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Abstract
The spread of Artificial Intelligence methods in many contexts is undeniable. Different models have been
proposed and applied to real-world applications in sectors like economy, industry, medicine, healthcare
and sports. Nevertheless, the reasons of why such techniques work are not investigated in depth, thus
posing questions about explainability, transparency and trust. In this work, we introduce a novel Deep
Learning approach for the problem of drug abuse detection. Specifically, we design a Convolutional
Neural Network model analyzing lateral-flow tests and discriminating between normal and abnormal
assays. Moreover, we provide evidence regarding the attributes that enable our model to address the
considered task, aiming to identify which parts of the input exert a significant influence on the network’s
output. This understanding is crucial for applying our methodology in real-world scenarios. The results
obtained demonstrate the validity of our approach. In particular, the proposed model achieves an excellent
accuracy in the classification of the lateral-flow tests and outperforms two state-of-the-art deep networks.
Additionally, we provide supporting data for the model’s explainability, ensuring a precise understanding
of the relationship between attributes and output, a key factor in comprehending the internal workings
of the neural network.
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1. Introduction

Artificial Intelligence (AI) is a field in considerable and continuous expansion that is part of
our lives and has spread to many sectors, like economy [1], industry [2], sports [3], medicine
[4, 5] and healthcare [6]. Focusing on these two latter fields, AI provides a valid support for
helping doctors and other professionals to make diagnosis [7] and predictions [8], explain and
analyze medical data [9, 10]. Moreover, the use of assistive robots in rehabilitation and elderly
monitoring is widespread nowadays [11, 12].
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Figure 1: Example of a lateral flow test for drug abuse detection.

Figure 2: Adulterant guide chart. For each adulterant, the list of colors identifying normality and
abnormality of the test is provided. Image taken from [13].

In particular, AI is a unique tool for analyzing huge amounts of data effectively and on
time [14]. Human evaluation, constrained by various factors such as subjectivity, limited
computational capacity, past and personal experiences, fatigue, stress, and data quality (such as
image resolution and/or lighting conditions), may be prone to generate inaccurate predictions
and/or faults. Especially in medicine and healthcare, the error minimization is paramount,
since it might affect the diagnosis of potential diseases, prompt interventions, therapies for
rehabilitation and other aspects. A largely applied approach in the medical data analysis and
classification relies on the use of Convolutional Neural Networks (CNNs) [15–17]. CNNs
enable the analysis of broad datasets containing thousands of data faster than human operators.
Notwithstanding the abundance of the examples, a major concern is the lack of explainability
of some models proposed in the literature, posing a challenge that even involves the developers
themselves. This turns out to be critical in the fields of medicine and healthcare, where the use
of explainable AI approaches is pivotal [18–20].

In this work, we analyzed the issue of detecting the presence of substances/drugs in rapid
lateral-flow tests (Fig. 1) [21]. Similar works investigating this topic are those reported in



[22–24]. In particular, in [23] the authors propose an image processing algorithm combined
with a Least Squares Support Vector Machine (LS-SVM) to investigate pH indicator paper assays.
Their approach achieve excellent performances in terms of accuracy.

The analysis of the test results is generally made by human operators. As we stated above, the
interpretation of the test is affected by factors like the subjectivity of the person and/or her/his
physical and mental conditions, with consequent possible errors. Instead, we propose a novel
Computer Vision (CV) approach based on the use of a deep CNN. Specifically, we employed the
model introduced in [25, 26] with the addition of pooling layers [27] in the convolutional part
of the network. The use of pooling allows us to reduce the complexity of the problem without
losing accuracy. Indeed, pooling helps the model to become invariant to small translations of
the input [27]. The model must distinguish between normal and abnormal results in lateral-flow
tests analyzed for the detection of drug abuse. The primary goal of the model is to verify
the suitability of the sample to ensure it has not been compromised in any way. Once the
sample’s suitability is confirmed, the analysis can proceed to investigate the presence of narcotic
substances. The cartridge undergoes a color change upon contact with the human biological
sample (urine). Based on the detected color gradation, it can be concluded whether the sample
has been adulterated or not. A test is considered as “abnormal” if any of the adulterants is not
compliant with the corresponding guide (Fig. 2).

While the detection of strips in rapid check tests with Deep Learning techniques has already
been addressed in the literature [22, 28–30], to our knowledge the use of a CNN model to verify
that the biological sample is indeed urine and has not been tampered with in the adulterant
section of lateral-flow tests has not been investigated. Collected results indicate the validity of
our approach: the proposed model manages to discriminate between normal and abnormal tests.
Moreover, we discuss the reasons of why such model is effective, thus providing evidence of its
explainability, which represents a paramount property to successfully apply the methodology
in real-world scenarios. The main contributions of our work can be summarized as follows:

• we propose a novel Deep Learning (DL) approach to address the issues related to the
visual inspection of lateral-flow tests, which are generally examined by human operators,
with a focus on the adulterant section of the assay;

• we apply the recently proposed ConvNet3_4 model [25, 26] to discriminate between
normal and abnormal tests;

• we achieve an excellent classification capability proving the validity of the model;
• we compare the model with two state-of-the-art deep networks and we demonstrate the

superiority of our approach;
• we provide a thorough analysis of the relevant features extracted by the model in order

to associate the proper output class to each image.

The remainder of the article is structured as follows: section 2 contains a description of the
methodology we applied with respect to the considered problem. Results of our experiments
are provided in section 3. Finally, our conclusions and final remarks are reported in section 4.



Figure 3: Image showing the entire setup: the lateral flow test is inserted into the device. Acquisition is
made through a camera placed at the front.

Figure 4: Left: Adulterant section of the lateral flow test (area inside the blue rectangle). Right:
Example of image used for model training. It highlights the portion of the adulterant section considered.
The adulterants taken into account are: pH, OX and GL. We filled the image with a black box in order to
minimize the impact of meaningless pixels on the model’s prediction.

2. Materials and methods

As stated in section 1, our study focuses on assessing the suitability of samples through the
analysis of lateral-flow tests for the detection of substance abuse (Fig. 1). All images used
were obtained from a specialized medical devices company and were labeled by professional
laboratory technicians. An example of images obtained with this setup is shown in Fig. 3.

Our analysis focuses on the suitability of the sample by examining the portion of the test image
containing the six different adulterants (see Fig. 4 left, highlighted area in the blue rectangle):
Specific Gravity (SG), pH, Oxidant (OX), Creatinine (CRE), Nitrite (NI), and Glutaraldehyde (GL).
Due to the presence of elements belonging to a specific class only (i.e., samples being either
always normal or always abnormal), we concentrated our analysis on only three adulterants -
pH, OX, and GL - for which we managed to collect data belonging to both classes. Consequently,
we created a dataset consisting of 181 images. Fig. 4 right provides an example of the input
image where we cropped the specific portion of interest, filling the remaining part with black
pixels. The size of pictures is 215 × 225 pixels. Our model was then trained exclusively on
images considering these components.

Given the small size of our dataset, we employed the data augmentation technique [31], which
is crucial to avoid overfitting when the amount of available data is limited [32]. Furthermore,



due to the difficulty to collect normal assays, the original dataset is unbalanced between the
two classes, with 133 images of abnormal tests and only 48 pictures of normal assays (the
ratio is around 2.77). The class imbalance problem is a major concern in Machine Learning
(ML) and Deep Learning (DL) [33]. In fact, training models on unbalanced data may result
in learning most from the larger class, with consequent sub-optimal performances and poor
generalization capabilities (for instance, a model could associate one class to all the input data
regardless of the image features). Aiming to mitigate such issue, we first apply transformations
so as to balance the two types of data (see Table 1), thus obtaining 300 images equally split
between the two classes, 80% of which constitute the training set and the remaining 20% are
the test set. The balancing operation has been performed in order to ensure that each image
and its variation(s) cannot be in both training and test sets, hence excluding the possibility
of overfitting. Then, we use the RandomAdjustSharpness transformation [34] (parameters:
𝑓𝑎𝑐𝑡𝑜𝑟 ∈ [0, 0.25, 0.5, 0.75, 1.25, 1.5, 2, 2.5, 3]; 𝑝𝑟𝑜𝑏 = 1.0) to widen the set of input images in
both training and test sets. The type of transformations employed to increase the number of
data has been chosen carefully by taking into account the specific nature of the problem and
the criticality of modifying image colors (see Fig. 2). Overall, the final training set consists of
2400 images, while the final test set contains 600 images.

Our model has been trained 10 times, each one starting with a different network weight
initialization. The use of multiple replications minimize the risk of overestimating the model’s
performance due to lucky conditions. Training lasts 50 epochs, the learning rate is set to 10−4

and the batch size is set to 16. The model’s optimizer is Adam [35] with weight decay, whose
value is 10−2. The size of pooling filters is 2 × 2. The experimental parameters have been
derived from [26] and are empirically determined. Before training our model, we applied the
k-fold cross-validation technique [36] to verify whether our deep network is suitable for the
considered problem and mitigate the data overfitting issue [37]. We set 𝑘 = 5 and measured the
average accuracy of the model by computing the Cross-Entropy (CE) loss metric. The average
CE obtained during cross-validation phase is 92.917%, that is the proposed model achieves
sufficiently good categorization performances and correctly discriminates between normal and
abnormal tests. Therefore, we can state that our model is suitable for the considered problem.

Aiming to demonstrate the novelty and efficacy of the proposed model, we perform a compar-
ison with the DenseNet121 [38] and ResNet18 [39] pre-trained networks, which represent two
state-of-the-art models. We choose these networks since they are characterized by a number
of trainable parameters of similar orders of magnitude compared to our approach, as we will
illustrate in the next section. This allows us to perform a fair evaluation of the presented model.

3. Results

In this section we provide the outcomes of our experiments. As for the k-fold cross-validation
phase, we employed the CE loss as a performance measure.

Fig. 5, left shows the CE loss of the model during training. As it can be observed, the training
error quickly decreases and stabilizes from the epoch 20 (see Fig. 5 left, blue curve). Conversely,
the test error increases in the first 10 epochs (see Fig. 5 left, red curve), then it starts decreasing
and almost stabilizes from epoch 20-25. The peak at epoch 40 (see Fig. 5 left, red curve) is due



Table 1
List of transformations applied to the original images in order to balance pictures between the two
output classes (i.e., “normal” and “abnormal”). Specifically, we generate 17 images of abnormal tests
and 102 pictures of normal assays. The resulting set contains 300 images equally distributed among the
two classes. For further details about the transformations, the reader is referred to [34].

Output class Type # of transforms Parameter

Abnormal
Center crop

17
𝑠𝑖𝑧𝑒 : (215, 205)

+ pad 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 : 5
𝑓𝑖𝑙𝑙 = 0

Normal
Center crop

48
𝑠𝑖𝑧𝑒 : (215, 205)

+ pad 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 : 5
𝑓𝑖𝑙𝑙 = 0

Normal
Center crop

48
𝑠𝑖𝑧𝑒 : (205, 195)

+ pad 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 : 10
𝑓𝑖𝑙𝑙 = 0

Normal
Center crop

6
𝑠𝑖𝑧𝑒 : (205, 195)

+ pad 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 : 15
𝑓𝑖𝑙𝑙 = 0
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Figure 5: Model classification capability during training. Left: Error curve during training. Data are
obtained by averaging 10 replications of the experiment. Right: Number of images correctly classified
during training. Curves show how many images are correctly categorized as “normal” in each replication
(labeled as S1, S2, . . . , S10). Top: data referring to training set. Bottom: data collected on the images
belonging to test set.

to a sudden increase of the error observed in one of the 10 replications (see Fig. A.1), probably
related to a particular batch of images. The model achieves an average accuracy of 97.683%, i.e.
a very good classification capability. Specifically, the proposed approach succeeds in correctly
categorizing all the lateral-flow assays in both the training set and the test set in 4 out of 10
replications and reaches a test accuracy over 98% in 9 replications (see Fig. A.2). Overall, these
results imply that our outcomes have been obtained systematically and are not due to chance
or lucky initialization of the network’s weights. Instead, the proposed model is able to extract
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Figure 6: Analysis of the best model’s categorization. Left: Classification results of best model found.
The confusion matrix indicates the number of correctly/wrongly categorized images in the test set.
Data in the main diagonal represent correct model predictions, while data outside the diagonal indicate
classification errors. Right: ROC curve of the best model. The AUC score is indicated in the legend.
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Figure 7: Feature maps of a lateral-flow test labeled as “normal”. Left: original image of the assay.
Middle: Saliency feature map. Colors in the bar range from white (absence of saliency) to blue (positive
saliency). Right: Integrated Gradients feature map. Colors in the bar range from red (negative attribution)
to green (positive attribution).
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Figure 8: Feature maps of a lateral-flow test labeled as “abnormal”. The abnormality of the assay is due
to the OX and GL adulterants. Left: original image of the assay. Middle: Saliency feature map. Colors
in the bar range from white (absence of saliency) to blue (positive saliency). Right: Integrated Gradients
feature map. Colors in the bar range from red (negative attribution) to green (positive attribution).



Table 2
Analysis of the accuracy and the efficiency of the ConvNet3_4, DenseNet121 and ResNet18 models.
With regard to ConvNet3_4, we considered the best model for the comparison. Bold values denote the
best outcomes (concerning both Model parameters and Training time, the lower the better). Interestingly,
the ConvNet3_4 model requires remarkably less time than the other two networks during training.

ConvNet3_4 DenseNet121 ResNet18
Accuracy 100% 52.5% 50.667%

Model parameters 3464527 6955906 11177538
Training time (s) 513 11668 3790

the relevant features from the input images and predict the corresponding output class. The
oscillations of the CE during training may be due to the randomization of the order of input
images across epochs. If we analyze the number of lateral-flow assays correctly categorized
in each replication (see Fig. 5 right), we can observe how all the networks manage to properly
associate each test in the training set to the right class in around 20 epochs (Fig. 5 right, top
figure). The classification of images in the test set is subject to oscillations and stabilizes after
around 20 epochs except for one replication (Fig. 5 right, bottom figure). This outcome is not
surprising since the latter set is used as a tool for validating the model. By considering the best
model only, Fig. 6 left explains whether and how the model categorizes the lateral-flow assays
in the test set. The latter consists of 300 images of abnormal tests and 300 pictures of normal
assays (see Fig. 6 left). As it can be seen, the model manages to correctly classify all the 600
images in the test set. Fig. 6 right illustrates the Receiver Operating Characteristic (ROC) curve
of the best model, which plots the true positive rate against the false positive rate. Because the
Area Under Curve (AUC) is 1.0, our best model corresponds to a perfect classifier.

As we mentioned above, we compared the outcomes of our model with those achieved with
the DenseNet121 and ResNet18 networks. The analysis is illustrated in Table 2 and reveals that
the ConvNet3_4 model is notably superior to both DenseNet121 and ResNet18 with respect
to the accuracy: pre-trained networks manage to correctly classify only around half of the
images, i.e. they are not able to discriminate between the two possible output classes (see also
Fig. B.1). The result is in line with those reported in [26]. Moreover, our ConvNet3_4 model is
also remarkably better than DenseNet121 and ResNet18 in terms of efficiency (see the significant
discrepancy concerning the training time in Table 2), which represents a pivotal property for a
model applicability in real scenarios.

The results we presented so far demonstrate that our model is suitable to address the consid-
ered problem and achieve excellent performances in terms of classification capability. Nonethe-
less, as we stated in section 1, a worthwhile aspect in the fields of medicine and healthcare
is the explainability of the proposed models, which is necessary to practically employ them
in real-application cases. To this end, we performed a feature analysis by using two different
techniques: Saliency [40] and Integrated Gradients (IG) [41]. Both methods are widely employed
to interpret the outcomes of a model’s classification [42–44]. The former method allows the
identification of the parts of the image contributing more to the output prediction. An example
of the feature map extracted through the Saliency method is shown in Fig. 7 middle. Saliency



values range from 0 (absence of saliency) to 1 (positive saliency), as indicated in Fig. 7 middle.
For a more detailed description of the Saliency algorithm, the reader is referred to [40]. Con-
versely, the IG method identifies the regions of the image that most influenced the model’s
classification decision by considering the entire input-output trajectory and the reference input
distribution (baselines) used in the attribution calculation. As pointed out in [41], the IG method
first considers the input image 𝑥 and a baseline 𝑥′, which is an input characterized by absence of
features. Then, a straightline path from 𝑥′ to 𝑥 is taken into account. IG computes the gradients
at all points along such path. The integrated gradients are obtained as the cumulative sum of
these gradients. Put more formally, if we denote our CNN model with 𝐹 : R𝑛 → [0, 1], the
integrated gradients along the 𝑖𝑡ℎ dimension is calculated as:

𝐼𝐺𝑖(𝑥) = (𝑥𝑖 − 𝑥′𝑖)×
∫︁ 1

𝛼=0

𝜕𝐹 (𝑥′ + 𝛼× (𝑥− 𝑥′))

𝜕𝑥𝑖
𝑑𝛼 (1)

where 𝜕𝐹 (𝑥)
𝜕𝑥𝑖

indicates the gradient of 𝐹 (𝑥) along the 𝑖𝑡ℎ dimension. Overall, the IG method
enables to detect the portions of the picture providing positive (parts in green, see Fig. 7 right)
and negative (parts in red, see Fig. 7 right) contributions to the output prediction.

Fig. 7 shows the image of a lateral-flow test categorized as “normal” (Fig. 7 left), the Saliency
feature map (Fig. 7 middle) and the Integrated Gradients heat map (Fig. 7 right). Fig. 8 contains
the same data for an “abnormal” assay. The colorbars below the heat maps specify respectively
the intensity of the saliency and the magnitude of the importance attribution of each region of
the image to the model’s prediction.

By examining the feature maps associated to a normal lateral-flow test (Fig. 7), we can observe
that the Saliency method returns a positive saliency for the pH and GL adulterants and a slightly
positive saliency for the OX adulterant (Fig. 7 middle). Concerning the Integrated Gradients
technique, the heat map displays a positive attribution for the pH and GL adulterants and a
slightly positive attribution for the OX adulterant (see Fig. 7 right). Therefore, in the case of a
normal assay, the model assigns the same importance to the portions of the image containing
the considered adulterants. This outcome is in line with the actual test result.

If we look at the relevant features highlighted by the Integrated Gradients technique with
regard to an abnormal assay, we can see that a slightly positive attribution is conferred to the
pH, OX and GL adulterants (Fig. 8 right). As far as the Saliency algorithm is concerned, it
returns a positive saliency for the GL adulterant and a slightly positive attribution for the pH
and OX adulterants (Fig. 8 middle). Also in this case, the results are coherent with the actual test
outcome, which indicates non-compliance for the OX and GL adulterants. Overall, our findings
suggest that the proposed model primarily relies on the portions of the image containing the
pH, OX and GL adulterants. However, the amount of contribution strongly depends on the test
result (e.g., normal or abnormal) and the specific color gradation of the adulterants. Indeed,
except for one case, the OX adulterant is characterized by soft nuances tending to be as similar
as the background color of the image. Similarly, the normality and abnormality of the pH
adulterant are defined based on subtle color gradations. Therefore, distinguishing between the
two cases might be challenging even for laboratory operators. Finally, it is worth noting that
cropping the picture does not affect the classification capability of the model. Indeed, the use of
black pixels providing no information allows the model to focus only on the remaining parts of



the image, which contains the relevant data.
To summarize, our outcomes demonstrate the capability of the ConvNet3_4 model to extract

the most relevant features of the input image in order to generate a precise prediction of the
output class. In particular, the identification of the portions containing the adulterants as the
key elements of the input image implies that the model is capable of making assumptions from
a medical point of view. Indeed, discriminating between the color nuances of the considered
adulterants (see Fig. 2) is far from trivial even for experienced and well-trained operators.

4. Discussion and conclusions

The spread of AI methods poses questions about the explainability of such models, particularly
when they are applied in real-world contexts. Especially in medicine and healthcare, using
explainable and trustworthy approaches is paramount in order to help doctors and other
professionals to make diagnoses of possible diseases, design adequate therapies for prevention
or rehabilitation, explain and collect historical data. Generally, analyzing huge amount of
medical data is addressed through DL methods and CNNs represent a widespread tool, although
they are often tailored to specific applications. This represents a major concern in the possibility
to develop cross-cutting tools. In this work, we proposed a novel approach for the problem of
automatically classify lateral-flow tests for drug abuse detection. Specifically, we considered
the adulterant section of an assay and we trained a CNN model for the ability to categorize
tests (i.e., normal or abnormal) by analyzing the pH, OX and GL adulterants only. We used the
network introduced in [25, 26] with the addition of pooling layers in the convolutional part of
the model. The use of pooling enables the development of slim networks that can be used in
real-world scenarios, particularly when dealing with limited hardware resources. We verified
the suitability of the model through a 5-fold cross-validation and we ran the training 10 times.
We collected promising results on the chosen task, with an excellent average accuracy. The
proposed approach is also notably superior to two state-of-the-art deep networks. Moreover,
we provided an explainability of our model by performing a feature analysis. Our outcomes
reveal the importance of some portions of the input image (those containing the adulterants),
while other parts affect the final prediction only partially.

In spite of the good results we achieved, further research is needed to generalize our approach.
First, we are collecting samples so as to broaden our analyses to the SG, CRE and NI adulterants,
which are out of the scope of this work, and increase the size of our dataset. Owning a
significant high number of images is pivotal to apply the model in a real case, since medical
data usually include hundreds or thousands of pictures. However, extending the analysis to all
adulterants implies considering input images of different sizes, with an unavoidable effect on the
model’s performance. Furthermore, the ConvNet3_4 model proves effective at dealing with the
considered problem, with a very good classification capability, and outperforms the DenseNet121
and ResNet18 pre-trained networks. Nonetheless, we observe the presence of oscillations during
training due to the sensitivity to specific batches of input images. Aiming to address such
undesired behavior, in the future we will consider the possibility to adapt the learning rate
and/or the weight decay during training. In addition, with respect to the explainability issue,
we provide evidence of the reasons behind the success of our model. Nonetheless, because the



visualization of feature maps revealed the model identifying sometimes as regions of interest
those that should not influence it (e.g., the portions of the cartridge container surrounding the
adulterants, see Figs. 7 - 8), in future developments we plan to create a mask. This mask, overlaid
on the original image, will eliminate areas of low interest, allowing the model to focus solely on
relevant regions. Finally, we are investigating the applicability of our model to other datasets in
the medical and health care fields with the aim to generalize the validity of the approach.
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Appendix

A. ConvNet3_4
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Figure A.1: Error curve of the worst ConvNet3_4 model out of 10 replications. The training error
decreases and goes to 0 after few epochs. Instead, the test error increases at the beginning of training
and oscillates; the sudden increase at epoch 40 prevents this replication from achieving a good accuracy
on images in the test set.
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Figure A.2: Number of correct and wrong classifications with respect to the images in the test set. Data
refer to 10 replications of the experiment.



B. Pre-trained models
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Figure B.1: Analysis of the classification capability of pre-trained networks on the images belonging to
the test set. Data in the main diagonal denote correct predictions, while values outside the diagonal
represent faulty categorizations. Left: DenseNet121 model. Right: ResNet18 model.
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