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Abstract
As the need for effective and swiftly deployable medications grows, drug repurposing has become a pivotal
strategy to mitigate the traditionally long and costly drug development process. Artificial Intelligence (AI),
primarily through deep learning, is revolutionizing drug discovery by identifying novel uses for existing drugs,
thus expediting therapeutic breakthroughs. Despite these advancements, the complexity of these models and
their unknown internal workings pose significant challenges in understanding and trusting their predictions.

This paper introduces a novel method for knowledge-driven explanations of drug repurposing AI-based
predictions, that focuses on scientific validation. The method uses Knowledge Graph technologies to provide
transparent, knowledge-infused explanations of AI-derived predictions. The integration of biomedical ontologies
elucidates the biological mechanisms underlying these predictions, aiming to enhance human comprehension
and trust in AI applications.

We applied our method to Hetionet, an integrated network comprising 29 leading biomedical databases,
which we further enriched with two biomedical ontologies NCIT and CHEBI. The explanations generated by
our method are consistent with ground truth drug repurposing mechanisms, and illustrate the crucial role that
ontologies can have in enriching scientific knowledge-infused explanations.

Keywords
Explainable Artificial Intelligence, Drug Repurposing, Biomedical Knowledge Graphs, Logical Reasoning

1. Introduction

The global demand for safe and efficient medications is escalating due to an aging population and
a better understanding of disease burdens. However, the current process of bringing a new drug to
market averages 14 years and costs around US$3 billion. With expenses soaring and failure rates high,
researchers are seeking ways to streamline drug discovery and development using artificial intelligence
(AI). AI, in particular through deep learning, has become integral to therapeutic discovery, offering a
means to generate actionable predictions for laboratory testing. AI tools are aiding in the discovery
of new antibacterial drugs, accurately predicting protein structures, and identifying drug repurposing
opportunities, whereby new therapeutic targets are discovered for existing drugs [1, 2, 2]. Many recent
and well-established companies in the field of drug discovery have secured substantial funding over the
past few years. Their business strategies predominantly hinge on integrating advanced physics-based
molecular modeling alongside deep learning (DL) and AI technologies [3].

Still, there are standing challenges in drug discovery with AI. In fact, the AstraZeneca-Sanger Cancer
Drug Combination Prediction DREAM Challenge [4] – a competition for ML in drug synergy – observed
that the ML method itself had little impact on overall performance but that it is essential that modelling
approaches reveal testable biological insight – a conclusion that translates to all drug discovery tasks.
Explainable AI (XAI) in drug discovery is a theme that is fast gaining attention [5].

Drug repurposing predictions, including those generated by black-box methods, can be construed
as scientific hypotheses that require lab experiments and clinical trials to be validated. However, 90%
of clinical trials fail [6]; therefore, a computational validation of these hypotheses to identify the
most promising candidates would improve outcomes in pre-clinical and clinical studies, leading to the
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development of more effective, accessible, and safer medications. The computational validation of these
hypotheses would require checking how the prediction fits with existing scientific knowledge.

In this paper, we present a method to generate explanations to support knowledge-driven validation
of scientific hypotheses, and apply it for drug repurposing.

2. Motivation

AI systems can predict potential drug repurposing opportunities by analyzing extensive biomedical
datasets and utilizing sophisticated algorithmic models [7]. This enables the identification of existing
drugs that may be effective for new therapeutic applications, supporting innovative treatment strategies.
To achieve this, AI systems use various mining methods, such as vector-based approaches, machine
learning algorithms, deep learning algorithms, or basic language models [1, 2, 8].

Although AI systems are effective, a major concern is that they can be opaque boxes with unknown
or incomprehensible internal mechanisms to humans [9]. Validating AI’s black-box predictions against
existing knowledge ensures they are medically sound and not just technically accurate. This step is
crucial for building trust and achieving approval by confirming that predictions align with known
scientific and medical principles. Accordingly, XAI aims to enhance trust in AI systems and enable
informed decision-making by increasing transparency and interpretability of AI algorithms [10].

XAI methods vary in how they generate explanations, with many focusing on improving model
interpretability by identifying key features and weights that influence predictions. While data-based
approaches are common, they often analyze input data without incorporating external information,
such as prior knowledge [11]. This can limit their ability to provide the necessary semantic context,
making it harder for humans to understand and trust AI outcomes. These approaches offer insights
into the operations of black-box AI models but might not fully explain how these models arrive at their
conclusions.

More recently, Explainable Knowledge-enabled Systems have been proposed as a potential solution
by incorporating domain knowledge to generate context-sensitive explanations that are comprehensible
to the user and equipped with provenance information [12]. This highlights the need to integrate
a representation of established domain knowledge into AI systems for specific fields. The use of
Semantic Web technologies, such as ontologies and knowledge graphs (KGs), can potentially address
the issue of knowledge-infused explanations, as they offer the required semantic context to data [13].
Knowledge-infused Explanations integrate domain-specific knowledge or external information sources
into machine-learning model descriptions to better understand the model’s reasoning [14]. For instance,
in drug repurposing systems, explanations might highlight how certain molecular interactions or genetic
markers influence the likelihood of a drug being effective for a new therapeutic use, rather than merely
listing all considered data. However, current approaches that use ontologies and KGs for XAI are still in
their early stages and mostly fail to capture the importance of features and the rationale behind their
relevance given a context.

3. Related Work

Incorporating these insights, recent works have advanced the use of KGs and AI techniques in drug
repurposing. Liu et al. [15] presents PoLo, a neuro-symbolic approach that combines representation
learning with logic to enhance drug repurposing efforts and provide interpretable reasoning paths.

The PoLo (Policy-guided Logical Reasoning) method operates by integrating two main components:

• Policy-guided walks with reinforcement learning: This component uses reinforcement learning
to navigate KGs, helping to discover significant paths between entities like drugs and diseases
based on learned policies.

• Logical rules for reward shaping: Logical rules are integrated into the reward function, ensuring
that the discovered paths are not only statistically significant but also logically coherent, thus
enhancing interpretability.



By combining these elements, PoLo predicts new drug-disease relationships and provides clear
explanations for these predictions. The use of logical rules ensures the model’s interpretability, address-
ing a critical challenge in AI-driven drug repurposing. Liu et al. [15] applied PoLo to Hetionet, and
their results indicated that PoLo outperformed several methods for link prediction, demonstrating its
potential in drug repurposing applications.

Similarly, Stork et al. [16] developed a method to improve the quality of explanatory paths in
drug repurposing, integrating contextual knowledge with a reinforcement learning-based approach.
Moreover, Ozkan et al. [17] extends the PREDICT method [18] with a knowledge graph-based approach
that identifies and ranks paths within a KG that elucidate drug indications, drawing on similarities to
established drug-disease relationships.

4. Methods

4.1. Overview

Our method generates explanations for individual drug repurposing predictions. We define a drug
repurposing prediction as a tuple < 𝑑𝑟, 𝑑𝑖 > where 𝑑𝑟 is a drug and 𝑑𝑖 is a disease. The intuition
behind our method is that by mapping drugs and diseases to a KG that describes biomedical entities,
relevant paths may be found between drugs and diseases that can contextualize the prediction in
existing scientific knowledge. Let’s take as an example the most famous case of drug repurposing:
aspirin. Originally used for pain relief and as an anti-inflammatory, aspirin has since been widely
used in a variety of clinical settings to manage numerous diseases [19], including its repurposing for
anticoagulant properties to prevent blood clots, thereby reducing the risk of heart attacks and strokes.
Using our method, we could map aspirin and cardiovascular diseases to a biomedical KG. This KG might
reveal pathways connecting aspirin to processes involved in blood clotting and inflammation, providing
a scientific basis for understanding how aspirin helps in the prevention of cardiovascular events.

Moreover, the size of an explanation is also a crucial requirement driven by the limitations of human
cognitive capacity. Explanations should be concise, brief, and free of redundancy to prevent them from
being too large to comprehend [20], more concise paths, preferably within the length of 5 to 7 nodes,
while still maintaining relevance. This strategy is based on the understanding that humans can hold
between around 7 objects in short-term memory [21]. Therefore, our method focuses on identifying
shorter, yet relevant, paths within the KG to enhance the interpretability and practical application of
the drug repurposing predictions. The overall method is outlined in Figure 1A.

We define an explanation for a drug repurposing prediction < 𝑑𝑟, 𝑑𝑖 > as a subset of paths 𝑃 within
the knowledge graph 𝐾𝐺 that link the drug 𝑑𝑟 to the disease 𝑑𝑖.

Formally, an explanation 𝐸 for the prediction < 𝑑𝑟, 𝑑𝑖 > can be expressed as:

𝐸(𝑑𝑟, 𝑑𝑖) = arg max
𝑝∈𝑃𝑑𝑟→𝑑𝑖

{𝑃𝑎𝑡ℎ𝐼𝐶(𝑝)} (1)

where 𝑃𝑑𝑟→𝑑𝑖 is the set of k-shortest paths in the 𝐾𝐺 linking 𝑑𝑟 and 𝑑𝑖 and 𝑃𝑎𝑡ℎ𝐼𝐶 is a measure
of the informativeness of the path that we want to maximize.

Given a KG that includes drugs and diseases, and a given drug repurposing prediction we aim to
explain, the first step is to Add weights to the KG to reflect the informativeness of each node in the KG.
This weighting helps prioritize more informative paths.

In the second stepGenerate Candidate Explanations, our method considers between 5 and 10 candidates.
This range is chosen to balance computational efficiency and explanation quality. Too few candidates
might miss relevant pathways, while too many can introduce noise, complicating the extraction of
valuable conclusions. Limiting to 5-10 candidates ensures a manageable and high-quality set for
evaluation. These candidates are found through a k-shortest paths algorithm, which identifies the top
k paths from the source to the target within a KG. This algorithm ensures that the most relevant and
diverse paths are selected by considering the edge weights, thereby generating a comprehensive set of
potential core paths. Following the candidate generation, these core paths are evaluated and ranked to



Figure 1: Overview of our method to generate candidate explanations, rank them, and enrich them (A) and its
evaluation strategy (B).

find the best-suited explanations for each prediction. The core paths are also extended to enrich the
explanations by incorporating neighborhood information using ontologies.

4.2. Add Weights to the KG

To add weights to the edges of the KG we explored the concept of Information Content (IC), a measure
of how specific and informative a concept is, and takes advantage of KG properties, such as node degree
counts. The degree of the node is the number of edges (relations) connected to the node (entity). To
determine the informativeness of a path, the approach first calculates a normalized node IC for each
entity, which is given by:



𝐼𝐶(𝑒) = − log2

(︂
𝑁𝐷(𝑒)

𝑁𝐷(ℎ)

)︂
(2)

where 𝑁𝐷(𝑒) is the node degree of the entity 𝑒, and 𝑁𝐷(ℎ) is the node degree of the entity ℎ with the
highest node degree of all entities.

4.3. Generate Explanations

4.3.1. Generate Candidate Explanations

In order to obtain candidate explanations, we employed a k-shortest path algorithm based on Yen [22]
work. While the algorithm employed presumed the use of the Dijkstra algorithm [23] for identifying the
shortest path between two nodes, the method can incorporate any shortest path-finding algorithm as a
substitute. We used the NetworkX 1 library for the implementation, a powerful tool for studying graphs
and networks. NetworkX offers a comprehensive range of algorithms designed for graph analysis,
allowing us to implement and execute Yen’s algorithm efficiently within our method.

4.3.2. Rank Candidate Explanations

After gathering candidate explanations, we rank them to identify the most relevant one.
To do this step, we take advantage of the node-specific properties of the IC measure, and a second

measure emerges to calculate the information level of the path.
The Path IC is a sigmoid defined as follows:

𝑃𝑎𝑡ℎ𝐼𝐶(𝑝) = max

⎛⎝ 1

1 + 𝑒
−𝑠

𝐼𝐶(𝑝)

𝑒𝑙𝑒𝑛(𝑝)

− (1− 𝐼𝐶(𝑝)), 0

⎞⎠ (3)

The parameters 𝑠 and 𝑝 play a crucial role in adjusting the sensitivity of the function to changes in
the IC over the nodes in a path. Specifically,

• 𝑠 = 300, acts as a scaling factor to amplify the exponential function’s argument within the
sigmoid function. This choice of 𝑠 ensures that the function is highly responsive to variations
in the ratio between 𝐼𝐶(𝑝) and 𝑒𝑙𝑒𝑛(𝑝), allowing for a fine-tuned adjustment of the function’s
behavior.

• 𝑙𝑒𝑛(𝑝), the length of path 𝑝 is determined by the total count of nodes present in a given path,
thereby directly incorporating the path length into our calculation. This allows us to account for
the length of the path in a straightforward manner, adjusting the average IC with an exponential
decay factor, exp(𝑙𝑒𝑛(𝑝)), to ensure a calibrated evaluation of longer paths.

• 𝐼𝐶(𝑝) is the average IC of all nodes in the path.

𝑃𝑎𝑡ℎ𝐼𝐶 is designed to penalize longer paths. In Figure 2, the function’s curve reveals how the
measure discourages overly long paths. It starts with a high value for short paths, indicating a minimal
penalty. As the paths become longer, the value quickly decreases, showing a significant penalty for
increasing path length. However, the curve begins to flatten beyond a certain point, indicating that
while the model penalizes longer paths, after a certain length, the penalty rate lessens. The different
IC curves illustrate that although paths with higher average IC values are initially preferred, the path
choice does not always favor those with the highest average IC as the path length increases. For example,
a path of length 6 with an average IC of 0.8 ranks below a path of length 4 with an average IC of 0.6.
However, the model might select longer paths with higher average IC values when the penalty for
additional length becomes minimal. This balance ensures that the chosen paths are optimal, considering
both length and IC value.

1https://networkx.org/



Figure 2: Distribution graph of the IC penalization according to each path length given the sigmoid function for
different average IC.

4.3.3. Enrich explanations

After assessing the relevant core paths, we enrich the explanations by incorporating neighborhood infor-
mation using ontologies. Specifically, we employed the NCIT (National Cancer Institute Thesaurus) [24]
and ChEBI (Chemical Entities of Biological Interest) [25] ontologies to enhance the contextual under-
standing of the relationships between entities. This enrichment involved exploring related entities and
their hierarchical relationships within the ontologies. By leveraging the structured knowledge within
NCIT and ChEBI, we were able to find the lowest common ancestors between the entities in the path.
These common ancestors represent higher-level classes that connect the entities through shared parents
(subclass of relations).

4.4. Evaluation approach

The evaluation method (Figure 1B) focuses on validating the generated explanations. It assesses the
consistency of the explanations by aligning the generated metapaths with established ground truths
and comparing core paths to other approaches.

A metapath is defined as a sequence of entity types and relationships in the KG that repre-
sents a generalized relation between entities. Formally, a metapath can be represented as a tuple
⟨𝐸1, 𝑟1, 𝐸2, 𝑟2, . . . , 𝐸𝑛⟩ where 𝐸𝑖 are entity types and 𝑟𝑖 are relationship types in the KG.

Looking into more concrete example, if we want to represent a relation between a given drug and
disease. A core path can represent a detailed path from Mitomycin to Stomach Cancer, delineating the
explicit relationships and entities involved.

Mitomycin
𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑠−−−−−−−−−→ TNFSF9 Gene associates←−−−−−Stomach Cancer

Contrarily in a metapath, instead of detailing Mitomycin’s interaction with a particular gene and
cancer, the metapath only reveals the pattern.

Compound
𝑑𝑜𝑤𝑛𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑠−−−−−−−−−→ Gene 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑠←−−−−−−Disease

We performed an ablation study in our experimental design were our method (WG-S) was evaluated
against three variations according to the different criteria used to generate the explanations:

• The full method WG-S: generates explanations considering weights in the KG and ranks them
using the Path IC;

• The WG-A variant: calculates a different Path(IC) through an average IC of the nodes in the core
explanation path, allowing the investigation of the impact of modulating explanation length;



• The NWG-S variant: does not consider KG weights;
• The NWG-A variant: does not consider weights and employs a different Path IC with an average

for ranking.

4.5. Application to Hetionet

In the realm of biomedical research, the integration of diverse datasets is crucial for uncovering novel
insights and therapeutic opportunities. To validate and demonstrate our method, we applied it to
Hetionet [26], a comprehensive biomedical KG. Hetionet aggregates biomedical information from 29
distinct databases into a unified network. It encompasses data spanning over five decades, including
compounds and diseases. This comprehensive resource features 47,031 nodes of 11 different types
and 2,250,197 relationships across 24 categories (Figure 3). By integrating diverse biomedical datasets,
Hetionet facilitates the generation of new hypotheses and insights, offering a holistic platform for
exploring data across various domains.

For a drug repurposing study, Hetionet’s comprehensive database includes 1,552 compounds and 137
diseases, interconnected through 775 documented treats associations. Adopting the dataset partitioning
strategy outlined in the PoLo method [15], the 775 triples were divided into distinct sets: 483 triples for
the training set, 121 triples for the validation set, and 151 triples for the test set, were the latter set used
for evaluation.

Figure 3: Hetionet [26] comprises a schema that features 11 types of entities and unique relation types that
interconnect them. The relation of interest for drug repurposing is highlighted in red.

4.5.1. Metapaths Comparison

For the Metapaths Comparison aspect of our evaluation, we define our ground truth using a refined
approach inspired by the findings of Himmelstein et al. [26], who examined 1206 metapaths connecting
Compound and Disease entities to uncover various mechanisms of pharmacological efficacy. They
identified 27 metapaths with significant predictive power for drug efficacy, using them as features in a
logistic regression model to calculate the probability of a compound treating a disease. Building on
their groundwork, we selected 14 of these metapaths based on their detection by our method. We adopt
these 14 metapaths as our ground truth, as shown in Table 1.

This evaluation intends to assess the consistency of our explanations against the established ground
truth. This comparison helps us determine how well our identified metapaths align with those recognized
as noteworthy in predicting drug efficacy. Through this process, we aim to validate the robustness and
informativeness of our explanations, ensuring they are structurally sound in the context of existing
scientific knowledge.

Besides using the ground truth, we additionally compare our metapaths with PoLo to measure the
alignment of our findings. We seek to understand how our method correlates with their method in an



Table 1
Ground Truth metapaths used for evaluation.

Path Ground Truth
1 Compound includes←−−−−PharmacologicClass includes−−−−→ Compound treats−−−→ Disease

2 Compound resembles−−−−−→ Compound resembles−−−−−→ Compound treats−−−→ Disease

3 Compound binds−−−→ Gene associates←−−−−−Disease

4 Compound resembles−−−−−→ Compound treats−−−→ Disease

5 Compound
palliates−−−−→ Disease

palliates←−−−−Compound treats−−−→ Disease

6 Compound binds−−−→ Gene binds←−−−Compound treats−−−→ Disease

7 Compound causes−−−→ SideEffect causes←−−−Compound treats−−−→ Disease

8 Compound treats−−−→ Disease resembles−−−−−→ Disease

9 Compound resembles−−−−−→ Compound binds−−−→ Gene associates←−−−−−Disease

10 Compound binds−−−→ Gene
expresses←−−−−−Anatomy localizes←−−−−Disease

11 Compound
downregulates−−−−−−−→ Gene

upregulates←−−−−−−Disease

12 Compound
upregulates−−−−−−→ Gene

downregulates←−−−−−−−Disease

13 Compound treats−−−→ Disease localizes−−−−→ Anatomy localizes←−−−−Disease

14 Compound treats−−−→ Disease
presents−−−−→ Symptom

presents←−−−−Disease

explainable perspective.

4.5.2. Core Paths Comparison

For the Core Paths Comparison, we aimed to understand how closely our explanations align with those
identified in PoLo. We were particularly interested in whether our findings match theirs and, if not,
whether the information content of the paths significantly influences these differences. This approach
helps us assess the depth of our model and understand how the IC measure affects the selection of
explanations.

5. Results and Discussion

In this section, we present and analyze our method’s results, highlighting the performance of the
different variants and discussing their implications. We aim to provide a comprehensive understanding
of how each variant influences the generation and selection of candidate explanations and how these
choices impact the overall effectiveness of our approach.

Starting by analyzing the path length frequency among methods variations in Figure 4A, they
generally favor path lengths between 2 and 3.

Figure 4: Explanations frequency of length (A) and edit distance (B) for each variant.



However, variants using the sigmoid function (WG-S and NWG-S) demonstrate a preference for
moderately short paths, reflecting the function’s tendency to penalize longer paths more heavily.
In contrast, those using the average function (WG-A and NWG-A) present a broader distribution,
indicating a less selective path evaluation. Moreover, the use of weights in WG-S and WG-A allows
for a more detailed consideration of path components, enhancing the selection process based on the
informativeness of connections within the KG. Conversely, NWG-S and NWG-A, which do not use
weights, adopt a simpler, more uniform approach, focusing primarily on path length.

5.1. Meta paths-based analysis

We performed two analyses based on meta paths extracted for our explanations: a comparison to
the paths identified in [26] as relevant for drug-repurposing (ground truth) and a comparison to the
metapaths extracted from PoLo’s explanations.

5.1.1. Ground truth-based analysis

When evaluating the structure of our metapaths against ground truth, we measured the differences
through the concept of edit distance. An edit distance quantifies the number of single-element changes
(additions, deletions, or substitutions of nodes and edges) required to transform the predicted metapath
into the ground truth path. An edit distance of zero means the predicted metapath exactly matches
the ground truth without any discrepancies. Figure 4B shows a plot based on the frequency of edit
distances required by each variant to align with a ground truth path.

Results show WG-S and NWG-S with several metapaths that align perfectly with a ground truth path
without any intermediary modifications (0 edit distances). This suggests a strong alignment with the
ground truth and highlights the effectiveness of the sigmoid function in these variants, which inherently
favors shorter paths and leads the explanation towards ranking as the best path, a more direct path
between the compound and disease.

We can also see that WG-A exhibits a varied distribution of edit distances, suggesting its predictions
span a wide range of path modifications. In contrast, NWG-A demonstrates a more consistent pattern
of edit distances, and upon looking into the explanations generated, it showed a tendency towards
fewer modifications. This difference highlights the impact of KG weights when retrieving candidate
explanations. WG-A considers each edge’s informativeness, leading to a broader spectrum of edit
distances. Contrarily, without the influence of weights, NWG-A may default to the shortest possible
path, disregarding the informativeness of the paths identified. This shows how the presence or absence
of weights can significantly shape the variant’s approach to identifying the best path between nodes.

Table 2 further clarifies the distinct behaviors of the four variants in the choice of ground truth path
without any edit distance necessary.

We can observe the WG-S and WG-A variant show a preference for paths, such as Path7, which
involves the causality between a compound’s side effects in common and its therapeutic application. In
contrast, variants NWG-S and NWG-A manifest an ability to generate simpler paths, such as Path3,
where the compound-gene-disease relationship follows a more short and direct pattern. However, it
seems less effective in more complex paths where additional biological context provided by weights
may be beneficial.

Regarding the metapaths that did not align with the established ground truth, Table 3 presents
alternative paths generated by the WG-S, which could nonetheless hold relevance. Such paths may
represent underexplored yet biologically meaningful interactions that could lead to new hypotheses
validation in drug repurposing predictions.

5.1.2. Comparison with PoLo’s metapaths

Regarding the comparison with PoLo’s metapaths, PoLo explained only 115 out of 151 predictions.
The subsequent analysis will focus on these explained paths. Figure 5A shows how the frequency of
metapaths of our method and variants aligns with PoLo’s. We can observe a higher alignment with



Table 2
Frequency of paths aligned with the ground truth.

Path Frequency WG-S WG-A NWG-S NWG-A
Path 1 26 15 0 0
Path 2 1 1 0 5
Path 3 10 0 46 22
Path 4 3 0 27 16
Path 5 0 0 0 0
Path 6 3 1 1 4
Path 7 59 35 16 26
Path 8 0 0 14 4
Path 9 2 0 1 3
Path 10 1 1 1 5
Path 11 1 0 0 0
Path 12 3 0 4 3
Path 13 6 7 2 6
Path 14 16 9 6 13

Table 3
Explanations that did not fully align with the ground truth, using WG-S.

Paths

1 Compound causes−−−→ SideEffect causes←−−−Compound
palliates−−−−→ Disease

2 Compound
upregulates−−−−−−→ Gene associates←−−−−−Disease

3 Compound includes←−−−−PharmacologicClass includes−−−−→ Compound
palliates−−−−→ Disease

4 Compound resembles−−−−−→ Compound binds−−−→ Gene associates←−−−−−Disease

5 Compound
upregulates−−−−−−→ Gene

upregulates←−−−−−−Disease

6 Compound
palliates−−−−→ Disease

presents−−−−→ Symptom
presents←−−−−Disease

7 Compound
palliates−−−−→ Disease localizes−−−−→ Anatomy localizes←−−−−Disease

8 Compound binds−−−→ Gene covaries←−−−−Gene associates←−−−−−Disease

9 Compound
upregulates−−−−−−→ Gene

regulates−−−−−→ Gene
downregulates←−−−−−−−Disease

both weighted variants. Specifically, WG-S shows the highest agreement with PoLo. On the other hand,
variants that do not consider weights tend to diverge significantly from the PoLo method, which may
emphasize the importance of weights in achieving more relevant paths instead of aspiring for shorter
paths.

Figure 5: Frequency of alignment between PoLo metapaths and each variant’s metapaths (A) and PoLo core
paths with each variant’s core paths (B).



5.2. Explanation analysis

Regarding the core paths comparison step, Figure 5B presents the frequency of core paths from our
method and variants aligning with PoLo’s.

Notably, the weighted variants exhibit a higher number of complete entity matches, just like in
the metapaths, suggesting a more substantial alignment with PoLo’s core paths than other variants.
Nevertheless, the main overlaps exist in the No Match row.

We computed the average IC for each path generated both by our variants and PoLo method (Figure
6). Our main approach has a distribution very close to PoLo’s, while the non-weighted variants had
lower average IC scores. We compared the distributions of the average ICs using the Kruskal-Wallis test,
followed by pairwise comparisons with Dunn’s test and Bonferroni adjustment for multiple comparisons
with 𝑝 < 0.01. The test revealed that PoLo and WG-S are not significantly different but that all other
methods differ significantly between themselves.

Figure 6: IC distribution for PoLo and each variant.

5.3. Use case examples

Besides evaluating the core paths we enriched them with the ontologies NCIT and CHEBI. Figure 7
present examples of enriched paths for a given predicted repurposing.

In Figure 7a, the path illustrates the potential repurposing of Aminophylline for Chronic Obstructive
Pulmonary Disease (COPD). The core path shows that Aminophylline treats asthma, which presents
dyspnea paroxysmal, a symptom also present in COPD. The path is enriched by linking these entities to
a common ancestor, Chronic Lung Disorder, providing a broader context and biological relevance. This
enrichment highlights the shared symptomatic and disease mechanisms between asthma and COPD,
justifying the repurposing prediction.

In Figure 7b, the path illustrates the potential repurposing of Vinorelbine for Breast Cancer treatment.
The core path connects Vinorelbine’s binding action on the TUBB8 gene to Eribulin, another compound
that also binds TUBB8 and is used to treat breast cancer. The enrichment involves linking these
compounds and their actions to broader categories such as Organo-nitrogen Compound and Vinca-
Domain Binding Agent. This enriched path provides a detailed view of how these compounds may
interact with the gene. The connection to the Vinca-Domain Binding Agent is validated by literature
indicating that Vinca-domain ligands are a class of microtubule inhibitors with great potential for



cancer therapy [27]. This supports the explanation and further justifies the repurposing potential of
Vinorelbine for breast cancer treatment

(a)

(b)

Figure 7: Enriched paths between (A) Aminophylline and Chronic Obstructive Pulmonary Disease, (B) Vinorel-
bine and Breast Cancer

6. Conclusions

To accelerate therapeutics innovation by unlocking the potential of Explainable AI in the realm of
drug repurposing, we present a novel method of generating explanations. It addresses the critical need
for transparency and understanding in AI-driven predictions by effectively integrating biomedical
knowledge into the validation process. This integration allows for deeper scrutiny and justification of
AI-generated hypotheses with black-box neural methods, ensuring that each prediction aligns with and
is reinforced by established scientific knowledge.

We applied our method to Hetionet, and results showed a high rate of exact metapath matches,
confirming the method’s effectiveness in providing clear, scientifically valid explanations. This prelimi-
nary work represents a crucial first step toward offering scientific explanations for drug repurposing
predictions. Eventually, this approach aims to fulfill the objective of enhancing AI’s trustworthiness
by paving the way for future studies, including user studies with clinicians, to further validate and
improve the practical application of AI in drug repurposing.

Acknowledgments

This work was supported by FCT through the fellowship 2023.00653.BD and through the LASIGE Re-
search Unit, ref. UIDB/00408/2020 (https://doi.org/10.54499/UIDB/00408/2020) and ref. UIDP/00408/2020
(https://doi.org/10.54499/UIDP/00408/2020). It was also partially supported by the KATY project which



has received funding from the European Union’s Horizon 2020 research and innovation program under
grant agreement No 101017453.

References

[1] F. Napolitano, D. Carrella, B. Mandriani, S. Pisonero-Vaquero, F. Sirci, D. L. Medina, N. Brunetti-
Pierri, D. Di Bernardo, gene2drug: a computational tool for pathway-based rational drug reposi-
tioning, Bioinformatics 34 (2018) 1498–1505.

[2] A. Zhavoronkov, Y. A. Ivanenkov, A. Aliper, M. S. Veselov, V. A. Aladinskiy, A. V. Aladinskaya,
V. A. Terentiev, D. A. Polykovskiy, M. D. Kuznetsov, A. Asadulaev, et al., Deep learning enables
rapid identification of potent ddr1 kinase inhibitors, Nature biotechnology 37 (2019) 1038–1040.

[3] A. V. Sadybekov, V. Katritch, Computational approaches streamlining drug discovery, Nature 616
(2023) 673–685.

[4] M. P. Menden, D. Wang, M. J. Mason, B. Szalai, K. C. Bulusu, Y. Guan, T. Yu, J. Kang, M. Jeon,
R. Wolfinger, et al., Community assessment to advance computational prediction of cancer drug
combinations in a pharmacogenomic screen, Nature communications 10 (2019) 2674.

[5] J. Jiménez-Luna, F. Grisoni, G. Schneider, Drug discovery with explainable artificial intelligence,
Nature Machine Intelligence 2 (2020) 573–584.

[6] D. Sun, W. Gao, H. Hu, S. Zhou, Why 90% of clinical drug development fails and how to improve
it?, Acta Pharmaceutica Sinica B 12 (2022) 3049–3062.

[7] R. Amiri, J. Razmara, S. Parvizpour, H. Izadkhah, A novel efficient drug repurposing framework
through drug-disease association data integration using convolutional neural networks, BMC
bioinformatics 24 (2023) 442.

[8] F. Yang, Q. Zhang, X. Ji, Y. Zhang, W. Li, S. Peng, F. Xue, Machine learning applications in drug
repurposing, Interdisciplinary Sciences: Computational Life Sciences 14 (2022) 15–21.

[9] R. Goebel, A. Chander, K. Holzinger, F. Lecue, Z. Akata, S. Stumpf, P. Kieseberg, A. Holzinger,
Explainable ai: the new 42?, in: International cross-domain conference for machine learning and
knowledge extraction, Springer, 2018, pp. 295–303.

[10] F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, J. Zhu, Explainable ai: A brief survey on history, research
areas, approaches and challenges, in: Natural Language Processing and Chinese Computing: 8th
CCF International Conference, NLPCC 2019, Dunhuang, China, October 9–14, 2019, Proceedings,
Part II 8, Springer, 2019, pp. 563–574.

[11] C. Molnar, Interpretable machine learning, Lulu. com, 2020.
[12] I. Tiddi, et al., Foundations of explainable knowledge-enabled systems, Knowl. Graph. eXplainable

Artif. Intell.: Found. Appl. Challenges 47 (2020) 23.
[13] F. Lecue, On the role of knowledge graphs in explainable ai, Semantic Web 11 (2020) 41–51.
[14] X.-H. Li, C. C. Cao, Y. Shi, W. Bai, H. Gao, L. Qiu, C. Wang, Y. Gao, S. Zhang, X. Xue, et al., A

survey of data-driven and knowledge-aware explainable ai, IEEE Transactions on Knowledge and
Data Engineering 34 (2020) 29–49.

[15] Y. Liu, M. Hildebrandt, M. Joblin, M. Ringsquandl, R. Raissouni, V. Tresp, Neural multi-hop
reasoning with logical rules on biomedical knowledge graphs, in: The Semantic Web: 18th
International Conference, ESWC 2021, Virtual Event, June 6–10, 2021, Proceedings 18, Springer,
2021, pp. 375–391.

[16] L. Stork, I. Tiddi, R. Spijker, A. ten Teije, Explainable drug repurposing in context via deep
reinforcement learning, in: European Semantic Web Conference, Springer, 2023, pp. 3–20.

[17] E. Ozkan, R. Celebi, A. Yilmaz, V. Emonet, M. Dumontier, Generating knowledge graph based
explanations for drug repurposing predictions, in: 14th International Conference on Semantic
Web Applications and Tools for Health Care and Life Sciences, 2023, pp. 22–31.

[18] A. Gottlieb, G. Y. Stein, E. Ruppin, R. Sharan, Predict: a method for inferring novel drug indications
with application to personalized medicine, Molecular systems biology 7 (2011) 496.

[19] X. Li, J. F. Rousseau, Y. Ding, M. Song, W. Lu, Understanding drug repurposing from the perspective



of biomedical entities and their evolution: Bibliographic research using aspirin, JMIR medical
informatics 8 (2020) e16739.

[20] M. Nauta, J. Trienes, S. Pathak, E. Nguyen, M. Peters, Y. Schmitt, J. Schlötterer, M. van Keulen,
C. Seifert, From anecdotal evidence to quantitative evaluation methods: A systematic review on
evaluating explainable ai, ACM Computing Surveys 55 (2023) 1–42.

[21] G. A. Miller, The magical number seven, plus or minus two: Some limits on our capacity for
processing information., Psychological review 63 (1956) 81.

[22] J. Y. Yen, Finding the k shortest loopless paths in a network, management Science 17 (1971)
712–716.

[23] E. W. Dijkstra, A note on two problems in connexion with graphs, in: Edsger Wybe Dijkstra: His
Life, Work, and Legacy, 2022, pp. 287–290.

[24] F. W. Hartel, S. de Coronado, R. Dionne, G. Fragoso, J. Golbeck, Modeling a description logic
vocabulary for cancer research, Journal of biomedical informatics 38 (2005) 114–129.

[25] K. Degtyarenko, P. De Matos, M. Ennis, J. Hastings, M. Zbinden, A. McNaught, R. Alcántara,
M. Darsow, M. Guedj, M. Ashburner, Chebi: a database and ontology for chemical entities of
biological interest, Nucleic acids research 36 (2007) D344–D350.

[26] D. S. Himmelstein, A. Lizee, C. Hessler, L. Brueggeman, S. L. Chen, D. Hadley, A. Green, P. Khankha-
nian, S. E. Baranzini, Systematic integration of biomedical knowledge prioritizes drugs for repur-
posing, Elife 6 (2017) e26726.

[27] A. Cormier, M. Knossow, C. Wang, B. Gigant, The binding of vinca domain agents to tubulin:
structural and biochemical studies, Methods in cell biology 95 (2010) 373–390.


	1 Introduction
	2 Motivation
	3 Related Work
	4 Methods
	4.1 Overview
	4.2 Add Weights to the KG
	4.3 Generate Explanations
	4.3.1 Generate Candidate Explanations
	4.3.2 Rank Candidate Explanations
	4.3.3 Enrich explanations

	4.4 Evaluation approach
	4.5 Application to Hetionet
	4.5.1 Metapaths Comparison
	4.5.2 Core Paths Comparison


	5 Results and Discussion
	5.1 Meta paths-based analysis
	5.1.1 Ground truth-based analysis
	5.1.2 Comparison with PoLo's metapaths

	5.2 Explanation analysis
	5.3 Use case examples

	6 Conclusions

