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Abstract
Knowledge graphs (KGs) are naturally capable of capturing the convergence of data and knowledge,
thereby making them highly expressive frameworks for describing and integrating heterogeneous data
in a coherent and interconnected manner. However, based on the Open World Assumption (OWA),
the absence of information within KGs does not indicate falsity or non-existence; it merely reflects
incompleteness. The process of inductive learning over KGs involves predicting new relationships based
on existing factual statements in the KG, utilizing either numerical or symbolic learning models. Recently,
Knowledge Graph Embedding (KGE) and symbolic learning have received considerable attention in
various downstream tasks, including Link Prediction (LP). LP techniques employ latent vector repre-
sentations of entities and their relationships in KGs to infer missing links. Furthermore, as the quantity
of data generated by KGs continues to increase, the necessity for additional quality assessment and
validation efforts becomes more apparent. Nevertheless, state-of-the-art KG completion approaches
fail to consider the quality constraints while generating predictions, resulting in the completion of KGs
with erroneous relationships. The generation of accurate data and insights is of vital importance in the
context of healthcare decision-making, including the processes of diagnosis, the formulation of treatment
strategies, and the implementation of preventive actions. We propose a hybrid approach, VISE, which
adopts the integration of symbolic learning, constraint validation, and numerical learning techniques.
VISE leverages KGE to capture implicit knowledge and represent negation in KGs, thereby enhancing
the predictive performance of numerical models. Our experimental results demonstrate the effectiveness
of this hybrid strategy, which combines the strengths of symbolic, numerical, and constraint validation
paradigms. VISE implementation is publicly accessible on GitHub (https://github.com/SDM-TIB/VISE).
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Figure 1: Prediction under Incompleteness The Lung Cancer KG use case employed in the current
study demonstrates how a lung cancer patient is defined in the context of prediction under incomplete-
ness. Furthermore, the quadrants on the right indicate the predictions or missing facts that can be
classified as either known true facts, known false facts, unknown true facts, or unknown false facts.

1. Introduction

Knowledge Graphs (KGs) are rich structured data model that represents real-world information
in the form of entities and relations that effectively merge data and knowledge through factual
statements [1, 2, 3]. However, KGs are not complete based on the Open World Assumption
(OWA) [4] principle. The process of inductive learning over KGs encompasses a variety of
techniques for the acquisition of knowledge within KGs that will facilitate the completion
of KGs. Inductive learning is crucial for detecting missing links in KGs; it includes deducing
patterns and relationships from the existing KG. Established approaches can learn symbolic
or numerical representations of KGs’ patterns, which correspond to the fundamental building
blocks for inferring missing links [1], thus, completing KGs effectively.
KGE methods project entities and relations from a KG into a lower-dimensional vector space

while preserving their semantic significance. Existing KGE approaches [5, 6, 7, 8] have demon-
strated promising results in various knowledge acquisition tasks, including link prediction,
entity recognition, relation extraction, etc. Training KGE models typically involves ranking
observed (positive) instances higher than unobserved (negative) instances. However, since KGs
only provide positive instances, it becomes essential to generate negative instances [9] that
can enable the model to learn intricate and valuable semantics. As illustrated in Figure 1, the
potential for prediction under the incomplete nature of KGs is demonstrated by the example of
a lung cancer patient and the relationships between various characteristics of this patient in
the KG. The four quadrants are depicted on the right of Figure 1, which includes predictions
or missing facts that can be classified as either known true facts, known false facts, unknown
true facts, or unknown false facts. The category of Known True Facts represents the facts of the
patient that are already present in the KG. For example, we know that the patient is male. The
category of Known False Facts refers to facts that are known but are not true. The categories
of Unkown True Facts and Unkown False Facts are the missing facts that are often predicted by
symbolic learning or numerical learning. Conversely, traditional KGs do not explicitly repre-
sent negated facts or relationships. Instead, they concentrate on representing positive facts or
relationships between entities in the KG. While this strategy simplifies the representation and
querying processes, it also excludes the representation of negated facts in KGs, which impairs



the performance of downstream tasks, for example, link prediction (LP) for KG completion.
Inductive learning techniques struggle to learn from only positive data in the KGs, resulting in
poor predicting performance. For instance, knowing the positive facts ⟨Patient X, hasAgeCate-
gory, Young⟩, and ⟨Immunotherapy, hasDrug, Vinorelbine⟩, a KGE model could predict ⟨Patient
X, hasRelapse, No Relapse⟩. Nonetheless, the latent vector representation of the entities and
their relationships are not self-explanatory. Extracting explanations efficiently for the inductive
abilities remains an outstanding research challenge.
The problem of explaining the LP has received significant attention in critical domains like
healthcare. Various approaches [7, 10, 11, 12] attempt to understand the inner mechanism of
such inductive learning techniques, but they are unable to capture the insights of the model
behavior with negated facts. We follow Rossi et al. [7] vocabulary and extract explanations
for LP problems. The necessity and sufficiency of explanations can be characterized in several
ways. For instance, the addition of a set of facts to a knowledge graph (KG) for an entity can
lead to the model making a prediction, whereas the absence of a set of facts cannot.
In Figure 2, an exemplar sub-graph depicts the task of predicting a missing tail entity ⟨Patient
1, patientDrug, Nivolumab⟩. If the known facts about the head entity Patient 1, i.e., ⟨Patient 1,
hasStage, IIIA⟩, and ⟨Patient 1, hasSmokingHabit, CurrentSmoker⟩ are removed from the training
graph, the model’s predicted tail changes. Hence, the model relies on these necessary facts to
forecast Nivolumab, a plausible tail entity. In sufficient scenario, for instance, adding the fact
⟨Patient 1, treatmentType, Immunotherapy⟩ and ⟨Patient 1, hasStage, IIIA⟩ to the training graph,
can lead the model to predict their drug as Nivolumab.
Several studies demonstrate that generating high-quality negatives is a difficult but critical step
in improving KGE. As a result, negative sampling (NS) [9] has become an essential component
of knowledge representation learning, considerably improving the performance of KGE models
through effective negative selection. The current inductive learning approaches, such as sym-
bolic learning [13, 14] and numerical learning [15, 16], fail to consider the validity and invalidity
of constraints when anticipating missing links. This results in the addition of connections
to KG graphs that do not meet domain requirements. Constraints can be validated using the
Shapes Constraint Language (SHACL)- W3C standardized shape constraint language. SHACL
constraints are symbolic constraints that provide explanations for the validity and integrity of
data in a KG. SHACL constraints serve as a set of rules or guidelines, defining the permissible
shapes that data instances can take within the graph. These constraints validate the content,
and relationships of entities, ensuring compliance with predefined standards or expectations.
In essence, SHACL constraints offer a symbolic framework for evaluating the correctness and
coherence of data, contributing to the overall quality and reliability of the KG.
Our approach VISE tackles the challenge of KG completion by introducing a hybrid approach
that utilizes symbolic learning, symbolic constraints validation, and numerical learning to avail
the best of all the paradigms. VISE enhances the capabilities of KGE models by incorporating
symbolic learning inferences and constraints validation, thereby further transforming the input
KG by rewriting the relationships to specify negations in the KG. Thus, VISE helps numerical
learning, i.e., KGE models excel in predictive performance empowering KG completion. Addi-
tionally, extracting two types of rationales necessary and sufficient facts for LP tasks.
The rest of the paper is organized as follows: Section 2 motivates the KG completion problem
and defines the basic concepts of inductive learning. Section 3 presents the problem statement
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Figure 2: Motivating Example. depicts an exemplar sub-graph of the Lung Cancer (LC) KG. Domain
experts have established clinical guidelines to determine the type of treatment or drug (Nivolumab) a
patient can receive based on their genetic mutation EGFR. Symbolic Learning and Numerical Learning
approaches are utilized to perform a prediction task to enrich incompleteness in KGs.

and defines our approach, VISE, using a hybrid design pattern. Section 4 evaluates the approach
and benchmarks. Section 5 reports the results of the experimental study. Section 6 discusses the
state of the art. Finally, section 8 presents the conclusions and future work.

2. Motivation and Background

This section uses an example to illustrate the problem of KG completion and the basic concepts
necessary to understand the approach presented in this paper.

2.1. Motivating Example

The motivation for our work arises from the fact that the KG completion methods do not
consider symbolic constraints to ensure KG integrity. The addition of missing relationships to
KGs for the completion of incomplete KGs without ensuring that the links added to satisfy the



domain constraints may correspond to unknown false facts. The state-of-the-art KG completion
approaches are deficient in considering the SHACL validation results in order to avoid com-
pleting KGs with spurious relations. Figure 2 illustrates the lung cancer use case presented in
the current work. Domain experts (e.g., oncologists, medical doctors, or medical researchers)
specify clinical guidelines or protocols, for example, it is recommended that the drug Nivolumab
should be avoided for lung cancer patients mutated with EGFR Positive biomarker. These recom-
mendations are defined in terms of SHACL constraints to determine whether or not patients are
adhering to the clinical guidelines. The outcomes of performing SHACL constraints show if a
lung cancer patient validates or invalidates the constraints, i.e., if a patient mutated with EGFR
Positive is treated with Nivolumab drug. Therefore, SHACL validation reports verify the data
utilized by the KG completion procedures to complete the incomplete KGs, ensuring integrity.
Figure 2 shows the lung cancer KG that utilizes a set of variables to describe the main char-
acteristics of a lung cancer patient. These include the patient identifier (also known as the
electronic health record of a patient), gender, age, cancer stage (also known as the cancer
stage), smoking habits (also known as the smoking habit), lung cancer biomarkers, drugs and
treatments given to the patients. The OWA principle is used for representing KG in real-world
scenarios. KG completion approaches such as symbolic learning and numerical learning are
used to complete the missing relationships between entities of the KG. Symbolic learning, allows
the capture of explicit patterns from the KGs and the generation of Horn rules to derive insights
from the KGs. For example, as shown in Figure 2, a Horn Rule: lc:hasStage(X, IIIA),
lc:treatmentType(X, Immunotherapy):- lc:patient(X, Nivolumab) states that if a
patient has stage IIIA and receives immunotherapy, then it is most likely that the patient is being
treated with the drug Nivolumab. Numerical Learning, i.e., KGE models predicted missing links
by describing entities and their relations in a low-dimensional vector space. For example, by
taking into account the patient’s neighborhood, predicting the drug that a patient can receive.
Figure 2 showing the Patient 1 in green, validating the constraints since the patient is not
EGFR-mutated and hence can take Nivolumab following the clinical guidelines. Patient 2, shown
in red invalidates the constraints, i.e., does not adhere to the clinical guidelines. KG completion
approaches, such as symbolic and numerical learning, still predict that the patient should be
given Nivolumab, as they fall short in assessing whether the predicted missing links validate or
invalidate the clinical guidelines given by the domain experts. As shown, numerical learning
approaches such as TransH and RotatE predict patients (e.g., Patient 2) not adhering to clinical
guidelines with higher rank and score.

2.2. Preliminaries

This section introduces basic preliminaries to understand our approach, i.e., shape, constraints,
shape evaluation, SHACL, knowledge graph embedding, Horn rule, heuristic-based negative
edges, support, confidence, PCA confidence, Hits@K, MRR, necessary and sufficient explanation.
More details about these preliminary concepts in [1, 13, 17, 18].
Knowledge Graphs. A knowledge graph (KG) is a directed edge-labeled graph 𝐾𝐺 = (𝑉,𝐸, 𝐿),
where Con is a set of countable infinite constants. 𝑉 ⊆ Con is a set of nodes, 𝐿 ⊆ Con is a set of
edge labels, and 𝐸 ⊆ 𝑉 × 𝐿× 𝑉 is a set of edges.
Constraints. A constraint corresponds to a rule that imposes restrictions on the values taken



for target nodes in 𝑉 with a given edge 𝐸.
Shapes. A shape corresponds to a conjunction of constraints that a set of nodes in a knowledge
graph must satisfy. A shape 𝜑 is inductively defined as follows:
𝜑::=T represents the value True;

| ∆𝑁 nodes belongs to the set of nodes 𝑁 ;
| 𝜓𝑐𝑜𝑛𝑑 a node satisfies the Boolean condition cond;
| 𝜑1 ∧ 𝜑2 is conjunction of shape 𝜑1 and shape 𝜑2;
| ¬𝜑 represents the negation of shape 𝜑;
| →𝑝 𝜑{𝑚𝑖𝑛,𝑚𝑎𝑥} is cardinality on outward edges with label 𝑝 to nodes satisfying 𝜑;
𝑚𝑖𝑛 and 𝑚𝑎𝑥 are natural numbers.

Shape Schema. A shapes schema is defined as a tuple
∑︀

= (𝜙, 𝑆, 𝜆), where:
• 𝜙 is a set of shapes;
• 𝑆 is a set of shape labels;
• 𝜆: S → 𝜙 is a total function from labels to shapes.

Shape Target. Given a shapes schema Σ = (𝜙, 𝑆, 𝜆) and a directed edge-labelled graph
KG = (𝑉,𝐸, 𝐿), 𝜃(𝜑, 𝑉 ) corresponds to the subset of nodes in 𝑉 which are targets of 𝜑 ∈ 𝜙.
Shape Schema Evaluation. Given a shapes schema Σ = (𝜙, 𝑆, 𝜆) and a directed edge-labelled
graph KG = (𝑉,𝐸,𝐿), a node 𝑣 ∈ 𝑉 . Given a shape 𝜑 ∈ 𝜙, the shape evaluation function
[𝜑]𝐾𝐺,𝑣 ∈ {0, 1} states the results of evaluating 𝜑 in a node 𝑣 from 𝑉 in KG.

• [𝑇 ]KG,𝑣 = 1
• [∆𝑁 ]KG,𝑣 = 1 iff 𝑣 ∈ 𝑁
• [𝜓𝑐𝑜𝑛𝑑]

KG,𝑣 = 1
• [𝜑1 ∧ 𝜑2]𝐾𝐺,𝑣 = min{[𝜑1]𝐾𝐺,𝑣, [𝜑2]

𝐾𝐺,𝑣}
• [¬𝜑]𝐾𝐺,𝑣 = 1− [𝜑]𝐾𝐺,𝑣

• [→𝑝 𝜑{𝑚𝑖𝑛,𝑚𝑎𝑥}]𝐾𝐺,𝑣 = 1 iff min ≤ |{(𝑣, 𝑝, 𝑢) ∈ 𝐸 | [𝜑]𝐾𝐺,𝑣 = 1}| ≤ max
Shape Schema Validation. Given a shapes schema Σ = (𝜙, 𝑆, 𝜆) and a directed edge-labelled
graph KG = (𝑉,𝐸, 𝐿), A node 𝑣 ∈ 𝑉 validates 𝜙, i.e., 𝑣 |= 𝜙, iff [𝜑]𝐾𝐺,𝑣 = 1 for all 𝜑 ∈ 𝜙 and
𝑣 in 𝜃(𝜑, 𝑉 ). KG satisfies the shape schema Σ = (𝜙, 𝑆, 𝜆), iff for all 𝑣 in 𝑉 , 𝑣 |= 𝜙.

Example 2.1. A shape schema
∑︀

of lung cancer patients is given as follows:
•
∑︀

= (𝜙, 𝑆, 𝜆),
• 𝜙 = {→𝑙𝑐:ℎ𝑎𝑠𝐺𝑒𝑛𝑑𝑒𝑟 𝑠𝑡𝑟𝑖𝑛𝑔{1, 1}, ∧, {→𝑙𝑐:ℎ𝑎𝑠𝐴𝑔𝑒 𝑠𝑡𝑟𝑖𝑛𝑔{1, 1} →𝑙𝑐:𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒

𝑠𝑡𝑟𝑖𝑛𝑔{1,* }},
• 𝑆 = {𝑒𝑥𝑆 : 𝑃𝑎𝑡𝑖𝑒𝑛𝑡, 𝑒𝑥𝑆 : 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡},
• 𝜆(𝑒𝑥𝑆 : 𝑃𝑎𝑡𝑖𝑒𝑛𝑡) = {→ℎ𝑎𝑠𝐺𝑒𝑛𝑑𝑒𝑟 𝑠𝑡𝑟𝑖𝑛𝑔{1, 1}} ∧ {→𝑙𝑐:ℎ𝑎𝑠𝐴𝑔𝑒 𝑠𝑡𝑟𝑖𝑛𝑔{1, 1},
• 𝜆(𝑒𝑥𝑆 : 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) = →𝑙𝑐:𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 𝑠𝑡𝑟𝑖𝑛𝑔{1,* }}.

The evaluation of the shape schema
∑︀

= (𝜙, 𝑆, 𝜆) of lung cancer patients represented in KG,
validates the nodes of patients with only one gender and age. Additionally, each lung cancer patient
should receive at least one treatment.

Shapes Constraint Language (SHACL). SHACL [19] is the World Wide Web Consortium
(W3C) recommendation language for the declarative specification of integrity constraints over
RDF KGs. A SHACL shape represents a set of constraints that apply over the same entities; it
can refer to another shape, to represent constraints between entities of two types.



Knowledge Graph Embedding (KGE). Given a directed edge-labeled graph, KG = (V, E, L) and
set of vectors Γ. A KGE of KG is a pair of mappings (𝜖, 𝜎) such that

• 𝜖: 𝑉 → Γ, i.e., 𝜖(𝑒) maps a entity 𝑒 in 𝑉 to a vector in Γ, and
• 𝜎: L → Γ, i.e., 𝜎(𝑙) maps a directed edge 𝑙 to a vector in Γ.

A score function 𝜑: 𝑉×𝐿×𝑉 → R is used to measure the plausibility of candidate triples
represented in low-dimensional vector space, triples t = ⟨𝑠, 𝑝, 𝑜⟩ with the higher score
𝜃(𝜖(𝑠), 𝜎(𝑝), 𝜖(𝑜)) values conveys better plausibility. The objective of KGE is to learn the
embeddings in (𝜖,𝜎) that maximize the plausibility of positive edges in 𝐸+ and minimize the
plausibility of negative edges in 𝐸−. The set of positive edges, 𝐸+, corresponds to the edges in
𝑇 . The set of negative edges, 𝐸−, corresponds to the edges in 𝑉×L×𝑉 /∈ 𝐸+.
Hits@K. Given a tail prediction 𝑝(𝑠, ?) over the directed edge-labeled graph 𝐾𝐺 = (𝑉,𝐸, 𝐿),
the model predicts a list of𝐾 entities that might be related to the tail entity. 𝐻𝑖𝑡𝑠@𝐾 determines
the fraction of plausible entities that appear in the top 𝐾 predictions.

𝐻𝑖𝑡𝑠@𝐾 =
|NumberOfPlausibleEntities ≤ 𝐾|

𝐾
(1)

Mean Reciprocal Rank (MRR). Given the prediction problem either from a head or tail
perspective over the directed edge-labeled graph 𝐾𝐺 = (𝑉,𝐸, 𝐿), the model ranks the plausible
entities and calculates the reciprocal rank of the plausible entity for each predictive task.

𝑀𝑅𝑅 =
1

𝑁

𝑁∑︁
𝑖=1

1

𝑟𝑎𝑛𝑘𝑖
(2)

Horn Rule. A Horn rule is a logical implication defined as follows: Body ⇒ Head. The body of
the rule is comprised of predicate facts. The head is a predicate fact of a single atom. All the
variables in the Head are terms of at least one predicate fact in the Body. Every two predicate
facts in Body share at least one variable. We say a rule 𝑅 : 𝐵1 ∧𝐵2 ∧ · · · ∧𝐵𝑛 =⇒ 𝑅(𝑥, 𝑦)
where Head represents 𝑅(𝑥, 𝑦) and Body is 𝐵1 ∧𝐵2 ∧𝐵3 ∧ ... ∧𝐵𝑛.
Entailment of a Mined Rule [20]. Given a directed edge-labeled graph KG= (V,E,L) and a
mined rule 𝑅 : 𝐵𝑜𝑑𝑦 ⇒ 𝐻𝑒𝑎𝑑, the entailed facts of R corresponds to the instantiations of
the predicate fact in Head on substituting the variables in Body, i.e., positive instantiations of
the conjunction of predicates in Body. That implies ∀ 𝑉 2 such that, Body[Z:=V2] is a positive
predicate fact, and Head[Z:=V2] corresponds to an entailed fact of 𝑅. We can defined a predicate
fact as positive entailed fact 𝐸+(𝑅), if 𝐻𝑒𝑎𝑑[𝑍 := 𝑉 2] = 𝑝(𝑠, 𝑜′) ∈ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝐸+.
Support of a Horn Rule. Given a directed edge-labeled graph KG= (V,E,L) and a mined rule
𝑅 : 𝐵𝑜𝑑𝑦 ⇒ 𝐻𝑒𝑎𝑑, the support of 𝑅 indicates the number of positive entailed facts of Head.
Confidence of a Horn Rule. Given a directed edge-labeled graph KG= (V,E,L) and a mined rule
𝑅 : 𝐵𝑜𝑑𝑦 ⇒ 𝐻𝑒𝑎𝑑, the confidence of 𝑅 is defined as a proportion of the positive predicate
facts of Head that are positive entailed facts based on 𝑅.
Heuristic-based Negative Edges (hE−). Given a directed edge-labeled graph KG= (V,E,L) and
a mined rule 𝑅 : 𝐵𝑜𝑑𝑦 ⇒ 𝐻𝑒𝑎𝑑, where Head is 𝑝(𝑠, 𝑜). A heuristic-based negative edges ℎ𝐸−

corresponds to the set of instantiations 𝑝(𝑠, 𝑜′) that do not belong to 𝐸, but
• exists 𝑝(𝑠, 𝑜) ∈ 𝐸+(𝑅),
• 𝑝(𝑠, 𝑜′) is entailed by Body.



ℎ𝐸−(𝑅) = {𝑝(𝑠, 𝑜′)|𝑝(𝑠, 𝑜′) /∈ 𝐸+(𝑅) ∧ 𝑝(𝑠, 𝑜) ∈ 𝐸+(𝑅) ∧ p(s,o’) is entailed by Body}
The set of ℎ𝐸− comprises triples to be predicted following this heuristic.

PCA Confidence score of a Horn Rule. Given a directed edge-labeled graph KG= (V,E,L) and
a mined rule 𝑅 : 𝐵𝑜𝑑𝑦 ⇒ 𝐻𝑒𝑎𝑑, where Head is 𝑝(𝑠, 𝑜). The Partial Completeness Assumption
(PCA) score of 𝑅 corresponds to the ratio of 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑅) to the cardinality of the union of 𝐸+

and ℎ𝐸−. PCA confidence score quantifies the number of triples of the form 𝑝(𝑠, 𝑜′) from 𝐸−

that can be deduced following the heuristics edges. PCA (R) score ∈ [0, 1], where the score
indicates the amount of triples can be inferred.

𝑃𝐶𝐴(𝑅) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑟)

|𝐸+ ∪ ℎ𝐸−|
(3)

A Necessary and Sufficient Explanation. Given a directed edge-labeled graph KG= (V,E,L)
and a mined rule𝑅 : 𝐵𝑜𝑑𝑦 ⇒ 𝐻𝑒𝑎𝑑, where Head is 𝑝(𝑠, 𝑜). Given a score function 𝜃: 𝑉×𝐿×𝑉
→ R is used to measure the plausibility of predicted triples in KG= (V,E,L).

• A necessary explanation corresponds to a set of predicate facts 𝑝(𝑠, 𝑜) ∈ 𝐸+, if removed
from 𝐾𝐺𝑡𝑟𝑎𝑖𝑛 leads to a decrease in score function 𝜃.

• A sufficient explanation corresponds to a set of predicate facts 𝑝(𝑠, 𝑜) /∈ 𝐸+, if added to
𝐾𝐺𝑡𝑟𝑎𝑖𝑛, leads to an increase in score function 𝜃.

3. Our Approach

This section states the problem addressed in this paper and introduces the VISE framework,
which integrates symbolic learning, constraint validation, and numerical learning to create
more explainable, and reliable systems. The objective is to create a framework that is designed
to consider the semantics of symbolic systems.

3.1. Problem Statement

Consider edge-labeled graph KG = (V, E, L), such that each node 𝑒 ∈ 𝑉 represents an entity, and
each 𝑝 ∈ 𝐿 represents a unique relation between the entities. Let

∑︀
= (𝜙, 𝑆, 𝜆) be a shape

schema over 𝐾𝐺, and 𝜃(𝑠, 𝑝, 𝑜′) be a scoring function quantifying the plausibility of a triple
(𝑠, 𝑝, 𝑜′). The problem of link prediction over KG, i.e., a tail prediction ⟨𝑠, 𝑝, ?⟩, such that 𝑠 is the
subject entity in 𝑉 and predicate 𝑝 in 𝐿 corresponds to the optimization problem of identifying
an entity 𝑜′ that produces the most plausible candidates for the incomplete triple (𝑠, 𝑝, 𝑜′) and
𝑠 and 𝑜′ validate

∑︀
= (𝜙, 𝑆, 𝜆).

𝑜′ = argmin
𝑒∈𝑉

𝜃(𝑠, 𝑝, 𝑒) ∧ 𝑠 |= 𝜙 ∧ 𝑒 |= 𝜙 (4)

The aim is to find the most plausible entities 𝑜 by inferring heuristic-based negative edges ℎ𝐸−

based on the positive edges 𝐸+ in KG and validates the shape schema
∑︀

, i.e., (𝑠, 𝑝, 𝑜′) |= 𝜙.
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Figure 3: VISE Design Pattern: Hybrid design pattern to demonstrate the use of symbolic rules
from the Symbolic Learning component and Constraint Validation and KG Transformation component in
combination with Numerical Learning to enhance the predictive performance of KGE models.

3.2. The VISE Framework

VISE encompasses a hybrid approach that showcases the impact of considering the semantics of
the symbolic system over the numerical learning approaches. VISE follows the hybrid design
pattern as illustrated in Figure 3, strategically combining numerical learning with symbolic
learning and constraints validation methods.

Symbolic learning is applied to the input KG, resulting in the generation of logical rules and PCA
heuristic-based edges. The learned heuristic-based edges serve as prior knowledge, improving
numerical learning approaches such as KGE models combined with constraints validation and
KG transformation. During the process of symbolic learning, VISE utilizes extracted horn rules
in conjunction with PCA Confidence in order to infer heuristic-based negative edges. The mined
rules are subsequently employed to generate predictions regarding the missing relationships in
the input KG. These predictions are based on logical inference, which is used to calculate the
entailment of the mined rules. SPARQL queries are employed to infer the entailment of mined
rules and construct heuristic-based negative edges (hE−).
The predictions generated by the symbolic learning system in conjunction with the input
KG are then fed to the Constraints Validation and KG Transformation component, where the
predicted links are evaluated to determine whether they validate or invalidate the SHACL
constraints. Furthermore, the generated validation report is utilized to transform or rewrite the



SHACL Constraints for Medical Protocols 
Nivolumab is NOT typically used to treat patients with EGFR positive gene mutations.
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Figure 4: The figure illustrates the SHACL constraint, horn rule, and a subgraph of the original KG.
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(b) Transformation of KG predicates without sym-
bolic learning enrichment
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(c) KG enrichment with predictions generated using
symbolic learning rules
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Figure 5: Different baseline approaches to show the transformation process of KGs
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Figure 6: The VISE translation the KG predicates for explicitly stating negation in the KG.



KG to contain the information resulting from the constraints validation. The transformed KG is
then provided as input to the numerical learning models, i.e., KGE models, during the training
phase. This is achieved by processing the data into a low-dimensional space. The process of
numerical learning is capable of predicting missing links, thereby completing the KGs with
missing links that validate the constraints at a higher rank and with a greater probability of
accuracy. Tranformation or rewriting of KGs before giving as input to the numerical learning
component transforms the KGs to contain negated facts, allowing the KGE model to learn in
all the four quadrants as shown in Figure 1, enhancing the performance of the models and
empowering KG completion. Several studies demonstrated the need for negated facts in KGs
to boost the performance of KGE models. VISE employs a two-fold rewriting process. First, it
evaluates the links predicted by symbolic learning using constraints. Second, depending upon
the validation report of the predicted link. If the patient in the lung cancer KG invalidates the
constraint, the links that resemble the patient characteristics in the KG are added with negation.

3.3. Running Example

As discussed in subsection 2.1, a SHACL constraint stipulates that a patient who has undergone
a mutation involving the EGFR gene should not be treated with the drug Nivolumab. Symbolic
learning, on the other hand, has identified a rule that states that if a patient is in the advanced
stage of lung cancer (stage IV) and has undergone immunotherapy treatment, there is a higher
probability that the patient will receive the drug Nivolumab. PCA heuristics enabled symbolic
learning to predict that the patient should receive Nivolumab.
The SHACL validation revealed that this patient violated the constraint if the predicted link
was added to the KG. In the transformation process, VISE is capable of adding a fact to the
KG indicating that the patient should not receive Nivolumab. As a result, the transformed KG
explicitly represents positive and negative facts. This new way of modeling statements further
enhances the performance of the models by assigning high values of plausibility score 𝑜′ to
triples that are likely to be true and low scores to triples that are likely to be false.
To illustrate, a running example demonstrates the process of transforming the KG to explicitly
add negated facts to the KG, thereby further enhancing numerical learning and performance.
Figure 4 shows the SHACL constraints based on the clinical guidelines, horn rules mined over
the original KG, and a sub-figure that resembles the original lung cancer KG. Figure 5a shows
the Baseline 1 approach involves inputting the original KG into numerical learning, which is
then processed by KGE models without the addition of inferred facts from symbolic learning
for KG enrichment. Figure 5b illustrates the transformation of KG predicates implemented over
the original KG (Baseline 2), thereby demonstrating the necessity to rewrite the negated facts
to the KG for enhancement of numerical learning. For instance, the predicate may be altered
to either EGFR_Positive if a patient is positively mutated for EGFR or EGFR_Negative if a
patient is negatively mutated for EGFR mutation. The results of the transformation of KG are
presented in Section 5 and demonstrate the impact on the performance of KGE models.
Figure 5c shows the Baseline 3 approach that involves enriching the KG with symbolic learning.
The KG is enriched with symbolic learning rules that incorporate PCA heuristics to generate
heuristics-based negative (hE−) edges. As discussed before, the rule can predict that if a stage
IV lung cancer patient receives immunotherapy treatment then that patient is more likely to



Table 1
KGs Statistics. Table depicts the statistics of benchmarks, #triples – Number of RDF triples in the KG,
#entities – Number of distinct entities in the KG, #predicates – Number of distinct predicates in the KG.

KGs # triples # entities # relations
𝐾𝐺1 1871 93 43
𝐾𝐺2 13097 267 43
𝐾𝐺3 20581 383 43

receive drug Nivolumab which is added as a fact as shown in the Figure 5c with patientDrug
Nivolumab in the KG given as input to KGE models. The Baseline 3 approach is in alignment
with the state-of-the-art methodology of SPaRKLE [20]. Furthermore, Figure 5d displays Baseline
4, which highlights the influence of constraint validation. To show the need for constraint
validation, inferred facts resulting from symbolic learning were added to the KG, which is only
fed into KGE models once a patient validates the constraint. As shown in Figure 5d, the patient
in red invalidates the constraint. As a result, the inferred fact patientDrug Nivolumab is not
included for that patient. Figure 6 illustrates the transformation of KG implemented in VISE. In
VISE, we aim to emphasize the significance of the hybrid approach in considering the impact of
symbolic systems. The transformation of KG is achieved by explicitly incorporating the inferred
facts predicted by symbolic rules, thereby validating the constraints for the predicted facts.
To illustrate, in the figure referenced in the text, the patient in green validates the constraint.
Consequently, the rewriting in the transformed KG includes biomarkerEGFR_Negative,
EGFR_Negative, patientDrug_Nivolumab, and Nivolumab. For the patient in red, inval-
idates the constraint. Consequently, the following transformation is performed as follows
EGFR_Positive, EGFR_Positive, patientDrug_NoNivolumab, and NoNivolumab. The
results of the transformation of VISE KG are presented in 5, which demonstrates the impact
on the performance of KGE models. Figure 5a, Figure 5b, Figure 5c, and Figure 5d present the
benchmarks (resp., Baseline 1, Baseline 2, Baseline 3, and Baseline 4) utilized in the experiments.

4. Evaluation

The aforementioned section outlines our proposed framework VISE and its components. In this
section, we report the experiment settings, benchmark description, observed results, involved
baselines, and models. We empirically assess the effectiveness of VISE in the LP problem over
the Lung Cancer KG. VISE provides comprehensive explanations: necessary and sufficient for
LP task. For instance, an LP task can be "Whether a lung cancer patient is in Relapse?". Thus,
given a head entity and relation predicting the tail entity, i.e., ⟨Patient X, hasRelapse, ?⟩. The
empirical evaluation aims to answer the following research questions: RQ1) What is the impact
of negated facts on the KGE model’s performance and its explainability? RQ2) How do symbolic
rules and constraints enhance the explanations of the KGE model’s behavior?
Benchmark. We evaluate VISE approach on three anonymized Lung Cancer KGs: 𝐾𝐺1, 𝐾𝐺2,
and 𝐾𝐺3. Table 1 shows the statistics of all the benchmarks. The Lung Cancer KG comprises
medical records about a lung cancer patient from heterogeneous data sources. Each medical
record describes the characteristics of a patient suffering from lung cancer. The medical charac-



teristics include a cancer stage (e.g., Stage IVB), age, gender, smoking habit (e.g., Current Smoker),
type of mutation (e.g., EGFR Negative), recommended drug for treatment (e.g., Vinorelbine), the
occurrence of relapse (e.g., Relapse or Progression or No Relapse), and types of treatment (e.g.,
Immnunotherapy) for curing the cancer. The prediction problem is a link prediction to predict
the Relapse of a lung cancer patient, which can be Relaspe or No Relaspe. We utilize SHACL
constraints as medical protocols that recommend when a drug should be prescribed according
to a patient’s mutations; we defined one shape schema with four different SHACL constraints,
for instance, a constraint stating that "If a patient mutated with EGFR negative should not take
Afatinib, and if a patient mutated with EGFR positive should not take Nivolumab".
Baselines. We evaluate and compare four baselines for our VISE approach. Baseline 1 includes
the evaluation of the state-of-the-art KGE models for the KG completion. Baseline 2 reveals
the evaluation of transformed KG with KGE models. Baseline 3 utilizes the hybrid approach,
SPaRKLE [20], which employs symbolic learning techniques to enhance the performance
of KGE models. Baseline 4 combines SPaRKLE with the results of patients who satisfy the
medical protocols. VISE approach integrates the fusion of SPaRKLE with the transformed
KG including validation and violation results to enhance the performance of KGE models in
LP tasks. The current implementation utilizes various state-of-the-art KGE models from the
PyKEEN [21] pipeline, which includes TransE [16], TransD [22], TransH [23], and RotatE [24].
We conducted an ablation study to tune hyperparameters for KGE models based on benchmark
KGs. Translation-distance space models, including TransE, TransD, and TransD, translate the
head entity’s geometric embedding space with a given relation closer to the tail entity. RotatE, a
popular model for learning embeddings in Euclidean space, has attracted attention for learning
symmetric, asymmetric, 1-1, 1-N, N-1, and M-to-N relationships. Table 2, Table 3 and Table 4
demonstrates the comparison between baselines and VISE approach for KG completion.
Implementation. VISE is implemented in a virtual machine on Google Colab with 40 GiB
VRAM and 1 GPU NVIDIA A100-SMX4, with CUDA version 12.2 (Driver 535.104.05) using
Python 3.9. The source code of VISE approach, the benchmark KGs, and the trained KGE
models are publicly available in our GitHub repository 1. Figure 3 depicts the hybrid design
pattern, integrating inductive learning with symbolic learning techniques. Symbolic learning
includes logical horn rules (𝑅) and SHACL constraints (𝜑). Symbolic learning is performed
over the input KG, resulting in rules, heuristic-based edges, and SHACL validation. Thus, the
inferred heuristic edges with validation results are utilized as implicit knowledge to enhance
inductive learning, i.e., KGE models. The predictions generated from the symbolic rules and
constraints materialized in the input KG and fed as input to inductive learning. The benchmark
KGs are divided into 80-20 train-test splits. The model’s efficacy in the LP problem is evaluated
using Hits@K and MRR. Both metrics have values between 0 and 1, and higher conveys better.
VISE relies on [20] and [25] for symbolic learning methods. Furthermore, our approach is
model-agnostic and compatible with other symbolic and inductive learning approaches.

1https://github.com/SDM-TIB/VISE

https://github.com/SDM-TIB/VISE


Table 2
𝐾𝐺1 Evaluation. Empirical evaluation of various KGE models on 𝐾𝐺1. Hits@1, Hits@3, Hits@5,
Hits@10 and MRR are reported. Four baselines and VISE (in light green color) indicates the impact of
considering the captured knowledge in the prediction tasks. The values in bold convey better results.

Results for 𝐾𝐺1Approaches Model Hits@1 Hits@3 Hits@5 Hits@10 MRR
TransE 0.000 0.444 0.622 0.822 0.269
TransD 0.000 0.755 0.866 0.911 0.361
TransH 0.422 0.777 0.844 0.955 0.625Baseline 1

RotatE 0.422 0.511 0.555 0.555 0.485
TransE 0.000 0.644 0.777 0.844 0.330
TransD 0.000 0.844 0.866 0.889 0.406
TransH 0.711 0.866 0.867 0.911 0.785Baseline 2

RotatE 0.489 0.533 0.622 0.667 0.542
TransE 0.000 0.458 0.604 0.812 0.266
TransD 0.000 0.583 0.729 0.895 0.323
TransH 0.479 0.687 0.770 0.875 0.618Baseline 3

RotatE 0.354 0.416 0.541 0.625 0.430
TransE 0.000 0.478 0.586 0.739 0.276
TransD 0.000 0.630 0.826 0.956 0.340
TransH 0.413 0.739 0.913 0.978 0.606Baseline 4

RotatE 0.413 0.521 0.543 0.586 0.479
TransE 0.000 0.667 0.770 0.916 0.352
TransD 0.000 0.854 0.937 1.000 0.421
TransH 0.791 0.958 1.000 1.000 0.877VISE

RotatE 0.479 0.500 0.604 0.729 0.538

5. Results

In this empirical study, we evaluate the efficacy of numerical inductive and symbolic learning
approaches in terms of the evaluation metrics proposed by Akrami et al. [26]. These empirical
studies aim to address the research questions RQ1 in Section 5.1 and RQ2 in Section 5.2.

5.1. Impact of Negated Facts on KGE Model Behavior

We report the effectiveness of VISE approach, focusing on KGE models- TransE, TransD, TransH,
and RotatE in the context of lung cancer relapse prediction problems. The comprehensive
analysis revealed a robust performance compared to baselines. KGE models are trained over the
different benchmark KGs, i.e., positive edges𝐸+, to predict missing links. The evaluation report
presented in Table 2, 3, and 4 are obtained using the optimized hyperparameters provided by
the PyKEEN pipeline. The impact of negated facts is assessed with Hits@1, Hits@3, Hits@5,
Hits@10, and MRR in KG completion. TransE, a basic translation model, emerged as performing
worst in all baselines with benchmarks respectively. Nevertheless, highlighting the limitations
of TransE in modeling 1-N relationships leads to poor performance, particularly in predicting
the correct tail at the topmost position. TransH model results support the claim in [23], that it
outperforms TransE and TransD models. In𝐾𝐺1 and𝐾𝐺2, TransH performance contributes to



promising results in capturing complex geometric relationships with score values ranging from
0.413 to 0.865. TransD, which uses relation-specific projections to translate the embedding
space, yields slightly lower values than TransH and TransE. However, RotatE indicates the
best performance in all the testbeds except in 𝐾𝐺1. In 𝐾𝐺2 and 𝐾𝐺3, the values of Hits@1
range from 0.489 to 0.887. We can observe that the evaluation of benchmark KGs in different
experimental testbeds, VISE outperforms compared to the other baseline approaches. The
experimental evaluation comprises 100 testbeds per KGs, amounting to a total of 300 testbeds.
In summary, the evaluation results underline the robust performance of TransH and RotatE for
KG completion in lung cancer relapse prediction tasks.
However, the rationale behind the inner workings of KGE models may be difficult to understand.
The experimental results demonstrate the need for explanations and assistance to understand
KGE model behavior. VISE shows improved KGE model performance and provides two types
of post hoc explanation for the prediction problem. In VISE approach, KGE models showed
marginally better performance compared to Baseline 1. We categorize our explanations as
necessary and sufficient. The heuristic-based negative edges (ℎ𝐸−) generated by symbolic
learning demonstrate the importance of enhancing the performance of VISE. The addition of
ℎ𝐸− edges to KG has been deemed a sufficient explanation, as evidenced by the improved
performance of the KGE model in terms of Hits@K and MRR. For example, Table 5 displays
examples of mined Horn rules that were chosen based on the SHACL constraints, i.e., clinical
guidelines used to infer the ℎ𝐸− edges. Moreover, the removal of these edges from the KG
resulted in a notable decline in performance, which can be attributed to the necessity of these
facts, i.e., necessary facts to explain the prediction performance thereby answering RQ1.

5.2. Effectiveness of Symbolic Rules and Constraints on LP task

The Horn rules mined by AMIE [13] over LC KG are used to help doctors screen for and identify
persons who are at high risk of acquiring lung cancer. Mined rules are examined in terms of
biomarkers, medications, and therapies, and ranked according to the PCA confidence score. The
effectiveness of VISE is evaluated in terms of the impact of validating constraints for the missing
link being predicted by the symbolic learning technique. As described in Section 3 the heuristic-
based negative edges (hE−) are predicted using the Partial Completness Assumption (PCA)
heuristics from the input KG. The PCA Confidence of a Horn rule, which indicates the amount
of incompleteness in a knowledge graph (KG), is employed to infer new links and predictions.
These predictions are validated by applying the SHACL constraints to determine the validity
of the inferred links. The results demonstrated in Table 5 indicate the amount of valid and
invalid predictions produced by the symbolic learning techniques. Table 5 shows examples
of the symbolic rules, for example, stage(?a, IV), treatment(?a, Immunotherapy)⇒
drug(?a, Nivolumab) stating that if a stage IV lung cancer patient received Immunotherapy
treatment then it is more likely that the patient receives Nivolumab is with the PCA Confidence
score of 0.833. As mentioned before, the heuristics-based negative edges (hE−) or predictions
are validated using SHACL constraints, and Table 5 shows the number of valid (#𝑣) and invalid
(#𝑖𝑛) links for each of the LC KGs used as a benchmark in VISE.
Furthermore, the symbolic rules are used to represent the studies reported in the literature.
Table 6 provides examples of mined Horn rules and supporting literature. Consequently, the



Table 3
𝐾𝐺2 Evaluation. Empirical evaluation of various KGE models on 𝐾𝐺2. Hits@1, Hits@3, Hits@5,
Hits@10 and MRR are reported. Four baselines and VISE (in light green color) indicates the impact of
considering the captured knowledge in the prediction tasks. The values in bold convey better results.

Results for 𝐾𝐺2Approaches Model Hits@1 Hits@3 Hits@5 Hits@10 MRR
TransE 0.000 0.514 0.711 0.870 0.296
TransD 0.010 0.615 0.796 0.952 0.349
TransH 0.540 0.834 0.917 0.974 0.702Baseline 1

RotatE 0.536 0.761 0.819 0.869 0.663
TransE 0.000 0.714 0.860 0.939 0.378
TransD 0.015 0.758 0.898 0.965 0.403
TransH 0.850 0.965 0.987 1.000 0.911Baseline 2

RotatE 0.831 0.971 0.990 0.990 0.903
TransE 0.000 0.550 0.722 0.898 0.313
TransD 0.012 0.582 0.767 0.934 0.342
TransH 0.546 0.823 0.901 0.946 0.695

Baseline 3

RotatE 0.617 0.913 0.958 0.982 0.765
TransE 0.000 0.587 0.778 0.904 0.323
TransD 0.006 0.606 0.784 0.907 0.338
TransH 0.584 0.864 0.913 0.947 0.728

Baseline 4

RotatE 0.701 0.920 0.950 0.978 0.814
TransE 0.000 0.734 0.880 0.955 0.384
TransD 0.012 0.767 0.880 0.958 0.405
TransH 0.865 0.970 0.982 1.000 0.918VISE

RotatE 0.856 0.973 0.988 0.997 0.916

impact of symbolic rules and constraints utilized to explain the KGE models is demonstrated,
thereby enabling an answer to be provided to the research question RQ2.

6. Related Work

The integration of symbolic and numerical learning into KGs enhances their utility and in-
terpretability. Symbolic techniques employ rules and logic to identify missing relationships,
whereas numerical approaches utilize low-dimensional vector spaces to discern connections
between entities in large KGs. Symbolic constraint validation, in isolation, identifies inaccu-
racies in KGs that can be employed to assess data quality. It is of vital importance to explain
the predictions in the healthcare domain, as this helps domain experts in decision-making,
identifying the interactions between drugs and their side effects, and patient diagnosis.
The majority of KGE methods employ triples from KGs as input, with the embeddings being
trained using vector space assumptions (e.g., translational, neural network, complex space) [15].
Furthermore, the embeddings are obtained to perform the link prediction task [21], as outlined
in Rivas et al. [6]. Rivas et al. propose a neuro-symbolic perception for drug treatment response
to enhance the link prediction capabilities of KGE models by deducing implicit knowledge using
datalog rules. Akrami et al. [26] present a study that employs a realistic and updated assessment



Table 4
𝐾𝐺3 Evaluation. Empirical evaluation of various KGE models on 𝐾𝐺3. Hits@1, Hits@3, Hits@5,
Hits@10 and MRR are reported. Four baselines and VISE (in light green color) indicates the impact of
considering the captured knowledge in the prediction tasks. The values in bold convey better results.

Results for 𝐾𝐺3Approaches Model Hits@1 Hits@3 Hits@5 Hits@10 MRR
TransE 0.000 0.560 0.795 0.943 0.324
TransD 0.002 0.551 0.690 0.872 0.310
TransH 0.622 0.864 0.943 0.983 0.756

Baseline 1

RotatE 0.696 0.933 0.969 0.987 0.820
TransE 0.000 0.713 0.840 0.931 0.376
TransD 0.008 0.694 0.824 0.935 0.379
TransH 0.882 0.969 0.997 1.000 0.929Baseline 2

RotatE 0.864 0.987 0.995 1.000 0.924
TransE 0.000 0.519 0.747 0.923 0.310
TransD 0.011 0.551 0.716 0.884 0.322
TransH 0.596 0.876 0.925 0.977 0.740

Baseline 3

RotatE 0.714 0.941 0.969 0.990 0.829
TransE 0.000 0.536 0.735 0.931 0.311
TransD 0.002 0.551 0.733 0.870 0.318
TransH 0.542 0.849 0.908 0.974 0.702

Baseline 4

RotatE 0.700 0.945 0.972 0.992 0.818
TransE 0.000 0.760 0.878 0.948 0.388
TransD 0.013 0.684 0.762 0.884 0.368
TransH 0.868 0.980 0.994 1.000 0.924

VISE

RotatE 0.887 0.986 0.996 0.998 0.936

of various KG completion techniques. The objective is to establish their usefulness in improving
KG completeness and quality. The findings of the study, as presented in work [26], indicate that
the embedding models may have been biased toward learning reverse relations for LP due to
the presence of data redundancy and Cartesian product relations.
Furthermore, it was demonstrated that simple models, such as symbolic learning approaches,
outperform numerical models when data contains reverse relations or data redundancy. Conse-
quently, we aim to showcase the combination of symbolic and numerical methodologies that
frequently result in enhanced performance and outcomes in a variety of activities, including
KG completion in our proposed approach VISE. Moreover, the validation of constraints over
the predicted links from symbolic learning approaches can assist in identifying whether the
predicted links validate or invalidate the constraints. This process can enhance the system’s
performance by providing information about the constraint validation for LP tasks. While both
symbolic and numerical techniques have advantages and disadvantages, a hybrid approach
that combines them can mitigate shortcomings while leveraging the complementary benefits of
these KG completion methods to further empower KGs.
In a related study, Lajus et al. [13] present a symbolic learning technique that captures the
co-occurrence of relationships, rules, and logical dependencies within KGs. Among numerous
KG completion approaches, this method employs the OWA to extract association rules from



Table 5
Exemplary Mined Horn Rules.

𝐾𝐺1 𝐾𝐺2 𝐾𝐺3

ℎ𝐸− ℎ𝐸− ℎ𝐸−Exemplary Mined
Horn Rules

PCA
Conf.

#v #in #v #in #v #in
drug(?a, Nivolumab) ⇐
stage(?a, IV), treatment(?a, Immunotherapy)

0.833 5 4 30 24 50 40

drug(?a, Nivolumab) ⇐
treatment(?a, Immunotherapy),
treatment(?a, Intravenous_Chemotherapy)

0.722 13 10 78 60 130 100

biomarker(?a, EGFR_Negative) ⇐
relapseProgression(?a, Progression),
drug(?a, Pembrolizumab)

0.971 0 1 0 6 0 10

biomarker(?a, EGFR_Negative) ⇐
biomarker(?a, ALK_Negative),
treatment(?a, Radiotherapy_To_Bone)

0.921 2 2 12 12 20 20

Table 6
Mined Horn Rules. Exemplary mined and statements Reported in the Literature and their Relationship
with the Analysis Outcomes.

Exemplary Mined Horn Rules Statements

drug(?a, Nivolumab) ⇐
stage(?a, IV), treatment(?a, Immunotherapy)

Lung cancer patients in stage IV[27]
and receive Immunotherapy treatment
are more likely to revive Nivolumab[28].

drug(?a, Nivolumab) ⇐
treatment(?a, Immunotherapy),
treatment(?a, Intravenous_Chemotherapy)

Non-small cell lung cancer patients
receive Nivolumab[28, 29] as first-line
Chemotherapy and Immunotherapy

treatments for progression-free survival.

biomarker(?a, EGFR_Negative) ⇐
relapseProgression(?a, Progression),
drug(?a, Pembrolizumab)

EGFR[30] negative lung cancer
patients are more likely to experience

progression and are treated with
pembrolizumab[31] drug.

biomarker(?a, EGFR_Negative) ⇐
biomarker(?a, ALK_Negative),
treatment(?a, Radiotherapy_To_Bone)

Lung cancer patients mutated with
ALK negative and receives treatment

radiotherapy[32, 33] to bone are more likely
to be also mutated with EGFR[30] negative.

KGs. AMIE [13] enhances the quality and completeness of KGs by deducing missing linkages
and connections, while also considering semantics. AnyBURL [14] (Anytime Bottom-Up Rule
Learning) is a state-of-the-art system that entails initiating specific instances within the KGs
and subsequently generalizing them to generate more encompassing logical rules that can be
applied across the KGs. Khajeh Nassiri et al. [34] propose a symbolic learning technique that
emphasizes the use of logical rules, including numerical predicates. This method enables KGs
to recognize and mine correlations between numerical values, measures, and other quantitative
properties, resulting in a more expansive and precise representation of real-world knowledge.
Chudasama et al. [35] demonstrated in one of the related studies that SHACL technologies may



be utilized to evaluate data over KGs for quality assessment, as well as in predictive modeling
analysis to improve model interpretability. SHACL technologies can be used to validate data and
then used with ensemble approaches, such as Random Forest and Decision Trees, to interpret the
behavior of Machine Learning (ML) models, which can help understand the outcomes generated
by prediction models. Rabbani et al. [36] employs a technique to extract validating shapes from
large KGs. Furthermore, an efficient SHACL validation engine [25] shows the best performance
in planning and executing SHACL shape schema to determine whether entities from KGs comply
with specific medical protocols. VISE is system-agnostic, allowing straightforward integration
with any existing KGE model or symbolic system. To achieve integration, the mining horn rules
for symbolic systems, as well as the computation of PCA and prediction scores, and a set of
SHACL constraints can be utilized for validation.

7. Discussion

VISE framework demonstrates the effectiveness of considering PCA heuristics for LP tasks
and generates explanations. However, the proposed approach has limitations in terms of
incorporating the semantics of KGs. By employing symbolic reasoning, implicit facts can
be deduced, which can be utilized to enhance the neighborhood of an entity. Consequently,
considering the semantics of KGs would provide a comprehensive picture of the scalability of
each KGE model in real-world use cases. Furthermore, investigating the computational overhead
observed for each model to capture complex relationships can also be conducted in future studies.
The experimental results demonstrate that KGE models do not fully account for the contextual
knowledge of entities, such as entity validation in the context of medical protocols. Nevertheless,
our approach, VISE, is domain-agnostic and can be used to enhance and explain the behavior of
KGE models in LP tasks. The mining of rules, validation of entities, and training of the KGE
models scale with the size of KGs. Thus, exploiting the minimal neighborhood with specific
rules for negative sampling will aid in solving the scalability issues. Lastly, state-of-the-art
KGE models are commonly employed for a range of downstream tasks. However, their latent
vector representations lack self-interpretability. Consequently, future studies may benefit from
leveraging the enriched contextual information considering the semantics of KGs to enhance
the explanations generated by Large Language Models (LLMs). This could prove valuable in
critical domains such as healthcare, facilitating more efficient decision-making processes.

8. Conclusions and Future Works

VISE avails the advantages of the PCA heuristic, which improves predictions regarding missing
links. Constraint validation helps include additional symbolic system semantics in numerical
learning approaches. Empirical evidence indicates that the integration of symbolic learning
approaches with constraint validation can enhance the performance of KGE models, particularly
when prior knowledge is taken into account. Consequently, VISE exemplifies the advantages
of integrating symbolic and numerical methodologies into a hybrid or neuro-symbolic AI
system. This integration allows academics and practitioners to combine these two conceptual
AI approaches, thereby achieving accurate solutions for KG completion.



Moreover, VISE demonstrated the necessity of rewriting the KGs to include negative edges
using SHACL constraints’ results rather than randomly generating negative samples for the
numerical learning approaches. It is important to note that hybrid approaches do come with
limitations. This work provides evidence that hybrid methods necessitate the integration of
various components, which can result in increased computational complexity. The processing
of symbolic systems may result in the mining of rules and the inference of triples that are
unnecessary for numerical models, which may not utilize them. This opens the door for future
research to efficiently execute hybrid systems and to fully leverage their benefits.
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