.

Table 2
Comparative study of test accuracies of our proposed model with relevant state-of-the-art algorithms INN-
DTW( [31]), COTE( [32]), TS-Chief ( [34]), ResNet( [33]), PF( [35]), Catch22( [36]).

Dataset INN-DTW( [31]) COTE( [32]) TS-Chief ( [34]) ResNet( [33]) PF( [35]) Catch22( [36]) Proposed

ECG200 0.88 0.88 0.855 0.8836 0.909 0.7886 0.91

ECGFiveDays 0.7967 0.9988 1.00 0.9510 84.92 0.8158 1.00

ECG5000 0.9251 0.946 0.9454 0.9510 0.9365 0.8158 0.9510

TwoLeadECG 0.86 0.993 0.9900 0.9994 0.9886 0.8539 0.9994

value-based explainability through the lens of counterfactual set up with adversarial machine learning.

From the hypothesis as stated in 3, we empirically study the impact of the Shapley explanation in

a counter-intuitive approach and quantitatively evaluate the hypothesis through different test accuracies

𝑎𝑐𝑐𝑏𝑎𝑠𝑒, 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(10,15,20), 𝑎𝑐𝑐
𝑐𝑜𝑢𝑛𝑡𝑒𝑟
𝑏𝑎𝑠𝑒 , 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑆ℎ𝑎𝑝(10,15,20), 𝑎𝑐𝑐

𝑐𝑜𝑢𝑛𝑡𝑒𝑟
𝑏𝑎𝑠𝑒−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑, 𝑎𝑐𝑐

𝑐𝑜𝑢𝑛𝑡𝑒𝑟
−𝑆ℎ𝑎𝑝(10,15,20)−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑,

where, 𝜇1 = 5, 𝜇2 = 10, 𝜇2 = 15. The baseline test accuracy is 𝑎𝑐𝑐𝑏𝑎𝑠𝑒, which is from the trained

model 𝑀 that is trained with 𝐷𝑇𝑟𝑎𝑖𝑛. We find the test accuracies from the models with Shapley

value estimated feature attributed negative datasets at different levels of removal of the input training

samples (removing top 10%, 15%, 20% of the input samples respectively) denoted as 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(10,15,20)

for the trained model ℳ10,15,20
when the model is trained with 𝐷

−𝑆ℎ𝑎𝑝(10,15,20)
𝑇𝑟𝑎𝑖𝑛 . The empirical results

are depicted in 3, 4, and 5. The most interesting part is the consistent degradation of the performance

with more Shapley-negative training (higher amount of top input removal in the training set, i.e. with

higher 𝜇 values) and the consistency is similarly observed in the counterfactual simulating contrasting

testing as well as in case of model hardening. While performance degradation in Shapley-negative

training indicates the impact of the Shapley value explained inputs towards the predictability of the

model, the trend of lesser recovery of higher Shapley negative training (for e.g., 15%, 20%) demonstrates

the support of explainability through Shapley attribution under subtractive counterfactual set up

(𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(10)𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(15)𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(20)𝑐𝑜𝑢𝑛𝑡𝑒𝑟 for each of the experimental datasets

as well as 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑆ℎ𝑎𝑝(10)−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 ≥ 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑆ℎ𝑎𝑝(15)−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 ≥ 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟−𝑆ℎ𝑎𝑝(20)−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 for each of the

experimental datasets) confirming our hypothesis. More precisely, we provide empirical evidence to

support the explanation process of Shapley value-based input attribution which is strongly related to

counterfactuals provisioning.

We intend to mention that the application space is restricted to ECG classification due to its immediate

importance in the development and deployment of smart cardiovascular system. However, we can

extend the application for other relevant healthcare data analysis and classification tasks given that the

model-level explainability is an utmost importance property for the acceptance of AI-assistive solutions

in healthcare domains including cardiovascular care for practical purpose.



Table 3
Shapley explanation with counterfactuals with contrasting test inputs at top 10% discard of training samples for
Shapley-negative training.

Dataset 𝑎𝑐𝑐𝑏𝑎𝑠𝑒 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(10) 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟
𝑏𝑎𝑠𝑒 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(10)𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟

𝑏𝑎𝑠𝑒−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟
−𝑆ℎ𝑎𝑝(10)−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑

ECG200 0.91 0.892 0.781 0.751 0.887 0.85

ECGFiveDays 1.00 0.988 0.844 0.835 0.950 0.935

ECG5000 0.9510 0.934 0.892 0.868 0.926 0.907

TwoLeadECG 0.9994 0.977 0.902 0.844 0.960 0.912

Table 4
Shapley explanation with counterfactuals with contrasting test inputs at top 15% discard of training samples for
Shapley-negative training.

Dataset 𝑎𝑐𝑐𝑏𝑎𝑠𝑒 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(15) 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟
𝑏𝑎𝑠𝑒 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(15)𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟

𝑏𝑎𝑠𝑒−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟
−𝑆ℎ𝑎𝑝(15)−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑

ECG200 0.91 0.845 0.781 0.705 0.887 0.788

ECGFiveDays 1.00 0.935 0.844 0.774 0.958 0.843

ECG5000 0.9510 0.891 0.892 0.796 0.926 0.862

TwoLeadECG 0.9994 0.898 0.902 0.776 0.961 0.863

Table 5
Shapley explanation with counterfactuals with contrasting test inputs at top 20% discard of training samples for
Shapley-negative training.

Dataset 𝑎𝑐𝑐𝑏𝑎𝑠𝑒 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(20) 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟
𝑏𝑎𝑠𝑒 𝑎𝑐𝑐−𝑆ℎ𝑎𝑝(20)𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟

𝑏𝑎𝑠𝑒−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑 𝑎𝑐𝑐𝑐𝑜𝑢𝑛𝑡𝑒𝑟
−𝑆ℎ𝑎𝑝(20)−ℎ𝑎𝑟𝑑𝑒𝑛𝑒𝑑

ECG200 0.91 0.785 0.781 0.657 0.887 0.698

ECGFiveDays 1.00 0.824 0.844 0.708 0.958 0.811

ECG5000 0.9510 0.802 0.892 0.720 0.926 0.798

TwoLeadECG 0.9994 0.803 0.902 0.719 0.961 0.767

5. Conclusion

Automation in the medical care, particularly in critical care that includes cardiovascular care not only

increases the efficiency in the overall medical process, but also can lead to timely intervention through

AI assistant that can potentially result in lesser mortality rate and reduced clinical burden. In this paper,

we anchor upon smart cardiovascular system using ECG sensor for in-home, remote and emergency care

that can enable emergency cardiovascular care without delaying the life-saving intervention process.

However, to embrace the automation or algorithmic clinical condition detection and alert generation

for initiating required cardiovascular care, the machine learning algorithm requires to provide model-

level explanation to justify the algorithmic prediction of the disease condition. Shapley value-based

explanations backed by strong theoretical foundation from coalition game axioms is the apt choice

and we formulate our hypothesis on the applicability of Shapley based explanations under subtractive

counterfactual reasoning set up and demonstrated through empirical study on number of ECG datasets.

However, we like to mention that the Shapley value computation is computationally challenging and

DeepExplain with DeepLift algorithm or its variants can provide better computational efficiency. The

method that we have proposed in this paper to support Shapley value-based explanations through

subtractive counterfactual reasoning is generic in nature and we have chosen ResNet architecture due

to its strong performance in different related classification tasks. A study with other architectures will

certainly make the claim stronger. Further, in our future work, we intend to work on the theoretical

basis of the proposed hypotheses and to provide more empirical evidences on related medical domains.

We also intend to point out that the corresponds of the clinical explanation with Shapley value-based

statistical explanation are not theoretically, hypothetically or empirically established. In this paper,

our main motivation is to understand the influence of input training instances towards the model’s

predictability, which in turn provides quantified explanation. Future research scope certainly includes



the quantified explainability with qualitative explainability with respect to relevant and standard clinical

domain knowledge.
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