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Abstract
Digital tools for text analysis have long been essential for the searchability and accessibility of digitised
library collections. Recent computer vision advances have introduced similar capabilities for visual
materials, with deep learning-based embeddings showing promise for analysing visual heritage. Given
that many books feature visuals in addition to text, taking advantage of these breakthroughs is critical to
making library collections open and accessible. In this work, we present a proof-of-concept image search
application for exploring images in the National Library of Norway’s pre-1900 books, comparing Vision
Transformer (ViT), Contrastive Language-Image Pre-training (CLIP), and Sigmoid loss for Language-
Image Pre-training (SigLIP) embeddings for image retrieval and classification. Our results show that
the application performs well for exact image retrieval, with SigLIP embeddings slightly outperforming
CLIP and ViT in both retrieval and classification tasks. Additionally, SigLIP-based image classification
can aid in cleaning image datasets from a digitisation pipeline.
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1. Introduction

With the goal of preserving and disseminating Norwegian cultural heritage, the National Li-
brary of Norway (NLN) began digitising its collection in 2006. This collection, acquired per the
Norwegian Legal Deposit Act1, spans various materials, including books, newspapers, jour-
nals, posters, radio, movies and more [4]. Almost all books and most newspapers have already
been digitised, barring a few exceptions, and the current focus is on processing newspapers,
journals, and non-text-based media [4]. However, digitisation alone is insufÏcient to make
cultural heritage available; it is also necessary to ensure that the digitised content is easy to
view and access is not overly restricted. Thus, the Bokhylla agreement grants regulated access
[11], and the online library Nettbiblioteket lets users view collections with an International Im-
age Interoperability Framework (IIIF) [23] based viewer and perform full-text searches using
Elasticsearch. Finally, NLN offers limited access to the textual content through NB DH-LAB
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[4] and corresponding webapps2 which provides tools based on text aggregates (e.g. n-grams,
collocations and concordances) to facilitate automated and reproducible analysis of the text.

Currently, these tools have largely been based on text extracted from Analysed Layout and
Text Object-Extensible Markup Language (ALTO-XML) files3 generated by optical character
recognition (OCR) models during digitisation [5]. However, the output XML also contains
coordinates for graphical elements. These graphical elements represent non-textual elements
in the books, e.g. illustrations or decorations. While such elements are an important part of
the books, they have been cumbersome to explore, requiring manual inspection. Therefore, an
essential missing step for making NLN’s digitised collection more accessible is making these
graphical elements easier to explore and analyse.

An approach to make such elements explorable, is creating tools for image search, either in
the form of exact image retrieval (i.e. recovering a specific image) or semantic image retrieval
(i.e. recovering an image with similar contents) or both. While text-based search engines are
commonplace, image search is more complicated [16, 28]. Early methods matched images us-
ing surrounding text [16], but this approach demands high-quality textual descriptions, which
can be lacking. Alternatively, exact image retrieval traditionally relies on handcrafted image
features for comparison [16, 28]. Handcrafting such features can be challenging, and typically
form a dense vector, which can hinder efÏcient lookups.

However, recent technological advancements have simplified the implementation of image
search engines. Various tools now implement efÏcient search indices for dense vectors, such
as the hierarchical navigable small worlds (HNSW) index [12]. Moreover convolutional neu-
ral networks (CNNs) and vision transformers (ViTs) have alleviated the need for handcrafted
image features for computer vision [8, 7]. Furthermore, there has been an influx of multi-
modal models, like Contrastive Language-Image Pre-training (CLIP) [19] and Sigmoid Loss for
Language Image Pre-Training (SigLIP) [27]. The recent advances in computer vision and pro-
liferation of advanced pre-trained computer vision models has empowered the development of
new research and tools for exploring and analysing image-based data in the digital humanities
[2, 25, 21, 9, 22, 20].

Previous work on machine learning-driven computer vision-based image search tools for
digital humanities mainly focuses on cleanly digitised materials such as collections of videos,
photographs, lantern slides andmedieval illuminations [2, 21, 22, 17]. However, there is limited
work applying such tools to images extracted from the output of automatic layout detection
of scanned media, e.g. books and newspapers. Such image collections pose unique challenges.
First, the magnitude of data is often larger than for collections of photographs. Second, such
data can contain artefacts not found in cleanly digitisedmaterials. For example, detected bound-
ing boxes might be inaccurate. False positives can occur, where the automatic layout detection
mistakenly marks, e.g. tables or blank pages, as graphical elements. Avoiding such artefacts
can be infeasible, as redoing layout analysis for a collection of sizeable magnitude can be cost-
prohibitive and not guaranteed to succeed. Therefore, a natural next step is exploring machine
learning-based image retrieval in the context of NLN’s collection of scanned automatically pro-
cessed media.

2https://www.nb.no/dh-lab/apper/
3https://www.loc.gov/standards/alto/

893



This short paper details ongoing work on these challenges, with three primary contributions:

1. Developing a proof-of-concept image search application for NLN’s pre-1900 books.
2. Comparing modern image embeddings for image retrieval in NLN’s digitised books.
3. Evaluating pre-trained models for fine-tuned classification of image categories.

2. Background and related work

Two traditional approaches for image retrieval are context-based full-text search — querying
the images’ textual context — and hashing-based approaches for exact image retrieval. The
former typically works by using an inverted index to efÏciently retrieve relevant images via
e.g. term frequency-inverse document frequency (TF-IDF) weighting [24], before potentially re-
ranking them based on image features [16]. The hashing-based alternativeworks by computing
a compact hash, or “fingerprint”, that can be used for efÏcient exact image retrieval [6].

More recent image retrieval approaches compute image similarities using deep learning-
based image classification models such as ViTs [7] or CNNs [8]. These models first transform
an image into an embedding, which is used as input for a logistic regression model. The key
insight in using these models for image retrieval is that we can compute image similarities by
comparing the embeddings, e.g. with the cosine similarity.

However, by using classification models, we assume that embeddings learned by training
on image-label combinations are informative enough to group images semantically, which can
hinder generalisation to out-of-sample images [15]. Another approach is multimodal models
like CLIP and SigLIP. In short, these models work by combining an image transformer and
a text transformer to compute image and text embeddings – aligning them to ensure strong
cosine similarity for matching pairs. This approach has been successfully applied to e.g. image
retrieval and zero-shot classification [19], and generalise better to out-of-sample images [19,
15].

During CLIP and SigLIP training, models receive shufÒed image-caption pairs and compute
probabilities for matches. Such training demands extensive data and computational resources.
To circumvent this, it is common to use pre-trained models and the popularity of model reposi-
tories, likeHuggingfaceHub [26] and TorchHub [1], hasmade usingmodels trained onmassive
datasets accessible.

While methods for efÏcient sparse vector queries have existed for decades [10], querying
based on image embeddings requires dense vector queries, which is still a research topic. How-
ever, the recently proposed HNSW-index for approximate nearest neighbour search [12] has
gained traction for accuracy and efÏciency. The index consists of a hierarchy of navigable small
world graphs [13], each built from different data subsets, and querying consists of iteratively
traversing the hierarchy, enabling efÏcient navigation through large datasets.

Applying modern computer vision to problems in digital humanities has recently gained
traction. The term distant viewing is introduced in [2], which demonstrates how computer
vision methods for clustering and object detection can be applied to image- and video-data.
Building on this, [25] shows how CNN-based semantic image retrieval can be used to explore
trends in newspaper advertisements and illustrations extracted from Delpher — a digitised
materials search engine by the Dutch national library. Moreover, [17] demonstrate how a
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combination of monomodal image- and language-models can be used to combine and enrich
two manually annotated collections of medieval illuminations and [21, 22] shows how a CLIP
model can be used to explore and label magic lantern slides efÏciently and that it can struggle
with zero-shot classification of old illustrations. Using CLIP embeddings, [20] clusters news
videos and employs a graph-based approach for efÏcient exploration. Machine learning-driven
image retrieval tools for libraries and museums, like Maken4 , Bildsök5 and Nasjonalmuseet
Beta6 have also emerged. These previous works highlight computer vision’s potential in digital
humanities, and thus, evaluating and comparing such models in the context of NLN’s digitised
book collection is a relevant next step.

3. Methods

3.1. Extracting images

To search the images, they must first be extracted from the digitised book collection. Dur-
ing NLN’s digitisation, books are scanned and processed through a pipeline including lay-
out detection and OCR, producing ALTO-XML files7 named after Uniform Resource Names
(URNs). These files contain page information, describing the page in terms of four block types:
TextBlock, Illustration, GraphicalElement and CompositeBlock (blocks containing other
blocks)8. In the ALTO-XML files parsed for this work, all illustrations and graphical elements
are tagged as GraphicalElement. Parsing these files, we extracted the page URN, coordinates,
and size for each graphical element in addition to the textual context of each image in the
digitised books. For this work, we processed pre-1900 books, creating a sufÏciently large, yet
manageable subset for testing.

For each graphical element, we used NLN’s IIIF API9 to download images from URLs follow-
ing the format in Table 1, discarding images with aspect-ratio ≥ 50. By integrating ALTO-XML
files with the IIIF endpoint — both technologies already utilised by NLN — we obtained images
from digitised Norwegian books before 1900.

3.2. Creating the vector search application

We computed image embeddings using Huggingface Transfomers [26] with three models: ViT
(google/vit-base-patch16-22410), CLIP (openai/clip-vit-base-patch3211) and SigLIP
(google/siglip-base-patch16-256-multilingual12). Each pre-trainedmodel’s preprocess-
ing pipeline involved resizing images to the input shapes (224 for ViT and CLIP, and 256 for
SigLIP) and scaling the pixel values. For ViT and SigLIP, images were resized to 224 × 224 and

4https://www.nb.no/maken/
5https://lab.kb.se/bildsok/
6https://beta.nasjonalmuseet.no/collection/
7https://digitalpreservation-blog.nb.no/docs/formats/preferred-formats-en/
8https://www.loc.gov/standards/alto/techcenter/layout.html
9https://iiif.io/api/image/2.0/
10Commit hash: 3f49326eb077187dfe1c2a2bb15fbd74e6ab91e3
11Commit hash: 3d74acf9a28c67741b2f4f2ea7635f0aaf6f0268
12Commit hash: a66c5982c8c396206b96060e2bf837d6731a326f
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Table 1
The IIIF URL format.

Description Example

Scheme https://
Prefix www.nb.no/services/image/resolver/

Identifier (URN) URN:NBN:no-nb_digibok_2009070210001_0618/
Region (left,top,width,height) 430,432,2195,2348/

Size (width,height) 274,294/
Rotation (degrees) 0/

Filename (filename.filetype) default.jpg
Full URL https://www.nb.no/services/image/resolver/URN:NBN:no-nb_

digibok_2009070210001_0618/430,432,2195,2348/274,294/0/def
ault.jpg

256 × 256 pixels, altering the aspect ratio. CLIP resized the smallest dimension to 224, preserv-
ing the aspect ratio, then center-cropped to 224 × 224 pixels. Next, we used the corresponding
image transformer and obtained embeddings of sizes 768 (ViT and SigLIP) and 512 (CLIP).

After computing embeddings, we ingested them into a Qdrant database and used FastAPI to
create an application programming interface (API) for efÏcient querying by images, embedding
vectors, image IDs, or context-based text search. Qdrant supports fast K-nearest neighbour
search for both dense and sparse vectors. For image-based queries, we used a cosine similarity-
based HNSW index, and for context-based full-text queries, we used a dot-product-based in-
verted index for TF-IDF (details in supplement on GitHub13). We used default parameters for
all search indices. The vector database and the API are hosted on-premise, exposing only the
API to the Internet. The application also includes a frontend, implemented using Flask and
HTMX, hosted using Google Cloud Run with 512 MiB RAM and one vCPU.

3.3. Classifying based on embedding vectors

As the graphical elements stem fromNLN’s digitisation process, many segmentation anomalies
are also tagged as graphical elements. Common examples are blank pages, parts of tables,
and text. To estimate the fraction of such regions, we used HumanSignal Label Studio and
manually labelled a dataset containing 2000 images as either Blank page, Segmentation anomaly,
Illustration or photograph, Musical notation, Map, Mathematical chart or Graphical element (e.g.
initial, decorative border, etc.).

After labelling the data, we fitted regularised logistic regression models (using scikit-learn
v1.5.0 [18]) to classify images based on their embedding vectors. This can be interpreted as a
form of transfer learning, fine-tuning the last layer of the transformer model. The embedding
vector type (i.e. ViT, CLIP or SigLIP) and the complexity parameter (inverse ridge parameter)
were selected using nested cross-validationwith 20 outer folds and ten inner folds. Modelswere
selected based on a micro-averaged F1-score (the harmonic mean of micro-averaged precision
and sensitivity). We selected the complexity parameter from ten logarithmically spaced values

13https://github.com/Sprakbanken/CHR24-image-retrieval
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between 10−4 and 104. Finally, we computed the confusion matrix in the outer cross-validation
loop (the evaluation loop). The supplement describes the overall cross-validation algorithm in
Algorithms 1 and 2.

3.4. Evaluating searches

To evaluate the search, we first manually inspected some example queries before performing
a systematic evaluation on exact image retrieval. To simulate exact image retrieval scenarios,
we selected the 684 images labelled as Illustration or photograph, Map or Mathematical chart
as target images, and applied random cropping (≤ 15%, independently on all sides), rotation
(±0 − 10 ∘) and scaling (±0 − 20%, independently for width and height). Then, querying the
database with these transformed images, we evaluated the Top 𝑁 accuracy measuring whether
our application retrieved the target image in the first result (Top 1), first row (Top 5), first two
rows (Top 10) or results at all (Top 50).

4. Results

Figure 1 shows screenshots from the application14 for image searches using full-text (Fig. 1a) or
image similarity (Figs. 1b to 1d). Table 2 shows image-based query results with four different
images. For the first row, the query exists in the collection, and all models recover it as the
top result. Similarly, for the second row, all models return nautical results, and CLIP is the
only model that does not return illustrations with lighthouses. Finally, the third and fourth
rows show examples of querying with images outside of the collection, where we see that the
returned images are content-wise similar. The fourth row demonstrates an example where
CLIP embedding vectors fail, leading to irrelevant results. Furthermore, the exact image re-
trieval experiments demonstrate that our application can recover queried transformed images.
As demonstrated in Table 3, SigLIP performed slightly better than ViT and CLIP and retrieved94 % of the target images in the first two rows of the search and 97 % in all ten displayed rows.
See GitHub for code and details.

The manual image labelling15 showed that 349/2000 (17 %) of the graphical elements were
blank pages and 524/2000 (26 %) were segmentation anomalies (e.g. tables, text, etc.) — for
complete label distribution, see Fig. 2. Moreover, the logistic regression model performs well,
obtaining a cross-validated F1 score of 96 % (𝜎 = 5.1 %). From the cross-validated confusion
matrix, we see that only 66/1127 (< 6%) of all graphical elements were incorrectly classified as
either blank pages or segmentation errors, with a marked amount of incorrect classifications
being from the “Graphical element” class. We also observed that the SigLIP embeddings were
selected in all 20 outer cross-validation folds, indicating their superiority for this classification
task compared to ViT and CLIP. Fig. 2 also shows the estimated class distribution on the full
dataset.

14https://dh.nb.no/run/bildesok/
15The labels and analysis code are available on GitHub
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5. Discussion and conclusion

These promising results demonstrate that pre-trained computer vision models provide mean-
ingful embeddings. This is notable as our data consists of pre-1900 book images and differs
vastly from the training set of such models, which are typically scraped from the internet. Fur-
thermore, the results indicate that SigLIP embeddings slightly outperforms CLIP and ViT for
all tasks — even for image classification, which ViT was trained for — in line with prior results
showing that multimodal models are more robust to out-of-sample data [15].

While all models perform well for retrieval, CLIP sometimes struggled, particularly if the
object of interest was off-centre. In such cases, the object is cropped out during preprocessing
and matches will be based on the remaining image. Furthermore, the application performs
well for exact image retrieval, even with up to 30 % cropping in both directions and up to ±10 ∘
rotation. These results are promising, but more work is still needed to evaluate performance
for other degradations (e.g. simulated print and scanning artefacts). Finally, the encouraging
image classification results indicate advantages of adding this methodology to the data inges-
tion pipeline. Filtering out irrelevant elements can save up to 40 % storage and improve the
search results.

In conclusion, we found that by combining tagged graphical elements of the book digitisation
process, NLN’s IIIF endpoint and recent advances in artificial intelligence, we can create an
efÏcient image search application that facilitates exploring the library’s collection in a new
way.

6. Future work

As the current prototype image-search app only supports books pre-1900, a natural extension is
including illustration objects from all NLN’s digitised books and newspapers. Moreover, as one
use case we consider is exact image retrieval, an obvious next step is more thorough analysis of
the the application’s accuracy on this task, e.g. using additional evaluation measurements for
recall, and including domain-specific degradation (e.g. simulated halftone and scanning arte-
facts). Another avenue for future work is comparing deep learning-based similarity measures
with simpler, less computation- and storage-intensive approaches like hashing-based methods.
Additionally, we want to make the software more adaptable, ultimately creating open-source
infrastructure to further these methods’ accessibility for other ALTO-XML and IIIF collections.

Future work should explore the embeddings further, e.g. using CLIP and SigLIP for text-
based image retrieval. Additionally, performance could improve by fine-tuning the embeddings
on domain-relevant data. Moreover, we have so far only used the embeddings for image re-
trieval and classification. Using the embeddings as the base to discover clusters, automatically
tag the images or create image descriptions are, therefore, interesting potential steps. Another
important direction is digging deeper into what the models consider ”similar” through visu-
alisations and empirical experiments. Finally, because deep learning-based embeddings are
trained on datasets with known biases [3, 22, 14], examining biases in these embeddings is
crucial.
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(a) (b)

(c) (d)

Figure 1: Screenshots of the image search application: context-based search for ”kat” (old Norwegian
for cat) (a) and image-based query with a user-uploaded cat image (c). (b) and (d) show the results
when selecting an image in (a) and (c), respectively. The app also has a collapsible sidebar (not shown)
that we used for selecting SigLIP embedding vectors.
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Table 2
Example of search results using the different models

Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5
Query image Model

SigLIP

CLIP

ViT

SigLIP

CLIP

ViT

Continued on next page
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Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5
Query image Model

SigLIP

CLIP

ViT

SigLIP

CLIP

ViT

Table 3
Exact image retrieval accuracy

Accuracy Top 1 Top 5 Top 10 Top 50
Model

CLIP 492 (72 %) 596 (87 %) 613 (90 %) 638 (93 %)
SigLIP 529 (77 %) 633 (93 %) 645 (94 %) 665 (97 %)
ViT 529 (77 %) 582 (85 %) 597 (87 %) 612 (89 %)
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Dataset Train Full⋆
Label

Map 44 7692
Mathematical
chart

48 10184

Musical
notation

113 25398

Graphical
element

330 72858

Blank
page

349 66336

Segmentation
anomaly

524 110254

Illustration or
photograph

592 129867

In total 2000 422589

(a)

Map

Mathematical
chart

Musical
notation

Graphical
element

Blank page

Segmentation
anomaly

Illustration or
photograph

(b)

Figure 2: The class distribution for the manually labelled training set and estimated class distribution
for the full dataset. (a) shows absolute counts, and (b) shows label distributions for the training set
(inner) and estimated distributions for the full dataset (outer).

Table 4
Confusionmatrix for the classification based on the outer cross-validation loop validation sets; it shows
the number of elements with label 𝑎 (columns) classified as label 𝑏 (rows).

Tr
ue

cl
as
s

Se
gm

en
ta
ti
on

an
om

al
y

B
la
nk

pa
ge

G
ra
ph

ic
al

el
em

en
t

Ill
us
tr
at
io
n
or

ph
ot
og
ra
ph

M
us
ic
al

no
ta
ti
on

M
ap

M
at
he

m
at
ic
al

ch
ar
t

Predicted class

Segmentation anomaly 496 5 28 8 2 1 2
Blank page 11 339 8 1 0 0 0
Graphical element 14 2 278 15 1 0 2
Illustration or photograph 1 3 16 558 1 2 5
Musical notation 1 0 0 0 109 0 0
Map 1 0 0 2 0 41 0
Mathematical chart 0 0 0 8 0 0 39

A perfect classifier will only have nonzero entries on the diagonal.
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