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Abstract
Despite the prevalence and historical importance of maps in digital collections, current methods of nav-
igating and exploring map collections are largely restricted to catalog records and structured metadata.
In this paper, we explore the potential for interactively searching large-scale map collections using
natural language inputs (“maps with sea monsters”), visual inputs (i.e., reverse image search), and mul-
timodal inputs (an example map + “more grayscale”). As a case study, we adopt 562,842 images of maps
publicly accessible via the Library of Congress’s API. To accomplish this, we use the mulitmodal Con-
trastive Language-Image Pre-training (CLIP) machine learning model to generate embeddings for these
maps, and we develop code to implement exploratory search capabilities with these input strategies.
We present results for example searches created in consultation with staff in the Library of Congress’s
Geography and Map Division and describe the strengths, weaknesses, and possibilities for these search
queries. Moreover, we introduce a fine-tuning dataset of 10,504 map-caption pairs, along with an archi-
tecture for fine-tuning a CLIP model on this dataset. To facilitate re-use, we provide all of our code in
documented, interactive Jupyter notebooks and place all code into the public domain. Lastly, we discuss
the opportunities and challenges for applying these approaches across both digitized and born-digital
collections held by galleries, libraries, archives, and museums.
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1. Introduction

Maps represent a central collecting focus for cultural heritage institutions, comprising large
fractions of collections across the world. For example, the Library of Congress alone holds
over 5.5 million maps [42]. Efforts to digitize maps have resulted in new possibilities for ac-
cess for a wide range of patrons, from scholars to politicians to the public. However, current
methods for searching historic map collections are largely limited to structured metadata and
keyword search over extracted text via optical character recognition (OCR). As described in a
2020 survey of metadata for topographic maps, metadata is “not often connected with the way
in which users search for maps,” and metadata standards vary across institution [17]. Further-
more, enriching metadata requires staff time and expertise, which is not always feasible.
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Figure 1: An overview of our search implementation for 562,842 images of maps held by the Library
of Congress. Users can create three different types of inputs: 1) text, 2) image, and 3) text & image.
The specified search input is used to retrieve the most relevant maps by dynamically computing a CLIP
embedding for the search input and comparing it to the pre-computed CLIP embeddings of all 562,842
images (more information on the beto architecture used for this step can be found in Section 3.2). The
top 𝑘 search results are then returned to the user.

In recent years, scholars and practitioners within cultural heritage, the computational hu-
manities, and the digital humanities have begun exploring the application of computer vision
methodologies to historic maps for a wide range of tasks, ranging from metadata enrichment
via classification [33] to the semantic identification of visual markers such as railroad tracks
[13]. However, much remains to be explored surrounding methods for facilitating exploration
and sensemaking of map corpora using machine learning.

In this paper, we take on this challenge by exploring possibilities for searching large-scale
map collections usingmultimodal machine learning. As a case study, we adopt as our collection
of choice 562,842 images of maps publicly available through the Library of Congress’s API.
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To facilitate multimodal search and discovery, we generate and release embeddings for these
images using OpenAI’s CLIP model [32]. Significantly, CLIP and other multimodal approaches
have seen increasing adoption in the computational humanities community, showing great
promise for use with digital collections [3]. We build on this work to show the possibilities for
maps in particular. Namely, we leverage the shared image- and text-embedding space enabled
by CLIP to implement three different forms of interactive search: with natural language inputs
(“maps with sea monsters”), with visual inputs (i.e., reverse map search), and with multimodal
inputs (an example map + “more grayscale”). Our search code is highly responsive, capable
of searching half a million images and returning results on a consumer-grade GPU (e.g., using
a personal laptop) in less than a second. We also introduce a dataset of 10,504 map-caption
pairs, as well as code for fine-tuning CLIP with this dataset. To facilitate re-use, all of our code
is released into the public domain in the form of documented Jupyter notebooks that others
can run on their own machines. These notebooks can be found at our GitHub repository:
https://github.com/j-mahowald/clip-loc-maps. An overview of our search implementation
can be found in Figure 1.

Working in collaboration with the Library of Congress’s Geography and Map division, we
present a number of example searches using our search implementation and describe the strengths
and limitations of this approach. Given the shared challenges surrounding discoverability
across digital collections, we discuss the extensibility of these results to other cultural her-
itage collections, ranging from digitized materials to born-digital content. In order to ensure
that our work has been conducted ethically and responsibly, we describe our adoption of the
LC Labs AI Planning Framework throughout our research process.

In summary, our paper offers five central contributions:

1. We introduce CLIP embeddings for 562,842 images of 56,554 map items held by the Li-
brary of Congress and made available through the loc.gov API.

2. We introduce a dataset of 10,504 map-caption pairs, as well as an architecture for fine-
tuning a CLIP model on this dataset.

3. In consultation with the Geography and Map Division at the Library of Congress, we
demonstrate the utility of these embeddings for a range of search & discovery tasks,
including natural language search, reverse image search, and multimodal search.

4. We release all of our code as re-usable Jupyter notebooks and place the notebooks into
the public domain. These notebooks include our pipeline for generating the CLIP em-
beddings, our search implementation for all three methods, and the code for fine-tuning
CLIP. Our code can be found in our GitHub repository.

5. We discuss potential ways that CLIP embeddings could be used to improve discoverabil-
ity across digital collections.

2. Related Work

In recent years, the “Collections as Data” movement and related efforts have demonstrated
the value of applying artificial intelligence (AI) to digital collections held by galleries, libraries,
archives, and museums in a range of contexts [27, 29]. Of particular relevance to this paper
is work that has applied computer vision to digital collections in the context of search and
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discovery [6, 23, 24, 5, 11, 38, 8, 2, 40, 21, 22]. Likewise, the MapReader project and others
have demonstrated value in applying machine learning to historic maps for classification and
other tasks [33, 13, 39, 36, 37]. In this paper, we pursue the intersection of these bodies of
work in order to explore the application of machine learning methods to search and discovery
for historic maps. Surrounding the use of multimodal machine learning approaches, we build
on work by Smits & Wevers [35], Smits & Kestemont [34], and Barancová et al. [3]. This
collective work has applied OpenAI’s CLIP model [32] to digital collections, and we follow suit,
focusing on the application tomap collections in particular. Thoughwork such as PIGEON [10]
and StreetCLIP [9] have applied multimodal machine learning approaches to maps, the focus
has been on contemporary, born-digital maps, whereas we consider historic maps and give
attention to the specific context of cultural heritage.

Significantly, much work has explored the availability and usability of metadata for historic
map collections [17, 15, 18, 26]. In this paper, we ask how search and discovery can be enriched
beyond existing metadata; we refer to this literature for further reading on the strengths and
limitations of existing metadata practices.

Lastly, our work is situated within a landscape of research actively engaging with the re-
sponsible and ethical dimensions of applying AI to cultural heritage collections. We note that
many frameworks and guidelines exist for pursuing this work [28, 4, 20, 14, 1]. In this paper, we
adopt the LC Labs AI Planning Framework in particular because we utilize Library of Congress
maps for our case study [19]. In Section 3.1, we describe our dataset in more detail.

3. Methodology 1: Generating CLIP Embeddings for 562,842
Images of Maps

3.1. Our Dataset of Library of Congress Maps

The Library of Congress has made publicly available over 56,000 map items comprising over
563,000 segments (images), a figure that continues to grow regularly. The map items are largely
from the Geography and Map (G&M) Division and are vastly varied in relation to the num-
ber of constituent images included, with some containing only one image (e.g., maps of small
towns, or standalone illustrations), while others, such as atlases or set maps, contain orders
of magnitude more. For example, the Texas General Highway Map item contains over 10,000
sheets. Of the 563,696 segments we attempted to process, 562,842 (99.85%) returned valid re-
quests through the International Image Interoperability Framework (IIIF) when we queried
them for our purposes. Each item is associated with one or more resources, onto which in-
dividual segments add an identifying sufÏx. For instance, the resource g4031pm.gct00608,
which represents the first 2,999 sheets of a map set named “General highway map ... Texas,”
includes g4031pm.gct00608.cs000150 representing a particular sheet showing highways in
Aransas County.

3.2. Generating Embeddings

We introduce a pipeline that leverages multiprocessing to efÏciently generate embeddings for
the Library of Congress maps in our dataset, while retaining their metadata and structure (Fig-
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Figure 2: An overview of our embeddings generation pipeline along with the resulting metadata dic-
tionaries, as described in this section. Each box represents a function; each function’s left column lists
objects created, while the right column lists the method of creation. Arrows between boxes represent
items piped through successive functions.

ure 2). Our embeddings generation pipeline can process over half a million images on an M3
MacBook Pro with 18GB memory in under 24 hours.

To generate the embeddings using the base CLIP model, we tested a range of image widths
and patch sizes, settling on width w=2000px and the base-size Vision Transformer (ViT) with
32x32px patches to optimize download times while retaining sufÏciently high image resolution.
We then built out our pipeline around these specifications.
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Figure 3: A natural language caption is extracted from the loc.gov metadata through the
get_caption function without the need for a language model. The function is designed to avoid redun-
dancy –– in this instance, it skips over the entries in "location" that include terms already extracted
from the title. Metadata notes tend to be formatted such that only the first several items contain visual
feature information, while the last two notes contain catalogue and availability data less pertinent to
feature extraction.

Of the several forms of identification that belong to each Library of Congress object, we focus
on the IIIF ID for image processing and unique identification and the resource ID for metadata
extraction. The data frame merged_files.csv –– accessible via Zenodo [25] –– gives the
loc.gov resource URL and IIIF image URL for each object. It also provides information on
an image’s file size and its context in the collection. The pipeline reads row by row from this
CSV file, creating a metadata dictionary for each image that includes API metadata. Using
the defined preprocessor, model, and IIIF request, embeddings are generated, normalized, and
appended to this dictionary as an 𝑚 = 512-tuple.

Our GitHub repository contains two script versions: embed_full.py, which incorporates ex-
tensive metadata from the loc.govAPI, ideal for further fine-tuning, and embed_stripped.py,
which includes only the IIIF image URL and its embedding. Each IIIF ID can be used to derive
its corresponding resource ID (the converse is not true), so only the IIIF ID is strictly needed
to carry the pipeline forward. The JSON files are then written to a local directory and named
for their IIIF ID to ensure uniqueness and easy derivation.

After each JSON is downloaded, create_beto.py generates beto (“big embedding tensor
object”), a PyTorch tensor of size [(𝑚, ), 𝑛] for 𝑛 image embeddings of dimension 𝑚. Though
only two-dimensional, the tensor formulation facilitates indexing and serves as an input for a
search query. A corresponding 𝑛-tuple, beto_idx, is created to associate each embedding in
beto with its respective IIIF URL by index. Diagrammatically,

beto = ⎡⎢⎢⎢⎣⎡⎢⎢⎢⎣
𝑎11𝑎21...𝑎𝑚1⎤⎥⎥⎥⎦ , ⎡⎢⎢⎢⎣

𝑎12𝑎22...𝑎𝑚2⎤⎥⎥⎥⎦ , ..., ⎡⎢⎢⎢⎣
𝑎1𝑛𝑎2𝑛...𝑎𝑚𝑛⎤⎥⎥⎥⎦⎤⎥⎥⎥⎦ , beto_idx = [𝐿1, 𝐿2, ..., 𝐿𝑛] (1)

where the column vector [𝑎1𝑖, 𝑎2𝑖, ..., 𝑎𝑚𝑖] represents the 𝑚-tuple embedding for the 𝑖th image,
and 𝐿𝑖 represents the 𝑖th image’s corresponding IIIF URL.
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Figure 4: Three examples of the map-caption pairs from our resulting dataset.

3.3. A Dataset & Architecture for Fine-tuning

To complement the CLIP embeddings that we have generated and released, we introduce a
dataset of 10,504 map-caption pairs for fine-tuning CLIP (available in Zenodo [25]), along with
code for performing this fine-tuning (available in our GitHub repository).

One central goal in fine-tuning is to provide the CLIP model with a large set of map-caption
(i.e., image-text) pairs fromwhich it can contrastively learn relevant information such as styles,
locations, dates, and other visual features. For each resource ID, the Library of Congress catalog
record yields several descriptors useful for systematically training a model on map-caption
pairs. We smooth the capitalization and punctuation through a few simple functions, and we
use this metadata to generate a descriptive, natural language caption for eachmap. An example
of the process is shown in Figure 3, and three resulting examples are shown in Figure 4. In
total, we include 10,504 map-caption pairs by initially generating 10,000 maps with a single
associated image, adding 2,000 randomly sampled images from the Sanborn Maps collection
(which represents a disproportionate fraction of map images made publicly available online by
the Library of Congress), adding an additional 227 maps covering every present-day country
and U.S. state, and discarding a total of 1,723 samples with unresponsive image requests or low-
quality captions (for instance, those with nonsensical characters, arbitrary changes in language,
or no feature descriptors).

Our initial experiments performing our fine-tuning yieldedmixed results. In Section A in the
Appendix, we describe these experiments. We also elaborate on our choice of our fine-tuning
dataset.

4. Methodology 2: Implementing Search & Discovery with CLIP
Embeddings

In this section, we outline our implementation of our three different searchmethods using CLIP
embeddings: 1) text-input search, 2) image-input search, and 3) text- & image-input search.
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4.1. Text-input Search

Given a text query and a specified number of desired results 𝑘, we employ the following process
to search beto and beto_idx, as defined in Equation 1. First, we generate a normalized text
embedding for the query utilizing the same CLIP configuration used in encoding the larger col-
lection. This embedding is then used to compute cosine similarity scores with each embedding
in beto. We then identify the 𝑘 largest scores and their corresponding indices. The similarity
scores of these top 𝑘 results are normalized using the softmax function, and the resulting scores,
along with their respective identifying links from beto_idx, are displayed. Cosine similarity
is extremely efÏcient to compute, making it possible to identify the top 𝑘 scores among over
half a million images nearly instantaneously.

4.2. Image-input Search

In this strategy, the user can input an image URL and a desired number of results 𝑘 to conduct
this image-input search, alternatively known as reverse image search. After the URL request is
received, the process is identical to the one outlined in text-input search because CLIP embeds
images and text in a common embedding space. The query image is embedded on the spot
as part of the search script, meaning that the user can input any image of any size and is not
limited to those from the Library of Congress catalog.

4.3. Text- & Image-input Search

We introduce an experimental search strategy that accepts both a text string and image in-
put as a search query. The CLIP model embeds the text string and the image to the same𝑚-dimensional embedding space. The engine then accepts a scaling factor 𝛼 that determines
how much relative weight should be assigned to the text and image inputs. We assign:

c = (1 − 𝛼) ⋅ q + (1 + 𝛼) ⋅ t2 , 𝛼 ∈ [−1, 1] (2)

where q and t are the 𝑚-dimensional embedding for the image and text queries, respectively,
and c is the combined weighted embedding (intuitively, this is a weighted centroid in the em-
bedding space whose weights are determined by the scaling factor). Introducing this scaling
factor satisfies the desired qualities that:

1. an input of 𝛼 = 0 weighs each term equally,
2. the weight produced by a scaling term is equal to the reciprocal of the weight produced

by the negative of that scaling term (i.e., a positive input 𝛼0 weighs in favor of the text
input exactly as much as −𝛼0 weighs in favor of the image input), and

3. c limits to the sole input of q or t as 𝛼 approaches -1 or 1, respectively.

Our search engine then computes cosine similarity scores between this combined embedding
and each embedding in beto, returning the top 𝑘 scores as input by the user.
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5. Results & Discussion

In this section, we introduce example search results for all three strategies described in Section
4 and reflect on the strengths and limitations of our implementation. We also describe our
utilization of the LC Labs AI Planning Framework throughout our research process.

Text-input Search

Figure 5: The most relevant images returned by our search system for the following text queries:
“tattered and worn map,” “old panoramic map surrounded by images of buildings,” and “a map with
illustrations of 19th-century ships.” Non-normalized similarity scores are shown for each returned
image.

5.1. Search Results

We begin by presenting example search results for all three approaches and reflecting on
strengths and weaknesses. These observations are derived from our conversations with staff
in the Library of Congress Geography and Map Division, who have experimented with our
search implementation and have offered feedback based on their experiences with patron re-
quests. As a brief observation in regard to the performance of our search implementation, we
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Image-input Search

Figure 6: The most relevant images returned by our search system for two different image inputs.

note that our search implementation processes a query, searches over all half a million images,
and finds the most relevant results in less than a second on an M3 MacBook Pro with 18GB
memory. This indicates that our implementation is both responsive and scalable.

5.1.1. Text-input Search

In Figure 5, we show three examples of text-input searches with natural language queries: “tat-
tered and wornmap,” “old panoramic map surrounded by images of buildings,” and “a mapwith
illustrations of 19th-century ships.” We chose these three examples in order to demonstrate a
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Text- & image-input Search

Figure 7: The most relevant images returned by our search system when given the multimodal query
of the specified image and the text guidance “more grayscale” with three different scaling factors
(𝛼 = 0, 0.3, and −0.5, respectively). Note that as 𝛼 is made more positive, the returned maps are more
grayscale.

range of different searches that can be performed, from specific content within the maps (e.g.,
ships), to map styles (e.g., panoramic maps) and layouts (e.g., surrounded by images of build-
ings), to time periods (e.g., 19th-century), to the material properties of the maps (e.g., tattered
and worn).

Significantly, these approaches complement the metadata found in the catalog records for
these maps. For example, a text search for “celestial map” yields eight relevant celestial charts
out of the top ten results. Given that some but not all of the loc.gov JSON records for thesemaps
include theword “celestial” (e.g., “celestial chart,” “celestial sphere”), our search implementation
enables the user to retrievemore relevant examples thanwhat is possible when restricted solely
to the existing metadata.
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Conversely, a text search for “map with cartouche” yields more mixed results. Of the re-
turned images, the second and third results are maps with cartouches, and the fourth result
has a more general cartouche; however, other results do not have cartouches. A text search
in https://www.loc.gov/maps for “cartouche” returned 199 results, which generally have
cartouches depicted. In this case, existing metadata proves more useful (though it should be
noted that our search implementation can easily be extended to include metadata search as
well). Another example where metadata proves more useful is “watercolor map.” Examples
where both our search implementation and metadata-based search do not have high precision
include “mapswith drawings of people” and “hand drawnmaps” (though the latter could be par-
tially constrained by searching terms in the metadata such as “pencil,” “ink,” or “watercolor”).

5.1.2. Image-input Search

In Figure 6, we show two examples of image-input, reverse-map searches. As with the text-
input search examples, we have chosen these two maps to reflect distinct styles. This type of
search can be useful in a number of settings. For example, a user may not know the proper
vocabulary for specific visual features or styles, or relevant information may not be present in a
map’s metadata. As representative of a valuable use case, staff offered successful reverse-image
searches with portolan charts – a type of early nautical map that is visually recognizable by
diagonal lines often referred to as rhumb lines or windrose lines.

Additionally, though the text-input search of “map with cartouche” in Section 5.1.1 yielded
mixed results, a reverse image search of a map with a cartouche performed significantly better
(see the top search in Figure 6), returning nine relevant maps out of the top ten maps returned
for one example and seven relevant maps out of the top ten maps for another. In general,
image-input searches typically yield more accurate results than text-based searches. Indeed,
when measuring the similarity between query and results using raw cosine similarity scores
(without applying softmax normalization), image-based searches achieve scores that are almost
triple those of text-based searches.

A weakness with image-input search is that the user cannot constrain what in particular
about the specified map input is most important to them. Indeed, this was a significant moti-
vating factor for our implementation of joint text- & image-input search.

5.1.3. Text- & Image-input Search

In Figure 7, we introduce an example of joint text- & image-input search with a map and the
natural language query “more grayscale,” along with three different scaling factors: 𝛼 = 0, 0.3,
and −0.5. As with image-input search, this method could be particularly valuable when a user
does not know the proper vocabulary, but this method offers the added affordance of enabling
the user to specify natural language in order to tune the search. Because the user can quickly
refine searches in an interactive fashion, we believe this affordance for specifying feedback is
a promising one for exploratory search with maps.

Interestingly, a combined search of a map with a cartouche along with the text input “map
with cartouche” yielded better results than the equivalent searches with text-input only and
image-input only. Using the two different example maps tested in Section 5.1.2, along with
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the text input “map with cartouche” and a scaling factor of 𝛼 = 0, the inputs returned ten and
nine relevant maps out of the top ten returned results, respectively. However, this method
of reinforcing the search via both text and image did not improve results for other searches
such as “hand drawn maps,” “tattered map,” or “watercolor map,” likely owing to the lack of
additional information provided to the model across the two modes.

5.2. Applying the LC Labs AI Planning Framework

Throughout our research, we have adhered to the LC Labs AI Planning Framework in order
to engage with the responsible and ethical dimensions of this work [19]. We selected this
framework in accordance with our use of Library of Congress materials. Created by LC Labs
at the Library of Congress in 2023, the AI Planning Framework articulates three distinct el-
ements (data, models, and people) across three phases (understanding, experimenting, and
implementing) of a project’s development [31]. To offer relevant considerations and facilitate
documentation during a project’s development, the LC Labs AI Planning Framework provides
three worksheets on data privacy and transparency [19]:

1. Use Case Risk Worksheet, “to assist staff in assessing the risk profile of an AI use case.”
2. Phase II Risk Analysis, “to articulate success criteria, measures, risks, and benefits for an

AI Use Case.”
3. Data Readiness Assessment, “to assess readiness and availability of data for the proposed

use case.”

We have completed all three worksheets and included them in our GitHub repository. Based on
our reflections during our completion of the worksheets, we note a few salient points. Because
all training and search data are obtained from the Library of Congress, the overwhelming ma-
jority of themaps included are in the public domain (for any questions pertaining to a particular
map’s copyright, its included metadata can be consulted). We note that our fine-tuning dataset,
taken directly from the larger corpus of maps described in Section 3.1, is used to fine-tune the
model and evaluate performance, as described in Section 3.3 and Section A in the Appendix. In
our worksheets, we describe the requirements and evaluations by Geography and Map staff at
the Library of Congress, who serve as proxy evaluators for the intended end-use researchers.
Lastly, we note that the absence of personally identifiable information, the low cost of mistakes
in search and discovery, and the rigorous evaluations of our process make our application a
low-risk use case according to the AI Planning Framework.

6. Conclusion & Future Work

6.1. Conclusion

In this paper, we have asked a central question within the computational humanities: how
might emerging methods from multimodal machine learning be utilized to facilitate searching
large-scale map collections? To address this question, we have built out a search implemen-
tation for 562,842 images of maps publicly available via the Library of Congress’s API. In par-
ticular, we have produced CLIP embeddings for all 562,842 images and introduced a search
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implementation that enables three different kinds of search inputs: 1) natural language, text-
based inputs, 2) visual, image-based inputs, and 3)multimodal, combined text- and image-based
inputs. In consultation with staff in the Library of Congress Geography and Map Division, we
have explored example searches and demonstrated the utility of these search methods. More-
over, we have demonstrated a commitment to responsible and ethical AI practices by following
the LC Labs AI Planning Framework. For further work with historic maps, we have released
a dataset of 10,504 map-caption pairs, along with an architecture for fine-tuning CLIP on this
dataset. To facilitate transparency and re-usability for our code by end-users such as scholars
and practitioners, we have released all of our code into the public domain as Jupyter notebooks.
In what remains, we explore the extensibility of our approaches to other digital collections held
by galleries, libraries, archives, and museums, as well as describe other future work.

6.2. Toward Improved Discoverability in GLAM Collections with CLIP

Digital collections continue to grow at enormous rates. Developing methods of facilitating
search and discovery are more important than ever in order to contend with the challenge of
scale. Our search implementation leveraging CLIP has demonstrated the potential for search-
ing maps beyond their catalog records and existing metadata. Here, natural language inputs
facilitate interactive navigation, an important component of exploratory search.

With the marked improvements in multimodal machine learning over the past few years,
it is clear that there are manifold opportunities to improve access through the application of
these methods. Significantly, these methods are extensible to a wide range of digitized and
born-digital collections currently only searchable via metadata and text search. In the case of
born-digital collections such as web archives, the lack of structured metadata at the webpage
level necessitates the exploration of these methodologies. Example searches that would be
enabled by applying CLIP-like approaches are as far-ranging as finding heavily redacted pages
in born-digital government documents to identifying specific motifs in rare book illustrations.
We have shown that our implementation can render half a million images searchable on a
single laptop, demonstrating that such approaches are scalable to millions of items with little
modification.

The application of these methodologies presents challenges as well. Digital collections are
incredibly heterogeneous, spread across time periods, languages, media types, and beyond,
with different metadata fields. Consequently, ensuring that these approaches surface relevant
facets, and doing so responsibly and ethically, must be primary considerations for this work.
As one example, developing fine-tuned models for this work is important, but recognizing
the limitations and failure modes of these approaches – and when to use machine learning-
based approaches to begin with – is just as important. We therefore advocate that researchers
continue to adopt frameworks such as the LC Labs AI Planning Framework during all stages
of a project when applying AI to digital collections.

6.3. Future Work

Many directions of future work remain of interest for us. First, we would like to continue the
fine-tuning experiments described in Section 3.3, as well as Section A of the Appendix. Though
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our initial experiments showed mixed results, we believe additional experiments surrounding
careful implementation of a fine-tuned model to the search engine could reduce some of the
noise from inaccurate searches. Indeed, given the demonstrated utility of fine-tuned embed-
dings for a range of downstream tasks in machine learning more generally, we believe that
a fine-tuned CLIP model for historic maps in particular could be beneficial to the computa-
tional humanities community. Along these lines, we are interested in exploring additional
approaches to training and fine-tuning multimodal models, such as ones that do not utilize
contrastive learning and are not restricted by the contrastive fine-tuning mechanism [41].

Moreover, we plan to build a proper search interface for our implementation with the goal
of hosting an exploratory search system that can be publicly accessed. Given the importance
of front-end affordances and considerations from human-computer interaction, we believe de-
tailed analysis surrounding the best interaction mechanisms warrants further study [12]. This
is especially important for maps, where affordances for browsing must take into consideration
the specificity of viewing and interacting with the digital objects themselves, which are often
large and often span multiple sheets [7]. User studies would be beneficial for building a sys-
tem that would be most valuable to patrons. We also plan to incorporate metadata search into
this interface, with the understanding that combining our search implementation with existing
search fields would be complementary.

Lastly, as described in Section 6.2, we believe that these multimodal, CLIP-style approaches
to search and discovery are useful for a wide range of digital collections. As a result, we have
begun exploring extensibility to other document types including web archives, born-digital
documents, digitized books, and digitized newspapers. Indeed, given the ongoing, worldwide
efforts surrounding the creation and stewardship of both digitized and born-digital collections,
continuing to refine methods for improving discoverability will only grow in importance over
the coming years.
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A. Appendix: A Description of Experiments for Fine-tuning
CLIP

This section serves to describe our experiments fine-tuning CLIP on map-caption pairs, which
have yielded mixed results to date. In our fine-tuning script available in our repository, we
initialize the pre-trained model and processor as introduced in the Hugging Face transformers
library (openai/clip-vit-base-patch32) [30]. We define an image-text pair dataset inher-
iting from the PyTorch Dataset class, into which we load lists of image paths and their corre-
sponding captions. This dataset is then fed into a PyTorch DataLoader with a custom collate
function that opens images, converts them to RGB, and uses the CLIP processor to batch and
preprocess texts and images together. We then define the optimizer under Adam with tradi-
tional hyperparameters (𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 = 1 ⋅ 10−6, 𝜆 = 0.2) in Kingma & Ba [16] and a
scheduled learning rate.

The script initiates a 16-epoch training loop. Each epoch processes 15000//32 + 1 = 469
batches of 32 image-text pairs, where gradient computations are reset and inputs are prepared
and passed through the model for each batch. The model computes logits for images and
texts and calculates a symmetric InfoNCE (noise-cross estimation) loss, a common choice for
contrastive learning like with CLIP, which encourages the model to align the embeddings of
matching texts and images while distinguishing non-matching ones. InfoNCE loss is selected
against cross-entropy loss, on which the original model is trained, in light of the increased
“noise” associated with the larger caption pool in our fine-tuning set. The gradients are back-
propagated, and the optimizer updates the model’s weights. After each epoch, the average and
total losses are calculated and recorded. The model state, optimizer state, and training loss are
saved to a checkpoint file, allowing for training or evaluation to be resumed later.

For our first training regimen, we selected a random sample of 𝑛 = 50, 000 standalone image-
text pairs to generate and feed into the fine-tuning model. Because loc.gov metadata are
typically written at the item level, we limited our sample to images that are part of items with
fewer than 10 segments to avoid vague or potentially inaccurate metadata-derived captions.
This configuration resulted in a loss reduction of about 50% over 16 epochs, with the logarith-
mic decline suggesting that the average error would decrease below one only after 35 to 40
epochs. We choose neither to pursue this path nor to increase the dataset size out of caution
for overfitting (a training set of 50,000 already represents 10% of the entire collection) and for
potential inaccuracies in the metadata-derived caption generation. The accuracy for the spe-
cific task of search and discovery across the entire collection suffers qualitatively with this
fine-tuned model as compared to the base model.

For our second training regimen, we utilize the dataset introduced in Section 3.1. From the
first iteration, we recognized that the broader map collection is heavily skewed toward the
Division’s collection of Sanborn fire insurance maps, which biased the fine-tuning data. The
dataset of 10, 504 map-captions was constructed with this consideration in mind. We then
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record the loss reduction across five epochs for an array of learning rates and batch sizes,
finding little significant reduction (and, at times, increase) in validation loss. This occurred
across several (8, 16, 32, 64) batch sizes and learning rates, though the decline was more modest
for smaller batch sizes. This phenomenon owes partially to the regressive nature of machine
learning for search and discovery. Whereas contrastive models tasked with classifying across
a discrete set of outputs (for instance, a list of possible years during which a photograph was
taken [3]) largely benefit from several cycles of supervised learning, the infinite label space of
a regression problem requires the model to interpolate or extrapolate beyond the finite set of
examples seen during training.
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