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Abstract
Previous work has suggested that Fuzzy ARTMAP (FAM)-based Technology-Assisted Review (TAR) achieves
viable levels of recall for eDiscovery (>75%), and produces models that are explainable via graphical and textual
interpretation. However, these results also indicated room for improvement in recall performance, as FAM is
sensitive to its training input. We evaluated the viability of improving recall performance through retraining the
model based on documents evaluated as relevant from all prior review iterations. Retraining improved recall
significantly, resulting in 72.9% of topic-vectorizer pairs being over the 95% recall threshold as compared to 42.2%
without retraining. In addition, the FAM-based model continued to demonstrate self-stopping behavior even with
retraining.
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1. Introduction

Technology-assisted review (TAR) is a useful tool in high recall retrieval (HRR) tasks, such as systematic
reviews and eDiscovery; in such areas, recall targets can range from 75-80% up to nearly 100% [1]. It
is acknowledged that reaching high levels of recall is important in HRR but this is balanced with the
level of effort required to reach high levels of recall [2, 3]. While existing efforts can reach these high
levels of recall, they are typically black box implementations that provide little or no interpretability
[4, 5, 6]. Previous work with Fuzzy ARTMAP-based TAR has indicated that it achieves levels of recall
consistent with applicability to eDiscovery and, with tf-idf, GloVe, or Word2Vec features, allows the
model to be interpreted in a variety of ways [7, 8]. While this initial implementation reached recall
thresholds above 75%, there was significant room for improvement in the recall performance. It was
hypothesized that retraining the model from scratch on previously reviewed relevant documents would
increase recall performance, since Fuzzy ARTMAP is sensitive to its training input [9, 10]. In this paper,
we present the early results of implementing up to three rounds of model retraining and its effect on
recall performance.

2. Background

Fuzzy ARTMAP is a supervised classifier, one of many neural network algorithms derived from Adaptive
Resonance Theory (ART), which maps inputs to category labels [10, 9]. ART describes how the brain
learns and predicts in a non-stationary world [11]. One of the key features of models produced from
this theory is that they can quickly incorporate new information without suffering from catastrophic
forgetting [12]. In particular, Fuzzy ARTMAP utilizes the fuzzy AND operator from fuzzy set theory,

3rd Workshop on Augmented Intelligence for Technology-Assisted Review Systems (ALTARS 2024): Evaluation Metrics and Protocols
for eDiscovery and Systematic Review Systems. March 28, 2024, Glasgow, UK
*Corresponding author.
$ charles@courchaine.dev (C. Courchaine); Corey@WadeML.dev (C. Wade); ttabassu@student.fitchburgstate.edu
(T. Tabassum); sdaisy@student.fitchburgstate.edu (S. Daisy); rickys@sethi.org (R. J. Sethi)
� 0000-0002-5404-9438 (C. Courchaine); 0009-0007-7570-2372 (C. Wade); 0009-0000-9184-0600 (S. Daisy);
0000-0001-5254-3750 (R. J. Sethi)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:charles@courchaine.dev
mailto:Corey@WadeML.dev
mailto:ttabassu@student.fitchburgstate.edu
mailto:sdaisy@student.fitchburgstate.edu
mailto:rickys@sethi.org
https://orcid.org/0000-0002-5404-9438
https://orcid.org/0009-0007-7570-2372
https://orcid.org/0009-0000-9184-0600
https://orcid.org/0000-0001-5254-3750
https://creativecommons.org/licenses/by/4.0/deed.en


Table 1
Model Iteration and Training Source Documents

Model Initial Training Source Review Iterations

Model 0 Randomly chosen 10 Relevant, 90 Non-Relevant documents 0 to i
Model 1 Random order of all evaluated Relevant documents in iterations 0 to i i+1 to j
Model 2 Random order of all evaluated Relevant documents in iterations 0 to j j+1 to k
Model 3 Random order of all evaluated Relevant documents in iterations 0 to k k+1 to stop

instead of the binary set union operator, to work with values on the interval [0, 1] [10]. An important
feature of the model produced by Fuzzy ARTMAP is that it can be presented as a set of fuzzy If-Then
rules or graphically through a geometric interpretation [10, 13]. To employ the geometric interpre-
tation, the input must be complement encoded. Complement encoding normalizes the input vector
𝑥 by concatenating it with its complement 𝑥 (or 1 − 𝑥), yielding an input of 𝐼 = [𝑥, 𝑥] [10]. With
complement encoding, the categories in the Fuzzy ARTMAP model can be interpreted as n-dimensional
hyper-rectangles [10, 14].

While Fuzzy ARTMAP has significant benefits in terms of online learning and interpretability, it is
sensitive to the ordering of training examples [9, 10]. One way to mitigate this limitation is through a
voting strategy where three or five models are trained with inputs in different orders; however, this is
for using Fuzzy ARTMAP as a traditional classifier [10]. In TAR, new training examples are available
after each review iteration. These new examples, including documents judged as relevant and not
relevant, are used to update the Fuzzy ARTMAP model without full retraining of the model [7, 8].

3. Procedure

In previous work, we evaluated Fuzzy ARTMAP performance in TAR and found robust recall perfor-
mance; however, there were several instances where Fuzzy ARTMAP failed to achieve 75% or better
recall [7, 8]. In this earlier work, the Fuzzy ARTMAP implementation stopped when it predicted no more
relevant documents. As Fuzzy ARTMAP is sensitive to the input order of the training examples, we
extended our previous work by clearing and retraining the model with documents previously evaluated
as relevant. The clearing and retraining of the model occurred when the model predicted no more
relevant documents, up to a set number of retraining events.

We set the number of retrainings at three, established through a mix of cost balancing and small
empirical tests. In general, the baseline, with no retraining, had runs that took a range of times from
sub-seconds to 13-minutes; with retraining, the range of times increased exponentially, more than
tripling for most runs and some taking 4 to 9 hours.

Ultimately, this resulted in up to four models produced, the first (Model 0 in Table 1) was trained with
ten relevant documents and ninety non-relevant documents. This model was used and updated with
the relevance judgements in each iteration until no more relevant documents were predicted in the ith

review iteration. A new model was then created from all the documents evaluated as relevant in the
prior review iterations, presented in a random order to the model (e.g. Model 1 in Table 1). The process
was repeated up to the limit of three additional models, and ended when the final model predicted no
more relevant documents. The rest of the model implementation was kept the same as the baseline in
[7, 8]. Briefly, the baseline implementation is recapitulated below.

We maintained the same hyperparameter values from our previous work, a baseline vigilance (𝜌𝑎) of
0.95 and a fast learning rate (𝛽) of 1.0. For these early results, we evaluated the retraining modifications
with the 20 Newsgroups and Reuters-21578 corpora, vectorized with tf-idf, GloVe in 300-dimensions, and
Word2Vec in 300-dimensions. All topics were used from 20 Newgroups, and the 119 topics with relevant
documents were used from the Reuters-21578 corpus, yielding 417 samples overall. Word vectors
for each document were averaged to produce document representations [15]. For all vectorizations
the representations were scaled to the [0,1] interval using the scikit-learn MinMaxScaler. Finally, the



Table 2
Average Metric Difference Between Retraining and No Retraining

Recall𝑑𝑖𝑓𝑓 Precision𝑑𝑖𝑓𝑓 F1𝑑𝑖𝑓𝑓 RE-75𝑑𝑖𝑓𝑓

Reuters-21578 GloVe .19*** -.13*** -.17*** 311***
Word2Vec .18*** -.14*** -.17*** 299***
tf-idf .15*** -.21*** -.26*** 275***

20 Newsgroups GloVe .39*** -.37*** -.02 1653***
Word2Vec .19*** -.21*** -.2*** 1117**
tf-idf .06*** -.19*** -.22*** -1

**p <.01, ***p <.001
Increases are positive, decreases are negative

Table 3
Number of Topic-Vectorizer Pairs Over Recall Threshold for new model (with retraining) vs the baseline model
(without retraining)

0.75 0.80 0.85 0.90 0.95

Retrain Over Threshold 403 (96.64%) 391 (93.76%) 376 (90.17%) 345 (82.73%) 304 (72.90%)
Baseline Over Threshold 315 (75.54%) 272 (65.23%) 239 (57.31%) 212 (50.84%) 176 (42.21%)

Figure 1: Number of documents to achieve recall, without retraining.

features were complement encoded prior to processing via Fuzzy ARTMAP [10]. The Fuzzy ARTMAP
TAR implementation takes a continuous active learning (CAL) approach [16], and the model is updated
after each review iteration. For each review iteration up to 100 documents were reviewed, based on the
number of documents the model predicted as relevant. To rank the documents for active learning, the
degree of fuzzy subsethood was used [7, 8, 17].

4. Results

The effect of retraining on recall performance was substantial. The average difference in recall, and other
metrics, between retraining and no retraining is shown in Table 2. Statistical significance was calculated
using a one-way paired t-test, with p < .001 across all corpora and vectorizers for recall indicating



Figure 2: Number of documents to achieve recall, with retraining, showing an average improvement of 6
percentage points over Figure 1.

statistically significant difference with retraining. The smallest improvement was six percentage points
of recall, with most improvements in the 15 to 19 percentage point range, up to a maximum of 39
percentage points improvement in recall. This improvement in recall is further illustrated in Table
3, where 72.9% of topic-vectorizer pairs (304 of 417) achieved 95% recall or better with retraining as
compared with 42.2% without retraining. Commensurate with this improvement in recall performance is
a decrease in precision, mostly between 13 and 21 percentage points. This was a statistically significant
decrease in precision across corpora and vectorizers (p < .001), as calculated by a one-way paired t-test.

In general, while F1 performance did decrease by a practical and statistically significant amount (p <
.001, except for 20 Newsgroups-GloVe), the drop was generally more modest, with the improvement in
recall offsetting the drop in precision. Also interesting was the general increase in the average difference
in the number of documents required for review to reach 75% recall; illustrated in Table 2 under the
RE-75𝑑𝑖𝑓𝑓 metric. This is partly due to the number of un-retrained topic-vectorizer pairs that never
reached 75% recall, compared with the retrained instances (24.46% vs. 3.36%). The increase is relatively
modest for the Reuters-21578 corpus, around 300 documents or about 1.5% of the 19,044 documents
with bodies. For GloVe and Word2Vec the difference is more substantial in 20 Newsgroups, around 1,400
documents or 8.5% of the 16,330 distinct posts. The effect of the retraining and number of documents
reviewed is illustrated in the difference between Figure 1 and Figure 2; where more documents are
reviewed, but higher recall is ultimately achieved in Figure 2 than Figure 1.

5. Conclusion

Utilizing full retraining of the Fuzzy ARTMAP model, even a modest number of times, improved
recall significantly - attaining 95% recall in over 72.9% topic-vectorizer pairs with retraining
as compared to 42.2% without retraining. Currently, the improvement in recall comes at the cost
of precision (Table 2 - Precision𝑑𝑖𝑓𝑓 and RE-75𝑑𝑖𝑓𝑓 ); however, some of the increase in the number of
documents to reach 75% recall is due to the no retraining model only reaching 75% recall 75% of the
time compared with 96% of the time with retraining (Table 3). This improvement in recall is achieved
while retaining the characteristic that the algorithm eventually predicts no more relevant documents.
Additional research is required to further characterize this stopping behavior, evaluating it across more
data sets, attempting to define the statistical and theoretical basis for the predictions of no more relevant
documents, and tuning the number of retraining iterations to potentially target recall levels. There is



additional research opportunity in improving precision along with the improvement in recall.
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