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Abstract  
Deep learning models have been proposed to identify skin lesions based on the skin surface images. However, 
one unresolved issue is their lack of interpretability, which necessitates the development of skin lesion 
classification models capable of explaining the diagnostic features. Cell nuclei information plays a crucial 
role in skin lesion classification because it provides valuable insights into the underlying cellular changes 
associated with various skin diseases, aiding in accurate diagnosis and appropriate management of patients. 
This paper aims to identify quantitative features with cross-sectional cellular-resolution images to facilitate 
an interpretable model. We develop a melanin localization model that can be utilized on skin lesions. This 
model combines skin layers and cell nuclei segmentation models to derive a set of quantitative features. A 
multitask learning strategy is applied to enhance the segmentation accuracy and benefit from the shared 
information of these features. Subsequently, a tree-based machine learning model is employed to develop an 
interpretable classification model using these features. Using eczema as an example, optical coherence 
tomography that captures cellular structures, including nuclei in vivo, could potentially enhance 
understanding of pathogenesis and treatment response without requiring invasive biopsies. 
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1. Introduction 

Cell nuclei imaging is crucial for skin lesion classification for several essential reasons related to 
understanding cellular morphology and identifying abnormalities associated with various skin 
conditions, including cancers [1–3]. Several machine learning algorithms have been used for skin 
lesion classification, leveraging image analysis and pattern recognition to diagnose accurately [4–6]. 
These algorithms are typically trained on large datasets of skin lesion images annotated with 
corresponding diagnoses in the enfaces [7,8]. Physicians prefer using understandable algorithms in 
real-world scenarios, even though they usually have moderate, sometimes limited, performance 
compared to other complex black-box techniques [9]. In this work, the cross-sectional images of skin 
lesions were obtained using a cellular resolution optical coherence tomography (OCT) [10–14], which 
presents the opportunity for non-invasive and high-speed diagnosis and provides histopathological-
level information. So far, minimal research has explored the human skin structures and lesions in 
OCT images. Several key quantitative features in the skin’s cross-sectional planes can be readily 
acquired, e.g., nuclei, stratum corneum (SC), dermal-epidermal junction (DEJ), and melanin cluster. 
These features have shared information about the skin lesion characteristics. Multitask learning (MTL) 
aims to learn a shared representation that benefits all learning tasks [15–17]. By leveraging shared 
information across these features, we segment these features using MTL to improve the overall 
performance of each task.  

The advancement of deep learning paves the way for systematically and automatically analyzing 
medical images. Therefore, this work aims to explore human skin cellular-resolution OCT imaging 
by developing a series of deep-learning approaches. Concurrently, explainable artificial intelligence 
(XAI) is now well-adapted to explain deep learning output on medical datasets [18,19]. 
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Despite the availability of heat map visualizations, a comprehensive understanding of the model’s 
decision-making process and the specific indicators it employs to identify skin lesions remains to be 
elucidated. In this work, our objective is to develop an explainable skin lesions classification model 
capable of providing quantitative insights into distinguishing different types of skin lesions. 

2. Multitask segmentation model 

To obtain quantitative features, we used supervised U-Net segmentation modes on nuclei, skin layers, 
and melanin, and subsequently, a tree-based machine learning model was employed to develop an 
interpretable classification model using these features. The images were collected from a clinical trial 
approved by IRB, Mackay Memorial Hospital, Taipei, Taiwan (# 20MMHIS039). 

2.1. Cell nuclei and skin layer segmentation 

We have presented a robust segmentation model trained on a diverse healthy and unhealthy skin 
image dataset [20,21]. Our model demonstrates exceptional accuracy in segmenting lesion images 
with proliferative SC and highly variable DEJ, as well as effectively detecting the distribution of 
melanin. However, it is essential to acknowledge that our model exhibits limitations in predicting 
malignant tumors, primarily due to the distinctive characteristics of such lesions and the scarcity of 
available data for training. As a result, the development of an explainable AI model specifically 
tailored to address these types of lesions is deemed less prioritized within the scope of this study. 

2.2. Melanin localization 

Although the skin layer and cell nuclei segmentation model effectively extracts information about 
the SC, DEJ, and keratinocytes, the diagnosis of most skin lesions relies heavily on identifying 
melanin amount and distribution. However, determining the morphology and location of melanin is 
typically challenging. Furthermore, the prior U-Net model primarily focuses on healthy human skin 
tissue, making it difficult to segment images featuring proliferative SC and undulated DEJ. Hence, we 
aim to develop a robust segmentation model that can highlight the position of melanin and effectively 
segment lesion images that feature abnormal SC and DEJ. The subsequent section will detail the 
dataset, methodology, model training, results, and analysis. 

We propose an all-in-one segmentation model that simultaneously segments the air gap, SC, 
epidermis (excluding SC), dermis, cell nuclei, and melanin. We adopt an MTL scheme to train the 
model, which involves six tasks: tasks 1 to 5 are the segmentation of different combinations of nuclei, 
SC, DEJ, and dataset partitions. Task 6 is for melanin localization. By simultaneously training the 
model on these six tasks, the model can learn from multiple sources of information and obtain a more 
generalized result, mitigating the overfitting issue due to the small dataset. 

In the experiment setup, we employed the overall model architecture in a U-Net architecture with 
5 down-sampling layers, deep sharing [22,23], and deep feature sharing. The level of deep sharing 
was set to 2, resulting in a model with a total of 8 outputs, namely cell nuclei prediction, half-sized 
cell nuclei prediction, air gap prediction, SC prediction, epidermis* (excluding SC) prediction, 
epidermis prediction, dermis prediction, and melanin prediction. For training, we utilized the Adam 
optimizer with an initial learning rate of 0.001. The training epoch was set to 50, with a learning rate 
decay of 0.1 after 20 epochs and a batch size of 8. In each epoch, the model was trained on all 6 tasks 
sequentially.  

The dataset used to train the robust segmentation model consists of six subsets. The first subset 
contains healthy human skin images cropped and horizontally flipped, resulting in 1224 images of 
size 384 × 512 pixels. The second subset comprises 20 normal skin, 20 solar lentigo, 20 nevus, and 20 
vitiligo images annotated for melanin distribution. These images were also cropped and horizontally 



flipped, resulting in 320 images of size 384 × 512 pixels. The third subset includes 40 psoriasis and 40 
eczema images annotated for SC labeling. These 80 images were converted into 320 images of size 
384 × 512 pixels using the same image processing method. The fourth subset contains 40 solar lentigo 
and 40 seborrheic keratosis images annotated for SC and DEJ labeling. After cropping and horizontal 
flipping, these images were transformed into 320 images of size 384 × 512 pixels. The fifth and sixth 
subsets contain only normal skin images. The fifth subset includes 167 images annotated for cell 
nuclei, SC, and DEJ labeling, while the sixth subset includes 170 images annotated for cell nuclei and 
DEJ labeling. Figure 1 presents the segmentation results on eczema. We observed that the MTL model 
successfully segmented the SC, while the single task model inaccurately predicted a thin SC. 

To generate a comprehensive set of features for training an explainable machine learning model, 
we conduct a statistical analysis to compare various parameters between normal and abnormal skin 
conditions. Specifically, the study includes measurements of SC thickness, epidermis thickness, cell 
nuclei area, and total melanin area. Due to the limited data availability for rare skin lesions, the 
statistical analysis primarily focuses on common skin abnormalities. The average SC thickness for 
normal skin is measured to be 11.97±3.83 µm, while for eczema, it increases to 14.31±8.25 µm. Notably, 
an observable increase in SC proliferation can be observed in cases of eczema characterized by its 
inflammatory nature. The mean epidermis thickness for normal skin measures 62.08±12.04 µm, while 
for eczema, it increases to 75.64±27.37 µm. This finding suggests that individuals with eczema exhibit 

 
 
Figure 1: The segmentation results on eczema images using multitask learning. The first column 
demonstrates some examples of eczema OCT images. The second to fourth columns are predictions 
of the skin layer boundaries (skin surface, lower boundary of SC, and DEJ), nuclei, and melanin 
from the model trained with 6 tasks. 



an increased epidermal layer thickness. The average cell nuclei areas of normal and eczema skins are 
14.32±7.58 µm2 and 15.44±8.43 µm2, respectively. 

3. Interpretable classification model 

By segmenting different skin lesions based on morphological information about cell nuclei, skin 
layers, and melanin, these quantitative features can be fed into an explainable machine-learning 
algorithm to create a model that accurately identifies different skin conditions. Once the model has 
been trained, the results can be analyzed to gain insights into the performance, and the 
interpretability of the model allows us to understand the reasoning behind its predictions, which is 
particularly important in the medical field. By analyzing the results, we can identify areas where the 
model may need improvement and make necessary adjustments. 

As a preliminary trial, we developed a model capable of accurately identifying different types of 
skin lesions by leveraging the morphological information obtained from OCT images. One challenge 
in interpreting CNN models is the high input data dimension. The images used for model training are 
cropped to a size of 384 × 1000 pixels, resulting in a feature dimension of 384,000 length. Analyzing 
each feature and interpreting the meaning of each pixel can be highly complicated. Moreover, the 
information in the image can be global or local, and it is not realistic to treat each pixel as an individual 
feature, as different pixels can be correlated. This correlation poses a significant obstacle in explaining 
the model’s prediction and performance. Another difficulty in interpreting deep learning models is 
that the CNN architecture typically contains over a million parameters, making it difficult to 
understand the model’s decision-making process. 

To develop an interpretable model, it is necessary to individually design a series of quantitative 
features with low dimensions and select an explainable learning algorithm,   such as XGBoost [24]. 
During the feature engineering stage, a total of 8 features were designed. Each cell nucleus in the 
segmentation result was collected for the cell nuclei feature, and the average area of the cell nuclei, 
the standard deviation of the cell nuclei area, and the average aspect ratio of the cell nuclei were 
calculated. The 3 features were designed to understand the influence of cell nuclei on lesion 
identification since some lesions have enlarged and lengthened cell nuclei in the upper epidermis. 

For melanin, the summation of the area of the melanin in each image was computed.    This feature 
is handy for validating that some skin lesions,       such as nevus and solar lentigo, have an unusual amount 
of melanin. The thickness and undulation of the SC were calculated to provide quantitative value for 
evaluating the SC. Inflammatory diseases typically show a proliferative SC, so these SC-related 
features can be useful. Regarding the epidermis excluding SC classes, two related features were 
designed, namely the undulation and thickness of the epidermis. Seborrheic keratosis and psoriasis 
show an increased epidermis, and the average epidermis area and thickness can present the feature of 
these lesions. The standard deviation of the epidermis thickness was also computed to account for 
undulated DEJ in some lesions, such as solar lentigo. 

Table 1 is organized and lists the description, notation, and calculation method for each feature to 
describe each feature more explicitly. We applied the XGBoost algorithm, which is designed to be 
scalable and efficient, even on large datasets. Moreover, the XGBoost automatically ranks the 
importance of features, facilitating the interpretation of results. Additionally, XGBoost supports 
parallel processing, which enables it to leverage GPUs for faster model training. The XGBoost 
framework is based on a gradient-boosting algorithm, gradually adding new models to improve the 
overall prediction. In each iteration, the algorithm calculates the gradient of the loss function relative 
to the current model’s predictions and fits a new model to the residual errors. The new model is added 
to the ensemble, and the process continues until a stopping criterion is met. Our XGBoost incorporates 
advanced techniques, such as tree pruning and weighted quantile sketch, to improve traditional 
gradient boosting. Tree pruning removes parts of the tree that do not contribute to the overall 
performance, mitigating the risk of overfitting. A weighted quantile sketch is a data structure that 
efficiently computes the split points in decision trees, reducing computation time.  

To better understand how our model makes predictions, we have employed the SHapley Additive 
exPlanations (SHAP) method [25]. The SHAP values are computed by comparing the model’s 
predictions for a given instance with and without each feature. The difference between the predictions 



is then used to determine the contribution of each feature. The SHAP values are combined to explain 
the model’s prediction for the instance. Our study used the SHAP method to produce a feature 
importance figure for each skin lesion case. These figures provide insights into the effect of each 
feature on the prediction. In addition, we have also included feature and SHAP value relation plots, 
which provide information on the distribution of data for each feature. By evaluating individual data 
with its corresponding SHAP value on all features, we can explain the decision-making behavior of 
our model. This approach allows for a more comprehensive understanding of how our model arrives 
at its predictions. 

Using eczema as a demonstration, the model’s overall accuracy on the training and testing sets is 
96.38% and 78.57%, respectively. The model’s accuracy in identifying normal skin and eczema is 74.63% 
and 90.16%, respectively. As shown in Fig. 2, the increased thickness of the epidermis is the most 
crucial factor in differentiating between eczema and normal skin images. The feature related to 

Table 1 
The feature engineering for 8 features used in the explainable lesion classification model. 

Notation Description Calculation method 

CELL_AREA_AVG average area of the cell nuclei collect all of the segmenting cell 

nuclei and calculate the average 

area 

CELL_AREA_STD standard deviation of the cell 

nuclei area 

collect all of the segmenting cell 

nuclei and calculate the area 

standard deviation 

CELL_ASEP_AVG average aspect ratio of the cell 

nuclei 

collect all of the segmenting cell 

nuclei and calculate the average 

value of width-to-length ratio 

MELANIN total amount of the 

melanin 

summing all of the segmenting 

melanin area 

SC_THICK average thickness of the SC calculating the difference between 

the highest and lowest point for SC 

along the horizontal direction 

and compute the average value 

SC_UNDUL undulation of the SC calculate the length of the tissue 
surface curve along the horizontal 
direction 

EPI_THICK average thickness of the 

epidermis (excluding SC) 

calculating the difference between 

the highest and lowest point of the 

epidermis (excluding SC) along the 

horizontal direction and 

computing the average value 

EPI_UNDUL undulation of the 
epidermis (excluding       SC) 

calculate the length of the DEJ 
along the horizontal direction 

 



epidermis thickness dominates the the model’s decision-making process, as skin tissue with 
inflammatory disease tends to have a thicker epidermis. Additionally, the lengthened cell nuclei at the 
top of the epidermis layer and increased SC thickness are the second and third most important factors, 
respectively. 

Moreover, we demonstrate the individual classification results in Fig. 3. The images in the first to 
third rows are correctly identified, while the image in the last column is incorrectly classified. The 
first, second, and third rows all show increased SC and epidermis; thus, their corresponding features 

 
(a) 

 
(b) 

Figure 2: (a) The feature importance and (b) feature and SHAP value relation plot for eczema case. 



appear as red bars. Since the eczema image in the last row does not show significant features, it is 
distinguished as normal skin by the XGBoost model. 

We have tried the explainable lesion classification model based on the tree-based interpretable 
machine learning algorithm. We extract 8 quantitative features from the previous segmentation model 
predictions and evaluate our model on 6 different skin lesion categories, including eczema, psoriasis, 
solar lentigo, vitiligo, nevus, and seborrheic keratosis. The SHAP value explanation reveals that our 
experimental results agree with the deep learning model and medical knowledge. However, we also 
acknowledge the limitations of our feature selection and feature representation, which can 
significantly impact the model’s accuracy. 

Figure 3: The eczema images with their corresponding SHAP values. The first to third rows are 
correctly classified, while the fourth row is incorrectly identified as normal skin. 



4. Conclusion 

Multitask learning is applied to improve the segmentation models for extracting crucial information 
about cell nuclei morphology, structural characteristics (SC and epidermis), and melanin content. 
These extracted features are then utilized to train an explainable machine learning model, providing 
quantitative insights into skin lesion analysis. The results obtained from the explainable skin lesion 
classification model demonstrate its ability to provide relative information for skin lesion diagnosis. 
While we have made progress in explainable clinical diagnosis, achieving trustworthy AI and 
precision medicine requires further advancements. A long-term project is needed to collect more 
diverse data and develop a comprehensive experimental design to enhance the capabilities of our 
models. 

While cell nuclei imaging is not typically a routine diagnostic tool for eczema in clinical practice, 
it can be valuable for research purposes and in specialized settings where detailed cellular analysis is 
warranted. The primary diagnostic approach for eczema remains clinical assessment, often 
supplemented by laboratory tests to rule out other skin conditions or complications. The proposed 
explainable AI lesion identification model can help the physician understand the degree of 
deterioration for different skin and pave the way toward trustworthy and precise medical diagnosis 
using AI. 
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