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Abstract
Central nervous system tumors, particularly gliomas, rank among the top 10 causes of cancer-related deaths
worldwide. Thus, precise differentiation of these tumors is crucial for effective treatment, which can reduce
patient suffering and lower mortality rates. We propose a deep learning-based technique for glioma differentiation
using MRI imaging, which incorporates two novel approaches. First, we represent perfusion sequences as time
series, which serve as inputs for a Deep Neural Network (DNN) classifier. This classifier is trained to distinguish
the sequences between low-grade glioma (LGG) and high-grade glioma (HGG). Second, we employ Conformal
Prediction to calibrate the results, ensuring they include the true category with a 90% probability. This approach
has been rigorously tested to evaluate its performance. Our experimental results demonstrate that our deep
neural network not only provides accurate but also ensures trustworthy predictions.

1. Introduction

Central nervous system (CNS) tumors have traditionally been regarded as a lethal form of cancer,
ranking among the top 10 causes of deaths globally. The GLOBOCAN project using nationwide data
from 184 countries estimated the annual incidence of malignant-only CNS tumors to be 3.4 per 100,000
individuals [1]. Within the variety of tumor types, gliomas are the most frequent primary intracerebral
tumors in adults. Despite their high fatality rates, the prognosis of CNS tumors has considerably
improved over the last decades, possibly because of the prompt detection, the optimization of treatment
protocols including the introduction of temozolomide and the advances in neurosurgical procedures.

Accurate preoperative differentiation of primary CNS tumors is crucial because the treatment strate-
gies differ substantially (e.g. stereotactic biopsy + chemotherapy vs. gross total resection + chemotherapy
in lymphoma vs. glioblastoma). Magnetic Resonance Imaging (MRI) is the most important non-invasive
technique in the diagnosis and differentiation of CNS tumors. In this context, MRI-perfusion is an
imaging technique frequently used to assess the vascularization of brain lesions in a minimally invasive
way. There are different approaches for the study of perfusion and lesions of CNS.

Machine learning has been employed in numerous medical problems as part of expert decision support
systems. However, in most instances, these systems do not provide any information regarding the
confidence of their predictions. In this paper we propose an innovative approach that treats perfusion
curves as time series data and apply Deep Neural Networks (DNN) and Conformal Predictors (CP) to
assess the type of glioma a patient suffers, along with measures of confidence.
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In essence, this involves framing the differentiation problem as a classification task using the perfusion
curve as input. This requires finding a suitable representation for the series and then identifying a
technique that delivers high classification performance. On top of the classifier, a conformal predictor
is built to quantify the level of uncertainty inherent in the model’s predictions using specific metrics.
Our research has resulted in an effective automated procedure to assist radiologists in their work,
contributing to the quantification of uncertainty at the patient level, with applications in personalized
and precision medicine.

The structure of the article is as follows: In Section 2, we present state-of-the-art methods that use
deep learning and conformal prediction for glioma differentiation, including medical context for a better
understanding of the problem. In Section 3 we detail Conformal Predictors. In Section 4, we present
our proposal for glioma differentiation. In Section 5, we include the empirical study and discussion of
the results. Finally, Section 6 contains the conclusions of the work.

2. Related work

2.1. Medical contextualization

As noted in the introduction, gliomas are the most frequent primary intracerebral tumors in adults. The
age-adjusted annual incidence of histologic verified glioma has been reported to be 7.3 cases per 100,000
person-years [2]. Most patients with gliomas have a fatal prognosis, and the disease has considerable
impact on patients and their families’ physical, psychological, and social status. A recent study on the
epidemiology of gliomas found that high-grade gliomas —HGG, grades 3 and 4 according to World
Health Organization (WHO)— were present in 85% and low-grade glioma (LGG, WHO 1 and 3 grades)
in 15% of the cases, with 5-year overall survival of 82, 54, 22 and 3% for grade 1, 2, 3, and 4, respectively
[3].

Accurate preoperative differentiation of primary CNS tumors is essential because the treatment
strategies differ substantially. MRI is the most important non-invasive technique in the diagnosis of CNS
tumors. In particular, MRI-perfusion is frequently used to assess the vascularization of brain lesions.
There are different approaches for the study of perfusion and lesions of CNS. The most widely used
MRI-perfusion approach in clinical practice is T2 gradient echo or dynamic susceptibility contrast (DSC)
due to its high sensitivity and specificity to differentiate lesions and its short acquisition time. DSC
perfusion allows the study of changes in the signal intensity of the tissues derived from the passage of
an intravenous gadolinium bolus administered in a peripheral vein. The passage of the contrast bolus
leads to specific imaging patterns in different tissues and tumors, with changes in their signal intensity
proportional to the amount of gadolinium that passes through or is deposited in them. Changes in signal
intensity over time allow a curve to be obtained, from which hemodynamic parameters are inferred.

At present, pathological anatomy techniques are essential in the diagnosis and genetic and histological
differentiation of gliomas. However, in the presence of lesions such as metastases, an adequate diagnostic
imaging can avoid a brain biopsy. The procedure of stereotactic brain biopsy entails a considerable risk
of complications (e.g., haemorrhage, infection, wound breakdown), which can be as high as 15.3% in
tumors located in midline areas, while 28.8% of post-procedural intracranial haemorrhages have been
reported [4].

A recent Cochrane review [5] reported limited available evidence on the ability of perfusion MRI
to distinguish HGG from LGG, which precludes reliable estimation of the performance of DSC MRI
perfusion-derived parameters (e.g., relative cerebral blood volume or rCBV) for determining the tumor
grade, specifically in untreated solid and non-enhancing LGG vs. HGG. MRI-perfusion has also been
advocated as a useful tool to differentiate between gliomas and other tumors of the CNS, such as lym-
phomas or metastases, but with variable diagnostic yields depending on the publications. Furthermore,
it demonstrated to be useful in differentiating between tumor recurrence of gliomas and post-treatment
changes such as pseudo progression or radionecrosis. However, the available evidence is restricted to
isolated non-clinically validated studies.



Most of these publications have focused on a classical analysis of MRI perfusion data, with special
emphasis on the quantification of rCBV (an estimate of tumor perfusion), which is not quantifiable in
absolute terms (thus requiring comparison with areas of normal cerebral parenchyma). A number or
publications that have applied Artificial Intelligence algorithms to the analysis of brain perfusion can
be found. They are discussed in section 2.2.

2.2. State-of-art Artificial Intelligence methods

In this section, we present the most relevant articles in the state of the art related to the topic. To
the best of our knowledge, there is no technique in the literature that utilizes the perfusion curve as
input for a time series classification model in low-grade gliomas (LGG) and high-grade gliomas (HGG).
Moreover, there are numerous approaches in the literature that apply CP to quantify the uncertainty of
deep learning models ([6], [7]). In fact, the combination of deep learning and CP is especially useful
in biomedical problems. For example, in skin lesion classification ([8]), for the diagnosis and grading
of prostate biopsies ([9]), for rating breast density in mammography ([10]), for grading the severity
of spinal stenosis in lumbar spine MRI ([11]); among other applications ([12], [13], [14]), we have not
encountered in the literature any work that combines DNN and CP methods in the differentiation of
central nervous system tumors.

However, the non-invasive differentiation of gliomas through the application of machine learning,
specifically distinguishing between LGG and HGG gliomas, has been extensively investigated in recent
years. For instance, in [15], a substantial number of radiological features were extracted from MRI
sequences, including T1-weighted, T1-weighted contrast-enhanced, T2-weighted, and FLAIR, across
a total of 285 cases (210 HGG, 75 LGG). These features were used to train three classifiers (logistic
regression, random forest, and support vector machine) to determine the glioma type, achieving an
average AUC of 0.9030 for test cohorts.

In [16], a deep multi-scale 3D Convolutional Neural Network (CNN) architecture was proposed to
categorize gliomas into LGG and HGG using volumetric T1 contrast-enhanced MRI sequences, achieving
an accuracy of 96.49%.

Recently, some studies advocate mixed approaches incorporating molecular profiling for the differen-
tiation of LGG and HGG ([17]). For instance, in the work by authors in [18], clinical and laboratory
data were integrated to create a tool for predicting the molecular status (ATRX, IDH1/2, MGMT, and
1p19q co-deletion), distinguishing between low-grade and high-grade gliomas. The system achieved an
AUC of 0.885 for this specific learning task.

Finally, other studies such as [19], [20], [21], and [22] utilized cases of high-grade or low-grade
gliomas to conduct specific studies on various features, but did not present tools for classification
between these two grades of gliomas.

3. Conformal predictors

In spite of their generally accurate performance, many machine learning models are known to estimate
poorly prediction probabilities. To deliver reliable estimates and avoid over or under-confidence
predictions, prediction uncertainty must be quantified. This decision aligns with the demand of
trustworthy Artificial Intelligence, which, as expressed in recent European Parliament AI regulations
[23], includes as a requirement the models ability to quantify and communicate their confidence in
their outputs ([24], [6]) with special focus on high-risk applications as AI-supported medicine [25].

Performance metrics, such as accuracy or F1-score, cannot tell about the confidence or uncertainty
of the model’s predictions. Even for a model that is right most of the time, not all the cases are equally
easy to classify. Some of them might even be doubtful (e.g., they belong to a different distribution or
their kind was mostly under represented, overlooked, or misclassified). For example, we can think
about patients images from a different hospital, taken from a different MRI scanner, or labeled by
another team. The model may provide unnoticed overly confident predictions because machine
learning algorithms do not include a built-in warning mechanism to prevent well-informed predictions



from looking the same as wild guesses [26] and refers to the alignment between predicted probabilities
directly provided by the model and relative frequencies in the actual data. Well-calibrated models are
those where the predicted probabilities match the empirical probabilities. Thus, it is about calculating
“the probability that the predicted probability is right”. For example, given an MRI scan, if the model
predicts class A with 80% probability, then class A should occur approximately 80 times out of 100
predictions. More formally, a well-calibrated classifier satisfies the following formula [27]:

𝑃 (actual class is A|predicted probability of A is 𝑝) ≈ 𝑝 (1)

To provide confidence to classification results, calibration models should be applied. Two of the most
popular calibration methods are Platt’s Scaling and Isotonic Regression. Platt’s Scaling [28] is a very
popular method that maps each prediction to its empirical frequency by passing it through a sigmoid.
The method is therefore parametric and presupposes normally distributed and heteroscedastic per-class
scores, a notably limiting assumption [29]. On the other hand, Isotonic Regression [30] is more general
because the map is performed with an isotonic (monotonically increasing) function. It assumes that
the classifier perfectly ranks objects in the test set, essentially implying an ROC AUC of 1 and it is not
recommended for small sets [29]. A detailed explanation of how both calibration methods can be found
in [31].

One step ahead of calibration is conformalization. To conformalize means that each single-point
prediction is not only calibrated but also provided with a prediction interval, with statistical guarantees
of including the true value at patient-level ([27], [32], [29]). Conformal Prediction (CP) methods
conformalize the prediction. CP methods, which are distribution-free and lightweight, have shown
some successful application in health-related domains, mostly for cancer prediction ([33], [34], [35],
[32],[36], [34], [37], [38], [39]).

Venn-ABERS methods ([40], [27]) are members of the CP family [41], [42], [43]). They share the skill
to evaluate how different is an unseen instance from the training dataset. These methods were created
to work on top of binary classifiers (although new implementations work for multi-class problems too
[44]). They conformalize the predicted probability to match the actual frequency of its class, while
delivering in the process the upper (𝑝1) and lower (𝑝0) bounds of the probability interval that includes
the true class (a property known as coverage or validity) with statistical guarantee. This prediction
interval quantifies the uncertainty of predictions at instance level: the larger the interval, the lower
the confidence the model has in that prediction. Venn-ABERS are an adaptation of Isotonic Regression
(where it is applied twice, to fit the probability of each class) and a special case of Venn Predictors
([45], [46] ,[29]), from which they inherit guaranteed validity in the form of well-calibrated probability
prediction.

There are two possible implementations of the Venn-ABERS algorithm depending on whether or not
an independent calibration set is required separate from the training set. On one hand, an inductive
approach, or Inductive Venn-ABERS (I-V-A), where the calibration is trained over a hold-on split of
the training set, thus the conformalization is model-agnostic [46]. On the other hand, Cross Venn-
ABERS (C-V-A) where the splits are performed via k-fold, thus there is not need to reserve data just for
calibration as in the inductive case and we use all available data to train the classifier but the classifier
must be retrained each time we predict and conformalize the probabilitiy of a new patient [33].

4. Our proposal

This work presents a novel methodology for the non-invasive differentiation of a specific family of
CNS tumors, specifically distinguishing between high-grade (HGG) and low-grade gliomas (LGG).
Patient data are 3D MRI scans focused on the T2 sequence. The T2 sequence is designed to measure
the evolution of tissue signal intensity as the contrast bolus passes through. From these changes in
signal intensity in the image, once processed, we construct the perfusion curve, which serves as input
for our machine learning model. Thus, we transform an image processing problem into a time series
classification one, which we address by combining two impactful technologies: on one hand, a deep
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Figure 1: Complete processing pipeline for glioma differentiation between low-grade and high-grade.
The process initiates with the reception of a new perfusion sequence. After preprocessing the images,
we extract the perfusion curve by calculating the mean luminance of the voxels at different time points.
Subsequently, a CP-DNN is trained to extract the final prediction and quantify its uncertainty.

neural network capable of extracting patterns with high precision; and on the other hand, conformal
predictors for quantifying the uncertainty of predictions. Consequently, we develop a decision support
system with significant generalization capacity, providing valuable and calibrated information to the
radiologist.

The presented pipeline is divided into three phases: preprocessing of the sequence, generation of
the perfusion curve, and finally, glioma differentiation with a machine learning model, specifically, a
conformal predictor based on a deep neural network classifier. Below, we provide a detailed description
of each phase. Figure 1 show the complete pipeline.

4.1. Preprocessing the perfusion MRI sequence

The differentiation process begins with the arrival of a new perfusion sequence. The first phase,
related to preprocessing, involves normalizing the image in both size and grayscale levels using the
Statistical Parametric Mapping technique [47]. Additionally, it is crucial that the image is segmented.
Despite numerous initiatives aiming to develop deep learning models for brain segmentation in MRI (as
illustrated in [48] and other reviews), there is, to the best of our knowledge, no automatic technique for
segmenting an image in the perfusion sequence. Therefore, in our approach, cases have been segmented
by radiologists using the 3D Slicer tool (https://www.slicer.org, [49]).

4.2. Generating the perfusion curve

Once the perfusion sequence is normalized and segmented, we generate the curve. The perfusion
sequence consists of a series of snapshots taken over a specified period. This procedure generates 𝑛 3D
images of the brain and, specifically, the glioma. By processing each of these 𝑛 images, calculating the
mean luminance value of each voxel within the image in each snapshot, we generate a time series with
as many points as snapshots. This way, a time series is generated out of the perfusion sequence, the
perfusion curve. After that, the time series is normalized by subtracting the mean of the points and
dividing by their standard deviation.

https://www.slicer.org


4.3. Characterizing the Glioma with a CP based on DNN

The differentiation of gliomas into low grade (LGG) and high grade (HGG) requires a machine learning
system capable of extracting relevant patterns to distinguish between the two tumor types. Consequently,
we constructed a deep dense neural network that takes a perfusion curve as input and classifies it into
LGG and HGG.

This is an unbalanced classification problem due to the prevalence of the HGG class in the data set
over the LGG class. Thus, to evaluate the DNN performance, we calculate the accuracy and F1-score.

To enhance the trustworthiness of the classifier outputs, its probabilities must be calibrated. We
calibrate the predictions of the model applying four independent calibration techniques: Platt’s Scaling
(PS), Isotonic Regression (IR), Cross Venn-ABERS (C-V-A), and Inductive Venn-ABERS (I-V-A).

The performance of the calibrators is evaluated with classification and calibration metrics. In this way,
physicians have access not only to artificial intelligence-based tools with a high level of accuracy but
also to the ability to assess the confidence that these models have in each of the predictions associated
with the patients, lending credibility to those predictions in which the model has sufficient confidence.
To achieve this, we employ a Conformal Predictor with a specified confidence level, 𝜂, (e.g. 90%) on top
of the DNN. Thus, the radiologist will know, with each prediction, whether the model has confidence
exceeding 𝜂 in determining whether the tumor is a low-grade or high-grade glioma, what would increase
his or her trust on the differentiation model performance.

To the best of our knowledge, there is no state-of-the-art method that addresses the problem of glioma
differentiation by applying explainability and trustworthiness methods, using perfusion sequences as
time series and applying DNN and CP in this binary classification context.

5. Empirical study

To demonstrate the ability of our method to differentiate between high-grade and low-grade gliomas
satisfactorily, we have conducted a rigorous experimentation. It is detailed in this section along with
the results and their analysis.

5.1. Dataset

We have compiled a cohort of 58 patients from the radiology department of the Virgen de las Nieves
Hospital in Granada, Spain, selected for their exceptional quality and homogeneity in the MRI scans
taken for their diagnosis and treatment.

Due to the rather small size of the dataset, we have designed a data augmentation strategy to
effectively train our machine learning models. For the training partition, we generate perfusion curves
not only at the level of the entire volume but also across the different 2D slices that compose it along the
Z-axis. All slices of the same sequence inherit the label, either LGG or HGG, from the original sequence.
This extends the training set to exceed 700 curves. Besides the anticipated imbalanced character of the
problem arises. The distribution of instances between the two classes is 70% (HGG) and 30% (LGG). To
address this issue, the models need to be adjusted to weigh the prediction error, making it more costly
to make errors in predicting the LGG class than the HGG class.

5.2. Deep Neural Network: architecture and hyperparameters

Taking into account that the patient cohort is not very extensive, the dense neural network to be used
cannot be very large, as we might incur in overfitting issues. After different attempts, an architecture
with five layers (input, output, and three hidden layers with 70, 30, and 5 neurons) is considered, which
yields competitive results.

For the selection of hyperparameters, a Grid Search Cross Validation is applied to choose the op-
timization algorithm and the parameters 𝛼 (strength of the L2 regularization term), initial learning
rate, 𝛽1 (exponential decay rate for fist moment vector), 𝛽2 (exponential decay rate for second moment



vector), and 𝜖 (value for numerical stability). The result of this hyperparameter tuning process produced
the following value selection:

• Optimization algorithm: Adam

• Initial Learning rate: 0.001

• 𝛼 : 0.0001

• 𝛽1 : 0.9

• 𝛽2 : 0.9

• 𝜖 : 0.000000001

5.3. Metrics

Our proposal combines deep learning and conformal prediction. We use classic metrics to evaluate the
goodness of the prediction and calibration metrics to assess the level of uncertainty in the predictions.
For classification metrics, we use accuracy and F1-Score. For calibration metrics, we use Brier Score
and Log Loss. The first one is defined as:

𝐵𝑆 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑝𝑖 − 𝑜𝑖)
2, (2)

where 𝑝 is the prediction probability of occurrence of the event 𝑖, and 𝑜𝑖 is defined as follows:

𝑜𝑖 =

{︂
1 if event 𝑖 ocurred
0 if event 𝑖 not ocurred

(3)

Log Loss is defined as
𝐿𝑙𝑜𝑔(𝑦, 𝑝) = −(𝑦 log(𝑝) + (1− 𝑦) log(1− 𝑝)) (4)

with 𝑦 ∈ {0, 1} and a probability estimate 𝑝 = 𝑃𝑟(𝑦 = 1).
For both of them, Brier Score and Log Loss, the smaller the value, the better is the calibration.

5.4. Results and analysis

We calculated the accuracy and F1-score to compare the performance of our novel DNN for time series
classification approach with the leading state-of-the-art method for time series classification, which is a
1NN with Dynamic Time Warping ([50], [51]).

We have designed a data strategy to ensure the rigor of the study. In all cases, we guarantee the
separation between patients is maintained. Firstly, to confirm the reliability of the results, a Stratified
5-fold Cross Validation is used. This involves generating five datasets where patients are split into 80%
for training and 20% for testing each time, maintaining class proportions in each fold.

The values in Tables 1 and 2 represent the mean values from the five runs for each metric on the
test set, demonstrating that our DNN approach outperforms the state-of-the-art 1NN-DTW in both
performance and calibration. These results confirm previous analyses where Inductive Venn-ABERS
and other CP methods outperformed Platt’s Scaling and Isotonic Regression [46].

In order to unleash the true power of the DNN+CP (actually, Inductive Venn-ABERS) combination,
we conduct another experiment where the dataset is partitioned into training and test sets, with 80% of
the patients used for training and 20% for testing, again in a stratified manner. We plot in Figure 2 the
predicted and conformalized probabilities for the 12 instances (MRI scans) in the test set. On the X-axis,
we can see the 12 predictions made by the model. On the Y-axis, we find the probability expressed by
the model, with 0 representing a prediction of the LGG class and 1 representing a prediction of the
HGG class. The black dots indicate the actual labels of the test examples. As can be seen, there are 3



Method Acc F1-Score Brier Score Log Loss

DNN 0.642 0.769 0.289 1.168
DNN + IR 0.733 0.842 0.2 1.185
DNN + PS 0.733 0.844 0.2 0.612
DNN + C-V-A 0.677 0.787 0.249 0.755
DNN + I-V-A 0.752 0.857 0.197 0.598

Table 1
Performance metrics include accuracy and F1-score (the higher the better), and calibration metrics include
Brier Score and Log Loss (the smaller the better) for the DNN model, which outperforms the state-of-the-art
1NN-DTW model (see Table 2). The last four rows correspond to the implementations of the four calibration
methods: IR stands for Isotonic Regression, PS stands for Platt’s Scaling, C-V-A stands for Cross Venn-ABERS, and
I-V-A stands for Inductive Venn-ABERS. All methods improve model performance, with Inductive Venn-ABERS
significantly reducing calibration errors. The best results are highlighted in bold.

Method Acc F1-Score Brier Score Log Loss

1NN-DTW 0.692 0.769 0.288 10.376
1NN-DTW + IR 0.714 0.813 0.233 0.636
1NN-DTW + PS 0.73 0.844 0.248 0.634
1NN-DTW + C-V-A 0.675 0.786 0.27 0.857
1NN-DTW + I-V-A 0.746 0.848 0.201 0.62

Table 2
Similar to Table 1, here are the results for the state-of-the-art 1NN-DTW model. The classifier shows lower
performance and calibration metrics compared to our approach. IR stands for Isotonic Regression, PS stands
for Platt’s Scaling, C-V-A stands for Cross Venn-ABERS, and I-V-A stands for Inductive Venn-ABERS. The best
results are highlighted in bold.

cases of LGG and 9 cases of HGG, maintaining the stratification of the original dataset. The larger light
blue dot corresponds to the predictions made by the dense neural network without conformalization.
When the black dot and the blue dot coincide, it indicates that the neural network correctly predicted
the class. Conversely, if they do not coincide, the neural network made an incorrect prediction.

The smaller blue dot (𝑝0) and the red dot (𝑝1) represent the probability interval containing each of the
calibrated predictions (𝑝), depicted by the orange dot. This orange dot represents the predictions of our
DNN+CP model expressed in terms of probability, where a probability 𝑝 ≥ 0.5 results in a predicted
label of 1 (HGG class). Conversely, if 𝑝 < 0.5, the predicted label is 0 (LGG class). The distance between
𝑝0 and 𝑝1 (𝑝1 − 𝑝0) indicates the uncertainty in the model’s decision: the greater the distance between
them, the higher the uncertainty in the prediction. This uncertainty is represented by the pink curve.

As observed, the neural network without conformalization makes two errors (the second and the
eleventh cases). Thanks to the conformalization of the predictions, the DNN+CP model correctly predicts
the second case, as the predicted probability is below 0.5, resulting in an LGG class label. Regarding the
eleventh case, the DNN+CP, like the non-conformalized DNN, makes the error of categorizing the case
as HGG when it is actually LGG. However, it can be seen that the uncertainty in that prediction is very
high, showing confidence of less than 60%. Similarly, predictions with some uncertainty are made in
the first (slightly over 60%) and third cases (close to 80%). The rest of predictions are more reliable,
showing a confidence ranging from 85% to 99%.

Therefore, the combination of DNN+CP is not only more accurate, as it corrects errors that an
uncalibrated neural network would make, but it also provides very valuable information to doctors
about the confidence of the predictions, allowing specialists to assess each case with much more
trustworthy information.
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Figure 2: Probability vs conformal probability for MRI scans in the test set. Only thanks to the
conformalization, the misclassified patient (second from the left) is correctly classified as a high glioma
case. Large intervals show a low confidence in those predictions.

6. Conclusions

In this article, we address a global public health issue, ranked among the top 10 causes of cancer-
related mortality worldwide: the detection of central nervous system tumors. Specifically, we focus on
differentiating gliomas into their two types: high-grade gliomas (HGG) and low-grade gliomas (LGG).
To achieve this, we introduce a novel methodology based on time series classification. By utilizing
MRI-perfusion, we transform the image into a time series, called the perfusion curve, which reflects
tissue vascularization in a non-invasive manner. To classify these perfusion curves between LGG and
HGG, a conformal predictor based on a deep neural network is trained. We have compared our proposal
with the state-of-the-art technique in time series classification through rigorous experimentation, based
on a dataset of patients from the radiology department of the “Virgen de las Nieves Hospital” in Granada,
Spain, obtaining satisfactory results. We demonstrate that our methodology is not only innovative
in the way it transforms the image problem into sequences, but also that the combination of deep
neural networks and conformal prediction for time series classification generates an ideal tool for
radiologists This tool displays exceptional generalization capability and the reduced uncertainty in its
predictions, making it useful, reliable and trustworthy. This study contributes to quantifying uncertainty
at patient-level with applications in personalized and precision medicine. Besides, by improving the
confidence in AI-medical applications, this study also aligns with the requirements of the European
Parliament AI regulation to achieve Trustworthy AI.
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