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Abstract
We extract propositional conditional belief bases from multilayer perceptrons, a basic type of feedforward neural networks, and
investigate the relation between these two prevalent formalisms from knowledge representation and reasoning (KRR) and machine
learning (ML), respectively. The ultimate goal of our work is to imitate with the extracted belief base the main information flow in the
original multilayer perceptron detached from specific input data. For this, we introduce a notion of sufficient (in)activators of neurons
which reflect the most relevant connections within the multilayer perceptron that lead to the (in)activation of the subsequent neurons.
While focusing on the binary multi-class classification task, we show that our approach produces consistent belief bases from which
principled inferences can be drawn, for instance under System Z. In particular, no inferences are invented by the System Z ranking
model that are not in accordance with the initial neural network.
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1. Introduction
Neural networks [1] are formal models studied in the re-
search field of machine learning (ML) which have con-
tributed significantly to the recent success of AI. In neural
networks, input data is propagated through a network of
neurons where neurons weight the received information
and process it to the subsequent neurons. Neural networks
are used in nearly every application domain with special
abilities in data processing, pattern recognition, data mining,
and, what is in the focus of this paper, binary (multi-class)
classification [2]. A drawback of neural networks is that
they appear as a black box methodology. Usually, it is not
very transparent why input data leads to a specific output.

In contrast to neural networks, knowledge-based sys-
tems [3] from the field of knowledge representation and rea-
soning (KRR) typically provide a transparent and principled
way of drawing inferences. A frequently used inference for-
malism, System Z [4], makes use of conditionals (𝐵|𝐴) in or-
der to represent defeasible statements of the form “if𝐴 holds,
then usually 𝐵 holds, too” [5, 6]. Ranking functions 𝜅 [7]
like the System Z ranking function give such conditionals
a clear semantics by assigning (im)plausibility values to
sentences while postulating that the verification of a con-
ditional (𝐵|𝐴) is more plausible than its falsification, in
symbols 𝜅(𝐴 ∧𝐵) < 𝜅(𝐴 ∧ ¬𝐵). The 𝜅-ranks according
to System Z are gained by penalizing possible worlds for
falsifying conditionals, where the penalty points are the
greater the more specific the falsified conditionals are. Al-
ternative ranking semantics are provided by System P [8]
and c-representations [9].

In this paper, we extract conditional belief bases from a
specific type of neural networks called multilayer percep-
trons. Multilayer perceptrons are feedforward networks in
which information is always processed towards the output,
hence there are no cycles in the network. In contrast to
general feedforward networks, the neurons in multilayer

22nd International Workshop on Nonmonotonic Reasoning, November 2-4,
2024, Hanoi, Vietnam
$ marco.wilhelm@tu-dortmund.de (M. Wilhelm);
alexander.hahn@tu-dortmund.de (A. Hahn);
gabriele.kern-isberner@tu-dortmund.de (G. Kern-Isberner)
� 0000-0003-0266-2334 (M. Wilhelm); 0009-0008-6114-2594 (A. Hahn);
0000-0001-8689-5391 (G. Kern-Isberner)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribu-
tion 4.0 International (CC BY 4.0).

perceptrons are arranged to at least three fully connected
layers with neurons connected to the other neurons from
the neighboring layers. The extracted belief base reflects the
main information flow within such a multilayer perceptron.

The basic idea of our approach is to identify sets of pre-
decessors of a neuron 𝑁 the (in)activation of which is suf-
ficient to (in)activate 𝑁 . Hereby, the (in)activation of a
neuron means that an input of the multilayer perceptron
triggers the neuron more (less) than a predefined threshold,
i.e., the output value of the neuron is larger (smaller) than
this threshold. Therewith, our approach is related to the
work in [10] which aims at identifying “most influential”
neurons in neural networks, however without establishing
logical connections between these neurons.

In more detail, the main contributions of the present paper
are as follows:

• We introduce a notion of sufficient (in)activators of
neurons (Definitions 6 and 7).

• We show that sufficient (in)activators are indepen-
dent of the input of the multilayer perceptron (Propo-
sitions 2 and 3).

• Based on the notion of sufficient (in)activators, we
extract belief bases from multilayer perceptrons (Def-
inition 9). The extracted belief bases are provably
consistent with respect to ranking semantics (Propo-
sition 5).

• We use the extracted belief bases and their System Z
ranking models for binary classification and relate
their classification behavior to the direct classifica-
tion with the initial multilayer perceptrons (Propo-
sition 6).

With our approach we abstract from specific input data
and also from overlay effects of less relevant connections
in the neural networks. The most relevant connections are
formalized in form of easy to understand conditionals. Note
that establishing such formal bridges between neural- and
logic-based models is a very old enterprise and has been
pursued in the first papers on neural networks already [11].1

The rest of the paper is organized as follows. First we
recall basics on multilayer perceptrons, in particular with
respect to binary multi-class classification, and conditional

1We thank the anonymous referees for their valuable comments.
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Activation function Specification Range

Identity 𝜑(𝑥) = 𝑥 R

Heaviside step 𝜑(𝑥) =

{︃
0, 𝑥 < 0

1, 𝑥 ≥ 0
{0, 1}

Logistic function 𝜑(𝑥) =
1

1 + 𝑒−𝑥
(0, 1)

Hyperbolic tangent 𝜑(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(−1, 1)

ReLU 𝜑(𝑥) = max(0, 𝑥) R≥0

Table 1
Typical activation functions of neural networks.

reasoning based on ranking functions (Section 2). Then, we
discuss related work on extracting belief bases from multi-
layer perceptrons within a Description Logic context and
show that a naïve translation to propositional conditional
belief bases works only to a limited extent (Section 3). Even-
tually, we propose our novel approach on extracting belief
bases based on sufficient (in)activators (Section 4) and use
this approach for principled binary classification (Section 5).
We close the paper with a conclusion that points to future
work (Section 6).

2. Preliminaries
In this section, we recall preliminaries on multilayer percep-
trons with an application to binary multi-class classification
first (Section 2.1). Then, we explain basics on reasoning with
conditionals, in particular based on System Z (Section 2.2).

2.1. Multilayer Perceptrons for Binary
Multi-Class Classification

Multilayer perceptrons (MLPs) constitute a widely used type
of neural networks which expand single perceptrons to sev-
eral fully connected layers. We give a brief introduction to
neural networks in general and to MLPs in particular. Af-
terwards, we discuss their application to binary multi-class
classification.

Neural Networks Neural networks [1] are formal models
used to process information in form of data in modern AI
systems. In the original sense, neural networks are func-
tions 𝒩 : R𝑛 → R𝑚 where 𝑛 is the size of the real-valued
input vectors �⃗�, and where 𝑚 is the size of the real-valued
output 𝒩 (�⃗�). The computation of 𝒩 (�⃗�) is specified by a
weighted directed graph the nodes of which are called neu-
rons. The functionality of neurons is as follows. Neurons 𝑁
receive information encoded as real numbers 𝑦𝑁𝑖 from their
parent nodes/neurons 𝑁𝑖 ∈ pa𝑁 , or the input vector �⃗� of
the network, process this information based on an activation
function 𝜑𝑁 : R → R and possibly a bias 𝛽𝑁 ∈ R, and send
the processed information

𝑦𝑁 = 𝜑𝑁 (𝛽𝑁 +
∑︁

𝑁𝑖∈pa𝑁

𝜈𝑁𝑖,𝑁 · 𝑦𝑁𝑖)

to their child nodes/neurons. Hereby, 𝜈𝑁𝑖,𝑁 ∈ R is the
weight of the edge from 𝑁𝑖 to 𝑁 (cf. Figure 1). Neurons
without child nodes return the output of the neural network.
Typical activation functions of neural networks are shown
in Table 1. The weights of a neural network and the biases
of the neurons are usually derived from training data, i.e.,

𝑁 ▶ 𝑦𝑁𝑁2 ▶ 𝑦𝑁2

𝑁1 ▶ 𝑦𝑁1

...

𝑁𝑛 ▶ 𝑦𝑁𝑛

𝜈𝑁1,𝑁

𝜈𝑁2,𝑁

𝜈𝑁𝑛,𝑁

Figure 1: Schema of a neuron 𝑁 .

input data for which the expected output is known. Here, we
solely consider neural networks which are already trained.

Multilayer Perceptrons In neural networks, neurons
are usually assigned to layers with different functionalities.
Neurons in the first layer, the input layer, receive the input
of the network, and neurons in the last layer, the output
layer, return the output. The layers in-between are called
hidden layers. If a neural network is represented by an
acyclic directed graph, it is called a feedforward network.
In feedforward networks information is always processed
towards the output layer. Multilayer perceptrons constitute
an important subclass of feedforward networks with edges
only between adjacent layers and, taking this condition into
account, fully connected neurons. Multilayer perceptrons
have at least one hidden layer. This hidden layer (as well as
a non-linear activation function) is necessary to distinguish
data that is not linearly separable [12].

Definition 1 (Multilayer Perceptron). A multilayer percep-
tron ℳ𝜑 is a special neural network which is represented by
a directed graph (𝒱ℳ𝜑 , ℰℳ𝜑) consisting of a set of vertices

𝒱ℳ𝜑 = {𝑁𝑖,𝑗 | 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛𝑖]}, 2

the neurons in ℳ𝜑, and a set of edges

ℰℳ𝜑 = {(𝑁𝑖,𝑗 , 𝑁𝑖+1,𝑘)

| 𝑖 ∈ [𝑚− 1], 𝑗 ∈ [𝑛𝑖], 𝑘 ∈ [𝑛𝑖+1]},

where 𝑚 ∈ N≥2, and 𝑛𝑖 ∈ N for 𝑖 ∈ [𝑚]. Every edge
(𝑁𝑖,𝑗 , 𝑁𝑖+1,𝑘) ∈ ℰℳ𝜑 is assigned a real-valued weight
𝜈𝑖,𝑗,𝑘 = 𝜈𝑁𝑖,𝑗 ,𝑁𝑖+1,𝑘 , every neuron 𝑁0,𝑗 , 𝑗 ∈ [𝑛0], in the
input layer is assigned the identity function 𝑓0,𝑗 : R → R
with 𝑓0,𝑗(𝑥) = 𝑥, and every further neuron 𝑁𝑖,𝑗 with 𝑖 > 0,
𝑗 ∈ [𝑛𝑖], is assigned a function 𝑓𝑁𝑖,𝑗 : R

𝑛𝑖−1+1 → R with

𝑓𝑁𝑖,𝑗 (�⃗�) = 𝜑(𝛽𝑖,𝑗 +
∑︁

ℎ∈[𝑛𝑖−1]

𝜈𝑖−1,ℎ,𝑗 · 𝑓𝑁𝑖−1,ℎ(�⃗�)), (1)

where 𝜑 is the activation function of ℳ𝜑 and 𝛽𝑖,𝑗 ∈ R is
the bias of 𝑁𝑖,𝑗 . The input of ℳ𝜑 is any vector �⃗� ∈ R𝑛0+1

whereby the 𝑗-th component of �⃗� is passed to the neuron𝑁0,𝑗 ,
and the output of ℳ𝜑 is

ℳ𝜑(�⃗�) = (𝑓𝑁𝑚,0(�⃗�), . . . , 𝑓𝑁𝑚,𝑛𝑚
(�⃗�)) ∈ R𝑛𝑚+1.

Figure 2 shows a schema of a multilayer perceptron with
one hidden layer (𝑚 = 2). For a neuron 𝑁 ∈ ℳ𝜑, we will
denote the set of its parent nodes by pa𝑁 which will help
us to avoid indices.
2For 𝑚 ∈ N, we abbreviate [𝑚] = {0, 1, . . . ,𝑚}.



𝑁0,0

...

𝑁0,𝑖

...

𝑁0,𝑛0

𝑁1,0

...

𝑁1,𝑗

...

𝑁1,𝑛1

𝑁2,0

...

𝑁2,𝑘

...

𝑁2,𝑛2

Figure 2: Multilayer perceptron with one hidden layer.

Binary Multi-Class Classification A possible applica-
tion of neural networks in general and multilayer percep-
trons in particular is binary (multi-class) classification [2].
For instance, the input �⃗� of a multilayer perceptron ℳ𝜑

could represent medical patient data, and we could ask
for therapies that are suited to cure the patient. In the
easiest case, the neurons in the output layer of ℳ𝜑 rep-
resent the different therapies and are equipped with the
Heaviside step function as activation function 𝜑 such
that ℳ𝜑(�⃗�) ∈ {0, 1}𝑚 for some 𝑚 ∈ N. Then, 𝑦𝑖 = 1,
where 𝑦𝑖 is the outcome of neuron 𝑁𝑖 in the output layer,
can be interpreted as “the therapy 𝑁𝑖 is suited to cure the
patient represented by �⃗�,” and 𝑦1 = 0 can be understood as
the opposite.

In practice, one usually uses sigmoid functions like the lo-
gistic function (cf. Table 1) for classification, instead, which
range over the interval (0, 1) and, thus, allow for a grad-
ual answer behavior. Furthermore, the Heaviside function
cannot be used for gradient-based training because it is not
differentiable at 0 and the derivative is 0 at all other points,
while the logistics function can be differentiated any number
of times which makes it particularly suited for numerical
methods. In this paper, we equip multilayer perceptrons
with the logistic function as an activation function and de-
note this by ℳlog. Our approach works with any sigmoid
function, though. We consider the following three-valued
interpretation of the output of neurons in ℳlog .

Definition 2 ((In)active Neurons). Let ℳlog be a multilayer
perceptron, let𝑁 be a neuron in ℳlog , let �⃗� be an input vector
of ℳlog, and let 𝜏 ∈ [0, 0.5). We call 𝜏 a tolerance factor,
and say that neuron 𝑁 is (cf. (1))

• activated by �⃗� wrt. 𝜏 , or active for short, iff

𝑓𝑁 (�⃗�) ≥ 1− 𝜏,

• inactivated by �⃗� wrt. 𝜏 , or inactive for short, iff

𝑓𝑁 (�⃗�) ≤ 𝜏,

• ambiguous otherwise.

With Definition 2, we can say that an input vector �⃗�
of ℳlog is classified as an instance of class 𝒞𝑁 , represented
by the neuron 𝑁 in the output layer of ℳlog, if 𝑁 is acti-
vated by �⃗�, and �⃗� is declassified as an instance of class 𝒞𝑁

if 𝑁 is inactivated by �⃗�. Otherwise, the membership to 𝒞𝑁

is ambiguous. We give an example.

𝑁0,0

𝑁0,1

𝑁0,2

𝑁1,0

𝑁1,1

𝑁1,2

𝑁2,0

𝑁2,1

𝑁2,2

Figure 3: Multilayer perceptron from Example 1. Edges with
negative weights are dashed.

𝑁𝑖,𝑗 𝜈𝑖,𝑗,0 𝜈𝑖,𝑗,1 𝜈𝑖,𝑗,2

𝑁0,0 −1.27 0.91 −0.44
𝑁0,1 1.23 0.81 0.27
𝑁0,2 −0.91 −0.09 1.96

𝑁1,0 1.62 −0.96 1.31
𝑁1,1 −1.19 1.15 1.46
𝑁1,2 0.14 −1.18 −0.14

Table 2
Weights of the multilayer perceptron from Example 1.

Example 1. We consider the multilayer perceptron ℳex
log

from Figure 3 with the edge weights from Table 2 as a running
example. Further, we assume that the neurons in ℳex

log are
unbiased (𝛽𝑁𝑖,𝑗 = 0), and let 𝜏 = 0.3. For instance, for the
input vector �⃗� = (0.9, 0.8, 0.1), we obtain

𝑦𝑁2,2 ≈ 0.844

so that �⃗� is classified as an instance of class 𝒞𝑁2,2 when the
tolerance factor 𝜏 is equal to or greater than 0.156.

Besides the fact that sigmoid functions like the logistic
function are common activation functions for classification
tasks, we will utilize in some proofs that logistic functions
are bounded between 0 and 1 (cf. the proofs of Proposi-
tions 2 and 3).

Definition 3 (Classification Scheme). Let ℳlog be a multi-
layer perceptron with the logistic function as activation func-
tion, and let 𝜏 be a tolerance factor. Then, we call (ℳlog, 𝜏)
a classification scheme.

Within our approach on extracting conditional belief
bases from multilayer perceptrons, we will focus on the
task of binary multi-class classification.

2.2. Conditionals and System Z
Within the field of nonmonotonic reasoning, conditionals [13]
constitute a widely used representation of defeasible knowl-
edge resp. beliefs. Here, we consider conditionals defined
over a propositional language and interpret them via so-
called ranking functions, in particular the System Z ranking
model.



Conditional Reasoning Let ℒ(Σ) be a propositional lan-
guage defined over a finite signature Σ as usual.3 A condi-
tional (𝐵|𝐴) with 𝐴,𝐵 ∈ ℒ(Σ) is a formal representation
of the defeasible statement: “If 𝐴 holds, then usually 𝐵
holds, too.” Finite sets of conditionals serve as belief bases.
The semantics of conditionals is based on possible worlds.
Here, possible worlds 𝜔 ∈ Ω(Σ) are the propositional inter-
pretations of ℒ(Σ) represented as complete conjunctions
of literals. That is, every atom from Σ occurs in a possible
world once, either positive or negated. A ranking func-
tion 𝜅 : Ω(Σ) → N0 ∪ {∞} [7] maps possible worlds to a
degree of implausibility while satisfying the normalization
condition 𝜅−1(0) ̸= ∅. The higher the rank 𝜅(𝜔), the less
plausible the possible world 𝜔 is. Hence, 𝜅−1(0) is the set
of the most plausible possible words. Ranking functions are
extended to propositions via

𝜅(𝐴) = min
𝜔∈Ω(Σ): 𝜔|=𝐴

𝜅(𝜔)

and accept a conditional (𝐵|𝐴) if 𝜅(𝐴𝐵) < 𝜅(𝐴𝐵). A
ranking function 𝜅 is a ranking model of a belief base Δ if 𝜅
accepts all conditionals in Δ. If Δ has a ranking model, then
it is called consistent. Ranking models 𝜅 of Δ yield a non-
monotonic inference relation between Δ and conditionals
(𝐵|𝐴) in the following sense:

Δ |∼𝜅(𝐵|𝐴) iff 𝜅(𝐴𝐵) < 𝜅(𝐴𝐵) or 𝜅(𝐴) = ∞.

System Z A sophisticated ranking model of consistent
belief bases is provided by System Z [4] which is based
on the notion of tolerance. A conditional (𝐵|𝐴) is toler-
ated by a belief base Δ if there is a possible world 𝜔 such
that 𝜔 |= 𝐴𝐵 (“the conditional (𝐵|𝐴) is verified in 𝜔”)
and 𝜔 |= 𝐴′𝐵′ ∨𝐴′ for all conditionals (𝐵′|𝐴′) in Δ (“the
conditional (𝐵′|𝐴′) is verified or not applicable in 𝜔”). An
ordered partition (Δ0,Δ1, . . . ,Δ𝑚) of Δ is called a toler-
ance partition of Δ if every conditional in Δ0 is tolerated
by Δ and (Δ1, . . . ,Δ𝑚) is a tolerance partition of Δ ∖Δ0.
It is a well-known result that Δ is consistent iff Δ has a
tolerance partition. If the partitioning sets are chosen in-
clusion maximally, beginning from Δ0, then the resulting
tolerance partition 𝑍(Δ) = (Δ0,Δ1, . . . ,Δ𝑚) is unique
and called Z-partition of Δ. Via the Z ranks 𝑍Δ(𝛿) = 𝑖 of
conditionals 𝛿 ∈ Δ where 𝑖 is the index of the partitioning
set from𝑍(Δ) with 𝛿 ∈ Δ𝑖, the Z-partition of Δ allows one
to define the following System Z ranking model of consistent
belief bases Δ:

𝜅𝑍
Δ(𝜔) =

{︃
0 falΔ(𝜔) = ∅
1 + max𝛿∈falΔ(𝜔) 𝑍Δ(𝛿) otherwise

,

where 𝜔 ∈ Ω(Σ), and falΔ(𝜔) = {(𝐵|𝐴) ∈ Δ𝜔 |= 𝐴𝐵}
is the set of conditionals falsified in 𝜔.

Example 2. A typical example to illustrate System Z is the
Tweety example. Let Δ = {𝛿1, 𝛿2, 𝛿3} with

𝛿1 = (𝑏|𝑝), 𝛿2 = (𝑓 |𝑏), 𝛿3 = (𝑓 |𝑝),

state that penguins like Tweety are usually birds and birds
usually fly, but penguins usually do not fly. The System Z
tolerance partition of Δ is 𝑍(Δ) = (Δ0,Δ1) with

Δ0 = {𝛿2}, Δ1 = {𝛿1, 𝛿3}.
3In order to shorten logical expressions, we use the abbreviations 𝐴𝐵
for conjunctions𝐴∧𝐵 and𝐴 for negations¬𝐴where𝐴,𝐵 ∈ ℒ(Σ).

The resulting System Z ranking model is

𝜅𝑍
Δ(𝜔) =

⎧⎪⎨⎪⎩
0, 𝜔 ∈ {𝑏𝑓𝑝, 𝑏𝑓𝑝, 𝑏𝑓𝑝}
1, 𝜔 ∈ {𝑏𝑓𝑝, 𝑏𝑓𝑝}
2, 𝜔 ∈ {𝑏𝑓𝑝, 𝑏𝑓𝑝, 𝑏𝑓𝑝}

.

System Z coincides with rational closure [14].

3. Related Work and Synaptic
Conditionals

In this section, we briefly recall the extraction of beliefs from
neural networks as presented in [15] and provide a naïve
translation of this approach to propositional conditionals.
We also discuss why this naïve translation is too simple
to capture the essential streams of information of a neural
network.

In [15], an extraction of belief bases from neural net-
works is proposed where the belief bases are defined over
defeasible subsumptions of Description Logic concepts.4

Neurons 𝑁𝑖 are represented as atomic concepts 𝐶𝑖, and an
edge from a neuron𝑁𝑖 to a neuron𝑁𝑗 is represented as the
defeasible subsumption T(𝐶𝑖) ⊑ 𝐶𝑗 , expressing that input
vectors �⃗� that typically activate𝑁𝑖 also activate𝑁𝑗 . This no-
tion of representing the structure of a neural network using
uncertain connections between atoms can be carried over
to propositional conditional logic, utilizing atomic proposi-
tions 𝐴𝑖 to represent neurons and conditionals (𝐴𝑖|𝐴𝑗) to
encode connections between them. Then, a (partial) possi-
ble world 𝜔 encodes a possible state of the neural network,
with 𝜔 |= 𝐴𝑖 (𝜔 |= 𝐴𝑖) meaning that the neuron 𝑁𝑖 is ac-
tive (inactive) in the neural network. From another point of
view, 𝜔 can be seen as a representation of all input vectors �⃗�
that cause the same neurons to be (in)active. Together, the
possible worlds in Ω(Σ) partition the set of input vectors
based on their (abstracted) activation of neurons.

We formalize the extraction of propositional conditionals
in analogy to the defeasible subsumptions in [15] now. For
this, and in the rest of this paper, we will use the same
symbol𝑁 to denote both a neuron in the neural network and
the atomic proposition representing the neuron. Moreover,

pa+𝑁 = {𝑁 ′ ∈ pa𝑁 | 𝜈𝑁′,𝑁 > 0},

pa−𝑁 = {𝑁 ′ ∈ pa𝑁 | 𝜈𝑁′,𝑁 < 0},

denote the sets of the parent nodes 𝑁 ′ of 𝑁 within a neu-
ral network 𝒩 with positive and negative weights 𝜈𝑁′,𝑁 ,
respectively.

Definition 4 (Synaptic Conditionals). Let𝒩 be a neural net-
work. Then we define for each neuron 𝑁 ∈ 𝒩 the backward
synaptic conditionals as follows:

Δ+
←(𝑁) =

{︀
(𝑁 ′|𝑁) | 𝑁 ′ ∈ pa+𝑁

}︀
,

Δ−←(𝑁) =
{︀
(𝑁 ′|𝑁) | 𝑁 ′ ∈ pa−𝑁

}︀
.

Analogously, we define forward synaptic conditionals:

Δ+
→(𝑁) =

{︀
(𝑁 |𝑁 ′) | 𝑁 ′ ∈ pa+𝑁

}︀
,

Δ−→(𝑁) =
{︀
(𝑁 |𝑁 ′) | 𝑁 ′ ∈ pa−𝑁

}︀
.

Note that backward synaptic conditionals are abductive
in nature. The idea of backward synaptic conditionals is that
4Please see [16] for an introduction to Description Logics.



if a neuron 𝑁 is active, the positive inputs of 𝑁 must have
outweighed the negative inputs of 𝑁 (modulo the bias 𝛽𝑁 ).
Therefore, it is plausible to assume that parents with positive
connections are generally active, while parents with nega-
tive connections are generally inactive, even if exceptions
are possible (and likely). Forward synaptic conditionals, on
the other hand, are predictive: Given that a neuron 𝑁 has
an active parent with a positive connection (and without
any additional information about the other parents), it is
plausible to assume that this positive influence will cause𝑁
to be active as well.

We can now define belief bases containing synaptic con-
ditionals.

Definition 5 (Synaptic Belief Bases). Let 𝒩 be a neural
network. We define the backward/forward synaptic belief
bases as the union of all synaptic conditionals that share the
same direction, i.e.,

Δ←𝒩 =
⋃︁

𝑁∈𝒩

(︀
Δ+
←(𝑁) ∪Δ−←(𝑁)

)︀
,

Δ→𝒩 =
⋃︁

𝑁∈𝒩

(︀
Δ+
→(𝑁) ∪Δ−→(𝑁)

)︀
.

The synaptic belief bases capture the information that
is immediately available from the structure of the neural
network, namely the positive or negative influence neurons
have on each other based on the trained synaptic weights.
From a formal perspective, the direction of the conditionals
is arbitrary. As long as the two directions are not mixed, the
synaptic belief base extracted from a multilayer perceptron
is consistent.

Proposition 1. For every multilayer perceptron ℳ𝜑, the
synaptic belief bases Δ←ℳ𝜑

and Δ→ℳ𝜑
are consistent.

Proof. We prove the proposition for Δ←ℳ𝜑
by showing that

the layers of the multilayer perceptron ℳ𝜑 induce a toler-
ance partition of Δ←ℳ𝜑

. Let (𝑚+ 1) ∈ N be the number of
layers in ℳ𝜑 and let 𝒩𝑖 be the set of neurons in the 𝑖-th
layer of ℳ𝜑. Then, (Δ0, . . . ,Δ𝑚−1) defined by

Δ𝑘 = {(𝑁 ′˙ |𝑁) ∈ Δ←ℳ | 𝑁 ∈ 𝒩𝑘+1}

partitions Δ←ℳ𝜑
. Now, we show that every conditional

in Δ𝑘 is tolerated by
⋃︀

𝑙 : 𝑘≤𝑙<𝑚 Δ𝑙. Let Δ𝑘 and𝑁 ∈ 𝒩𝑘+1

be arbitrary but fixed. We choose a possible world 𝜔
with the following properties: (1) 𝜔 |= 𝑁 , (2) 𝜔 |= 𝑁 ′

if (𝑁 ′|𝑁) ∈ Δ𝑘 for every 𝑁 ′ ∈ 𝒩𝑘 , and (3) 𝜔 |= 𝑁 ′′ for
every 𝑁 ′′ ∈ 𝒩𝑝 with 𝑘 < 𝑝 ≤ 𝑚 and 𝑁 ̸= 𝑁 ′′. It can be
quickly checked that all three properties concern different
neurons and, hence, can be satisfied by 𝜔 at the same time.
The properties (1) and (2) together ensure that 𝜔 verifies all
conditionals with antecedent𝑁 ; property (3) ensures that 𝜔
is indifferent with respect to all other conditionals in all Δ𝑙

with 𝑘 ≤ 𝑙 < 𝑚. Since Δ𝑘 and 𝑁 were chosen arbitrarily,
this proves that every conditional in every Δ𝑘 is tolerated
by all Δ𝑙 (with 0 ≤ 𝑘 ≤ 𝑙 < 𝑚).

The proof for Δ→ℳ is analogous; only the order of the
partition needs to be reversed.

In contrast to [15], which makes use of fuzzy Description
Logics, the synaptic belief bases are purely qualitative repre-
sentations of the connections in neural networks. Naturally,
this means that all information about how strong individual
connections between neurons are missing. The following
example shows that this can lead to different inferences.

Example 3. We consider the multilayer perceptron ℳex
log

from Example 1. The synaptic belief bases extracted from
ℳex

log are

Δ←ℳex
log

= {(𝑁0,0|𝑁1,0), (𝑁0,1|𝑁1,0), (𝑁0,2|𝑁1,0),

(𝑁0,0|𝑁1,1), (𝑁0,1|𝑁1,1), (𝑁0,2|𝑁1,1),

(𝑁0,0|𝑁1,2), (𝑁0,1|𝑁1,2), (𝑁0,2|𝑁1,2),

(𝑁1,0|𝑁2,0), (𝑁1,1|𝑁2,0), (𝑁1,2|𝑁2,0),

(𝑁1,0|𝑁2,1), (𝑁1,1|𝑁2,1), (𝑁1,2|𝑁2,1),

(𝑁1,0|𝑁2,2), (𝑁1,1|𝑁2,2), (𝑁1,2|𝑁2,2)},

and

Δ→ℳex
log

= {(𝑁1,0|𝑁0,0), (𝑁1,1|𝑁0,0), (𝑁1,2|𝑁0,0),

(𝑁1,0|𝑁0,1), (𝑁1,1|𝑁0,1), (𝑁1,2|𝑁0,1),

(𝑁1,0|𝑁0,2), (𝑁1,1|𝑁0,2), (𝑁1,2|𝑁0,2),

(𝑁2,0|𝑁1,0), (𝑁2,1|𝑁1,0), (𝑁2,2|𝑁1,0),

(𝑁2,0|𝑁1,1), (𝑁2,1|𝑁1,1), (𝑁2,2|𝑁1,1),

(𝑁2,0|𝑁1,2), (𝑁2,1|𝑁1,2), (𝑁2,2|𝑁1,2)}.

In both cases (backward/forward), the Z-partition collapses:

𝑍(Δ←ℳex
log

) = (Δ←ℳex
log

), 𝑍(Δ→ℳex
log

) = (Δ→ℳex
log

),

and we have, with 𝜓(𝑁2,2) = 𝑁0,0 ∧𝑁0,1 ∧𝑁0,2,

Δ |̸∼𝜅𝑍
Δ
(𝑁2,2|𝜓(𝑁2,2))

regardless of whether Δ = Δ←ℳex
log

or Δ = Δ→ℳex
log

because

𝜅𝑍
Δ(𝑁2,2 ∧ 𝜓(𝑁2,2)) = 1 ̸< 0 = 𝜅𝑍

Δ(𝑁2,2 ∧ 𝜓(𝑁2,2))

for Δ = Δ←ℳex
log

, and

𝜅𝑍
Δ(𝑁2,2 ∧ 𝜓(𝑁2,2)) = 1 ̸< 1 = 𝜅𝑍

Δ(𝑁2,2 ∧ 𝜓(𝑁2,2))

for Δ = Δ→ℳex
log

. Thus, In both cases this contradicts the
fact that the input vector �⃗� = (0.9, 0.8, 0.1) triggers the
neurons 𝑁0,0, 𝑁0,1, and 𝑁0,2 and is classified as an instance
of 𝒞𝑁2,2 by ℳex

log (cf. Example 1). Hence, we come to different
conclusions if we either classify �⃗� = (0.9, 0.8, 0.1) by ℳex

log

directly or classify �⃗� based on the synaptic belief bases.

The example above shows that belief bases consisting
of synaptic conditionals (only) are too basic to give any
guarantees with respect to reasoning behavior when using
System Z. It is to be expected that a qualitative belief base
cannot provide inferences on the same level of detail like
the original neural network. The example also shows that
the belief base introduces new inferences which cannot be
obtained from the neural network. This can be considered
undesirable. Therefore, in order to make better use of the
quantitative information learned by the neural network, we
make the extracted conditionals more complex to capture
relevant influences among the neurons better in the next
section.

4. Sufficient (In)activators for Belief
Base Extraction

Now, we propose a more sophisticated approach than synap-
tic conditionals for extracting conditional belief bases from



multilayer perceptrons. On the one hand, this means an ab-
straction from specific input data to generalized defeasible
rules, here conditionals. On the other hand, the embedding
of the essential information flow of multilayer perceptrons
into a logical framework allows us to draw principled infer-
ences of verifiable quality.

4.1. Basic Idea and Preconditions
The basic idea of our method is to extract conditionals
𝛿𝜏,+𝑁 = (𝑁 |𝜓𝜏,+

𝑁 ) from a multilayer perceptron ℳlog

where the consequence 𝑁 refers to a neuron from ℳlog

and the premise 𝜓𝜏,+
𝑁 to sets of parent nodes of 𝑁 which

are (in combination) “most relevant” for the activation of𝑁 .
Relevance here means that the conditional (𝑁 |𝜓𝜏,+

𝑁 ) is ef-
fective, i.e., 𝜓𝜏,+

𝑁 is true, only if it is guaranteed that the
neuron 𝑁 is sufficiently highly activated. Hence, it is reli-
ably justified to infer 𝑁 . Analogously, we extract condition-
als 𝛿𝜏,−𝑁 = (𝑁 |𝜓𝜏,−

𝑁 ) wrt. the inactivation of𝑁 . The “most
relevant” parents nodes of neurons in ℳlog are identified
based on the notion of sufficient (in)activators.

We assume that the input of the multilayer percep-
tron ℳlog is normalized to �⃗� ∈ [0, 1]𝑛 and that the activa-
tion function used in ℳlog is the logistic function which
ensures that the output of all neurons in ℳlog is within the
range [0, 1] again. Given a tolerance factor 𝜏 , this allows for
an interpretation of the activation of all neurons in ℳlog

as in Definition 2.

4.2. Sufficient (In)activators
Based on the concept of active and inactive neurons, we de-
fine (sets of) parent nodes of neurons in a multilayer percep-
tron ℳlog which are sufficient to activate resp. deactivate
the neurons, independent of the specific input vector �⃗�.

Definition 6 (Sufficient Activator). Let (ℳlog, 𝜏) be a
classification scheme. Further, let 𝑁 be a neuron in ℳlog

from a hidden layer or the output layer. We call a tuple
(𝐴+, 𝐴−) ⊆ pa2𝑁 with 𝐴+ ∩ 𝐴− = ∅ a sufficient acti-
vator of 𝑁 wrt. 𝜏 , if the activation of the neurons in 𝐴+ and
the inactivation of the neurons in 𝐴− implies the activation
of 𝑁 ; formally, if 𝑦𝑁′ ≥ 1− 𝜏 for 𝑁 ′ ∈ 𝐴+ and 𝑦𝑁′ ≤ 𝜏
for 𝑁 ′ ∈ 𝐴− implies

𝜑(𝛽𝑁 +
∑︁

𝑁′∈pa𝑁

𝜈𝑁′,𝑁 · 𝑦𝑁′) ≥ 1− 𝜏.

We denote the set of the sufficient activators of 𝑁 wrt. 𝜏
by 𝒮𝒜𝜏 (𝑁).

The idea of the sufficient activators in 𝒮𝒜𝜏 (𝑁) is that
the output of the neurons𝑁 ′ ∈ pa𝑁 with𝑁 ′ /∈ 𝐴+∪𝐴− is
irrelevant for the activation of𝑁 , regardless of the concrete
input of ℳlog , as captured in the next proposition.

Proposition 2. Let (ℳlog, 𝜏) be a classification scheme,
and let 𝑁 be a neuron in ℳlog from a hidden layer or the
output layer. Then, (𝐴+, 𝐴−) ⊆ pa2𝑁 with 𝐴+ ∩ 𝐴− = ∅
is a sufficient activator of 𝑁 iff

𝜑(𝛽𝑁 + (1− 𝜏) ·
∑︀

𝑁′∈pa+
𝑁
∩𝐴+ 𝜈𝑁′,𝑁

+ 𝜏 ·
∑︀

𝑁′∈pa−
𝑁
∩𝐴− 𝜈𝑁′,𝑁

+
∑︀

𝑁′∈pa−
𝑁
∖𝐴− 𝜈𝑁′,𝑁 ) ≥ 1− 𝜏.

(2)

Proof. (⇐) Assume that (2) and 𝑦𝑁′ ≥ 1− 𝜏 for 𝑁 ′ ∈ 𝐴+

and 𝑦𝑁′ ≤ 𝜏 for 𝑁 ′ ∈ 𝐴′ hold. Then,

𝜑(𝛽𝑁 +
∑︀

𝑁′∈pa𝑁
𝜈𝑁′,𝑁 · 𝑦𝑁′)

= 𝜑(𝛽𝑁 +
∑︀

𝑁′∈pa+
𝑁
∩𝐴+ 𝜈𝑁′,𝑁 · 𝑦𝑁′

+
∑︀

𝑁′∈pa+
𝑁
∖𝐴+ 𝜈𝑁′,𝑁 · 𝑦𝑁′

+
∑︀

𝑁′∈pa−
𝑁
∩𝐴− 𝜈𝑁′,𝑁 · 𝑦𝑁′

+
∑︀

𝑁′∈pa−
𝑁
∖𝐴− 𝜈𝑁′,𝑁 · 𝑦𝑁′)

≥ 𝜑(𝛽𝑁 +(1− 𝜏) ·
∑︀

𝑁′∈pa+
𝑁
∩𝐴+ 𝜈𝑁′,𝑁

+𝜏 ·
∑︀

𝑁′∈pa−
𝑁
∩𝐴− 𝜈𝑁′,𝑁

+
∑︀

𝑁′∈pa−
𝑁
∖𝐴− 𝜈𝑁′,𝑁 )

≥ 1− 𝜏.

Hereby, we used
∑︀

𝑁′∈pa+
𝑁
∖𝐴+ 𝜈𝑁′,𝑁 · 𝑦𝑁′ ≥ 0. Thus,

(𝐴+, 𝐴−) is a sufficient activator of 𝑁 .
(⇒) We prove the contraposition. Assume that

𝜑(𝛽𝑁 + (1− 𝜏) ·
∑︁

𝑁′∈pa+
𝑁
∩𝐴+

𝜈𝑁′,𝑁

+𝜏 ·
∑︁

𝑁′∈pa−
𝑁
∩𝐴−

𝜈𝑁′,𝑁 +
∑︁

𝑁′∈pa−
𝑁
∖𝐴−

𝜈𝑁′,𝑁 ) < 1− 𝜏

holds. We have to show that there is 𝑦𝑁′ ∈ [0, 1] for 𝑁 ′ ∈
pa𝑁 with 𝑦𝑁′ ≥ 1 − 𝜏 for 𝑁 ′ ∈ 𝐴+ and 𝑦𝑁′ ≤ 𝜏 for
𝑁 ′ ∈ 𝐴− such that

𝜑(𝛽𝑁 +
∑︁

𝑁′∈pa𝑁

𝜈𝑁′,𝑁 · 𝑦𝑁′) < 1− 𝜏.

With

𝑦𝑁′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1− 𝜏 if 𝑁 ′ ∈ pa+𝑁 ∩𝐴+

0 if 𝑁 ′ ∈ pa+𝑁 ∖𝐴+

𝜏 if 𝑁 ′ ∈ pa−𝑁 ∩𝐴−

1 if 𝑁 ′ ∈ pa−𝑁 ∖𝐴−

0 if 𝑁 ′ ∈ pa𝑁 ∖ (pa+𝑁 ∪ pa−𝑁 )

it follows that

𝜑(𝛽𝑁 +
∑︀

𝑁′∈pa𝑁
𝜈𝑁′,𝑁 · 𝑦𝑁′)

= 𝜑(𝛽𝑁 +
∑︀

𝑁′∈pa+
𝑁
∩𝐴+ 𝜈𝑁′,𝑁 · 𝑦𝑁′

+
∑︀

𝑁′∈pa+
𝑁
∖𝐴+ 𝜈𝑁′,𝑁 · 𝑦𝑁′

+
∑︀

𝑁′∈pa−
𝑁
∩𝐴− 𝜈𝑁′,𝑁 · 𝑦𝑁′

+
∑︀

𝑁′∈pa−
𝑁
∖𝐴− 𝜈𝑁′,𝑁 · 𝑦𝑁′)

= 𝜑(𝛽𝑁 +(1− 𝜏) ·
∑︀

𝑁′∈pa+
𝑁
∩𝐴+ 𝜈𝑁′,𝑁

+𝜏 ·
∑︀

𝑁′∈pa−
𝑁
∩𝐴− 𝜈𝑁′,𝑁

+
∑︀

𝑁′∈pa−
𝑁
∖𝐴− 𝜈𝑁′,𝑁 )

< 1− 𝜏,

which finishes the proof. Note that the choice of 𝑦𝑁′ = 0 in
case of𝑁 ′ ∈ pa𝑁 ∖ (pa+𝑁 ∪pa−𝑁 ) is not mandatory because
𝜈𝑁′,𝑁 = 0 holds in this case anyway.

In this proof of Proposition 2 we have exploited that the
logistic function is non-negative. If one wants to apply
similar techniques to arbitrary sigmoid functions which are
not necessarily non-negative but bounded by (𝑎, 𝑏) ⊂ ℛ
one can rewrite 𝜑(𝛽𝑁 +

∑︀
𝑁′∈pa𝑁

𝜈𝑁′,𝑁 ·𝑦𝑁′) beforehand
to

𝜑𝑁 ((𝑏− 𝑎)(𝛽′𝑁 +
∑︁

𝑁′∈pa𝑁

𝜈𝑁′,𝑁 · 𝑦′𝑁′))

with 𝛽′𝑁 = 1
𝑏−𝑎

· (𝛽𝑁 + 𝑎 ·
∑︀

𝑁𝑖∈pa𝑁
𝜈𝑁′,𝑁 ) and 𝑦′𝑁′ =

𝑦𝑁′−𝑎

𝑏−𝑎
where 𝑦′𝑁′ is bounded by (0, 1) for all 𝑁𝑖 ∈ pa𝑁 .



Note that in this case the thresholds for neurons being
(in)active have to be adjusted from 1− 𝜏 and 𝜏 to 𝑏− 𝜏 and
𝑎+ 𝜏 as well, now with 𝜏 ∈ [0, 𝑏−𝑎

2
).

Proposition 2 can be used to compute sufficient activators.
For a neuron 𝑁 one generates each pair (𝐴+, 𝐴−) with
𝐴+ ∈ pa+𝑁 and 𝐴− ∈ pa−𝑁 and tests whether (2) holds or
not.

Example 4. We consider the multilayer perceptron ℳex
log

from Example 1 (cf. Table 2) and the tolerance factor 𝜏 = 0.3.
Then, for instance, ({𝑁0,0, 𝑁0,1}, ∅) is a sufficient activator
of 𝑁1,1 because

𝜑(0.7 · (0.91 + 0.81)− 0.09) ≈ 0.753 ≥ 0.7,

where 𝜑 is the logistic function (cf. Table 1). Note that
({𝑁0,0}, ∅) is not a sufficient activator of 𝑁1,1, instead, be-
cause

𝜑(0.7 · (0.91)− 0.09) ≈ 0.633 < 0.7.

Analogously to sufficient activators, we can define suffi-
cient inactivators.

Definition 7 (Sufficient Inactivator). Let (ℳlog, 𝜏) be a
classification scheme, and let𝑁 be a neuron in ℳ from a hid-
den layer or the output layer. We call a tuple (𝐼+, 𝐼−) ⊆ pa2𝑁
with 𝐼+ ∩ 𝐼− = ∅ a sufficient inactivator of 𝑁 wrt. 𝜏 if,
the activation of the neurons in 𝐼+ and the inactivation of
the neurons in 𝐼− implies the inactivation of 𝑁 ; formally, if
𝑦𝑁′ ≥ 1−𝜏 for𝑁 ′ ∈ 𝐼+ and 𝑦𝑁′ ≤ 𝜏 for𝑁 ′ ∈ 𝐼− implies

𝜑(𝛽𝑁 +
∑︁

𝑁′∈pa(𝑁)

𝜈𝑁′,𝑁 · 𝑦𝑁′) ≤ 𝜏.

We denote the set of the sufficient inactivators of 𝑁 wrt. 𝜏
by 𝒮ℐ𝜏 (𝑁).

Similar to sufficient activators, the idea of sufficient in-
activators (𝐼+, 𝐼−) of neurons 𝑁 is that the output of the
neurons𝑁 ′ ∈ pa𝑁 with𝑁 ′ /∈ 𝐼+ ∪ 𝐼− is irrelevant for the
inactivation of 𝑁 , regardless of the concrete input of ℳlog .

Proposition 3. Let (ℳlog, 𝜏) be a classification scheme,
and let 𝑁 be a neuron in ℳlog from a hidden layer or the
output layer. Then, (𝐼+, 𝐼−) ⊆ pa2𝑁 with 𝐼+ ∩ 𝐼− = ∅ is a
sufficient inactivator of 𝑁 iff

𝜑(𝛽𝑁 + 𝜏 ·
∑︀

𝑁′∈pa+
𝑁
∩𝐼− 𝜈𝑁′,𝑁

+
∑︀

𝑁′∈pa+
𝑁
∖𝐼− 𝜈𝑁′,𝑁

+ (1− 𝜏) ·
∑︀

𝑁′∈pa−
𝑁
∩𝐼+ 𝜈𝑁′,𝑁 ) ≤ 𝜏.

(3)

Proof. The proof is similar to the proof of Proposition 2. For
the direction (⇐) note that

∑︀
𝑁′∈pa−

𝑁
∖𝐼+ 𝜈𝑁′,𝑁 · 𝑦𝑁′ ≤ 0.

For the proof of the contraposition of (⇒), we select

𝑦𝑁′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜏 if 𝑁 ′ ∈ pa+𝑁 ∩ 𝐼−

1 if 𝑁 ′ ∈ pa+𝑁 ∖ 𝐼−

1− 𝜏 if 𝑁 ′ ∈ pa−𝑁 ∩ 𝐼+

0 if 𝑁 ′ ∈ pa−𝑁 ∖ 𝐼+

0 if 𝑁 ′ ∈ pa𝑁 ∖ (pa+𝑁 ∪ pa−𝑁 )

Again, this proposition can be used to compute sufficient
inactivators as the next example shows.

Example 5. Again, we consider the multilayer perceptron
ℳex

log from Example 1 (cf. Table 2) and the tolerance fac-
tor 𝜏 = 0.3. Then, ({𝑁0,0, 𝑁0,2}, {𝑁0,1}) is a sufficient
inactivator of 𝑁1,0 because

𝜑(0.7 · (−1.27− 0.91) + 0.3 · 1.23) ≈ 0.239 ≤ 0.3,

where 𝜑 is the logistic function (cf. Table 1). Note that
({𝑁0,0, 𝑁0,2}, ∅) is not a sufficient inactivator of 𝑁1,0 be-
cause

𝜑(0.7 · (−1.27− 0.91) + 1.23) ≈ 0.427 > 0.3.

For tuples of sets (𝑆1, 𝑆2) and (𝑇1, 𝑇2) we write
(𝑆1, 𝑆2) ⊑ (𝑇1, 𝑇2) iff 𝑆1 ⊆ 𝑇1 and 𝑆2 ⊆ 𝑇2. Obvi-
ously, if (𝐴+, 𝐴−) is a sufficient activator of 𝑁 and, for
(𝐴′+, 𝐴′−) ∈ pa(𝑁)2, (𝐴+, 𝐴−) ⊑ (𝐴′+, 𝐴′−) holds,
then (𝐴′+, 𝐴′−) is a sufficient activator of𝑁 , too. A similar
result holds for sufficient inactivators.

Proposition 4. Let (ℳlog, 𝜏) be a classification scheme,
and let 𝑁 be a neuron in ℳlog from a hidden layer or the
output layer. Then,

• if (𝐴+, 𝐴−) is a sufficient activator of 𝑁 , then
(𝐴′+, 𝐴′−) ∈ pa2𝑁 with (𝐴+, 𝐴−) ⊑ (𝐴′+, 𝐴′−)
is a sufficient activator of 𝑁 , too,

• if (𝐼+, 𝐼−) is a sufficient inactivator of 𝑁 , then
(𝐼 ′+, 𝐼 ′−) ∈ pa2𝑁 with (𝐼+, 𝐼−) ⊑ (𝐼 ′+, 𝐼 ′−) is
a sufficient inactivator of 𝑁 , too.

Proof. Let (𝐴+, 𝐴−) be a sufficient activator of 𝑁 , and let
(𝐴′+, 𝐴′−) ∈ pa2𝑁 with (𝐴+, 𝐴−) ⊑ (𝐴′+, 𝐴′−). Further,
let 𝑦𝑁′ ≥ 1− 𝜏 for 𝑁 ′ ∈ 𝐴′+ and 𝑦𝑁′ ≤ 𝜏 for 𝑁 ′ ∈ 𝐴′−.
From𝐴+ ⊆ 𝐴′+ and𝐴− ⊆ 𝐴′− it follows that 𝑦𝑁′ ≥ 1−𝜏
for 𝑁 ′ ∈ 𝐴+ and 𝑦𝑁′ ≤ 𝜏 for 𝑁 ′ ∈ 𝐴− holds as well.
Then, because (𝐴+, 𝐴−) is a sufficient activator,

𝜑(𝛽𝑁 +
∑︁

𝑁′∈pa𝑁

𝜈𝑁′,𝑁 · 𝑦𝑁′) ≥ 1− 𝜏.

The proof for sufficient inactivators is analogous.

Proposition 4 suggests to define minimal sufficient
(in)activators.

Definition 8 (Minimal Sufficient (In)activators). Let
(ℳlog, 𝜏) be a classification scheme, and let 𝑁 be a neuron
in ℳlog from a hidden layer or the output layer. Then,

• A sufficient activator (𝐴+, 𝐴−) of𝑁 is minimal if no
(𝐴′+, 𝐴′−) ∈ pa2𝑁 with (𝐴′+, 𝐴′−) ⊑ (𝐴+, 𝐴−)
and (𝐴′+, 𝐴′−) ̸= (𝐴+, 𝐴−) is a sufficient activator
of 𝑁 ,

• A sufficient inactivator (𝐼+, 𝐼−) of 𝑁 is minimal if
no (𝐼 ′+, 𝐼 ′−) ∈ pa2𝑁 with (𝐼+, 𝐼−) ⊑ 𝐼 ′+, 𝐼 ′−)
and (𝐼+, 𝐼−) ̸= (𝐼 ′+, 𝐼 ′−) is a sufficient inactivator
of 𝑁 .

We denote the set of the minimal sufficient activators of 𝑁
wrt. 𝜏 with 𝒮𝒜𝜏

min(𝑁) and the set of the minimal sufficient
inactivators of 𝑁 wrt. 𝜏 with 𝒮ℐ𝜏

min(𝑁).

We consider our running example.

Example 6. The minimal sufficient (in)activators of the neu-
rons in ℳex

log from Example 1 (cf. Table 2) with respect to
the tolerance factor 𝜏 = 0.3 are shown in Table 3 resp. Ta-
ble 4. Minimal sufficient (in)activators allow for a graphi-
cal representation (cf. Figure 4). For instance, the minimal
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Figure 4: Minimal sufficient (in)activators of the neurons in ℳex
log from Example 1. Solid lines indicate activation and dashed

lines inactivation.

𝑁𝑖,𝑗 𝒮𝒜𝜏
min(𝑁𝑖,𝑗)

𝑁1,0 ∅
𝑁1,1 {({𝑁0,0, 𝑁0,1}, ∅)}
𝑁1,2 {({𝑁0,2}, ∅)}

𝑁2,0 {({𝑁1,0, 𝑁1,2}, {𝑁1,1})}
𝑁2,1 ∅
𝑁2,2 {({𝑁1,0}, {𝑁1,2}), ({𝑁1,1}, ∅)}

Table 3
Minimal sufficient activators of the neurons in the hidden resp.
output layer of ℳex

log from Example 1 wrt. 𝜏 = 0.3.

𝑁𝑖,𝑗 𝒮ℐ𝜏
min(𝑁𝑖,𝑗)

𝑁1,0 {({𝑁0,0, 𝑁0,2}, {𝑁0,1})}
𝑁1,1 ∅
𝑁1,2 ∅

𝑁2,0 ∅
𝑁2,1 {({𝑁1,0, 𝑁1,2}, {𝑁1,1})}
𝑁2,2 ∅

Table 4
Minimal sufficient inactivators of the neurons in the hidden resp.
output layer of ℳex

log from Example 1 wrt. 𝜏 = 0.3.

sufficient inactivator ({𝑁0,0, 𝑁0,2}, {𝑁0,1}) of 𝑁1,0 can be
visualized as three outgoing edges from𝑁0,0,𝑁0,1, and𝑁0,2,
respectively, which conjointly result in 𝑁1,0. The dashed line
in Figure 4 after these three edges have met indicates that
({𝑁0,0, 𝑁0,2}, {𝑁0,1}) is a sufficient inactivator (and not an
activator) of 𝑁1,0 and the dashed line from 𝑁0,1 indicates
that𝑁0,1 has a negative influence on the inactivation of𝑁1,0

(because the weight 𝜈0,1,0 is positive).

Altogether, (minimal) sufficient activators and inactiva-
tors make it possible to abstract from the concrete input data
of a multilayer perceptron ℳlog and reveal the essential
streams of information within ℳlog . This is the motivation
for our following extraction of conditional belief bases from
multilayer perceptrons.

4.3. Belief Base Extraction
Now, we describe our approach on extracting a conditional
belief base Δ𝜏

ℳlog
from a multilayer perceptron ℳlog based

on sufficient (in)activators. In Δ𝜏
ℳlog

we formalize for

every neuron 𝑁 in ℳlog its relationship to its sufficient
(in)activators by a conditional which states that if the neu-
rons in one of the sufficient activators (inactivators) of𝑁 are
(in)activated, then the neuron 𝑁 is usually active (inactive),
too.

Definition 9 (Belief Base Δ𝜏
ℳlog

). Let (ℳlog, 𝜏) be a clas-
sification scheme, and let 𝑁 be a neuron from a hidden layer
or the output layer of ℳlog . Then, we define the conditionals
𝛿𝜏,+𝑁 = (𝑁 |𝜓𝜏,+

𝑁 ) and 𝛿𝜏,−𝑁 = (𝑁 |𝜓𝜏,−
𝑁 ) via

𝜓𝜏,+
𝑁 =

⋁︁
(𝐴+,𝐴−)∈𝒮𝒜𝜏

min(𝑁)

⎛⎝ ⋀︁
𝑁′∈𝐴+

𝑁 ′ ∧
⋀︁

𝑁′∈𝐴−

𝑁 ′

⎞⎠ ,

𝜓𝜏,−
𝑁 =

⋁︁
(𝐼+,𝐼−)∈𝒮ℐ𝜏min(𝑁)

⎛⎝ ⋀︁
𝑁′∈𝐼+

𝑁 ′ ∧
⋀︁

𝑁′∈𝐼−
𝑁 ′

⎞⎠ ,

provided that

𝒮𝒜𝜏
min(𝑁) ̸= ∅ in case of 𝛿𝜏,+𝑁 ,

𝒮ℐ𝜏
min(𝑁) ̸= ∅ in case of 𝛿𝜏,−𝑁 .

(*)

Note that the conditionals depend on the tolerance factor 𝜏
because the sets of (minimal) sufficient (in)activators depend
on 𝜏 . However, the conditionals are not dependent on any input
vector of ℳlog , since 𝜏 abstracts from that. Based on that, we
define the extraction of the belief base Δ𝜏

ℳlog
from ℳlog via

Δ𝜏
ℳlog

= {𝛿𝜏,+𝑁 | 𝑁 ∈ 𝒩+} ∪ {𝛿𝜏,−𝑁 | 𝑁 ∈ 𝒩−},

where 𝒩 𝜏,+ is the set of neurons 𝑁 for which the condi-
tional 𝛿𝜏,+𝑁 exists, and where 𝒩 𝜏,− is the set of neurons 𝑁
for which the conditional 𝛿𝜏,−𝑁 exists, i.e., (*) applies.

The number of conditionals in Δ𝜏
ℳlog

is bounded by
the number of neurons in ℳlog (minus the input layer)
which means a higher degree of abstraction than prevalent
in synaptic belief bases (cf. Definition 5) the cardinality of
which is bounded by the number of edges in ℳlog. Fur-
thermore, the condition (*) in Definition 9 ensures that the
conditionals 𝛿𝜏,+𝑁 (resp. 𝛿𝜏,−𝑁 ) are added to Δ𝜏

ℳlog
only

if 𝑁 has sufficient activators (inactivators). This prevents
from conditionals of the form (𝑁 |⊥) and (𝑁 |⊥) in Δ𝜏

ℳlog

which would cause inconsistencies according to our accep-
tance definition of conditionals. If there is a neuron 𝑁 with
𝛿𝜏,+𝑁 , 𝛿𝜏,−𝑁 /∈ Δ𝜏

ℳlog
, then one can increase 𝜏 in order to

improve the chance of obtaining such a conditional.



Example 7. We consider ℳex
log from Example 1 and the

tolerance factor 𝜏 = 0.3. The minimal sufficient (in)activators
of the neurons in ℳex

log are shown in Table 3 resp. Table 4 from
which we can derive the belief base Δ0.3

ℳlog
. The conditionals

in Δ0.3
ℳlog

are

𝛿0.3,−𝑁1,0
= (𝑁1,0|𝑁0,0 ∧𝑁0,2 ∧𝑁0,1),

𝛿0.3,+𝑁1,1
= (𝑁1,1|𝑁0,0 ∧𝑁0,1),

𝛿0.3,+𝑁1,2
= (𝑁1,2|𝑁0,2),

𝛿0.3,+𝑁2,0
= (𝑁2,0|𝑁1,0 ∧𝑁1,2 ∧𝑁1,1),

𝛿0.3,−𝑁2,1
= (𝑁2,1|𝑁1,0 ∧𝑁1,2 ∧𝑁1,1),

𝛿0.3,+𝑁2,2
= (𝑁2,2|𝑁1,0 ∧𝑁1,2 ∨𝑁1,1).

In particular, note the disjunction in the premise of 𝛿0.3,+𝑁2,2

because of the two (different) minimal sufficient activators
of 𝑁2,2.

The belief base Δ𝜏
ℳlog

is consistent. To show this, we
make use of the following lemma.

Lemma 1. Let (ℳlog, 𝜏) be a classification scheme. Then,
for every neuron 𝑁 from a hidden layer or the output layer
of ℳlog it holds that (cf. Definition 9)

𝜓𝜏,+
𝑁 ∧ 𝜓𝜏,−

𝑁 ≡ ⊥.

Proof. Assume that 𝜓𝜏,+
𝑁 ∧ 𝜓𝜏,−

𝑁 ̸≡ ⊥ holds. Then, there
is a possible world 𝜔, a sufficient activator (𝐴+, 𝐴−) of 𝑁
wrt. 𝜏 , and a sufficient inactivator (𝐼+, 𝐼−) of 𝑁 wrt. 𝜏
such that

𝜔 |=
⋀︁

𝑁′∈𝐴+

𝑁 ′ ∧
⋀︁

𝑁′∈𝐴−

𝑁 ′ ∧
⋀︁

𝑁′∈𝐼+
𝑁 ′ ∧

⋀︁
𝑁′∈𝐼−

𝑁 ′.

It follows that (𝐴+ ∪ 𝐼+) ∩ (𝐴− ∪ 𝐼−) = ∅. Otherwise, 𝜔
would mention an atom both negated and positive. From
this and Proposition 4 it follows that (𝐴+ ∪ 𝐼+, 𝐴− ∪ 𝐼−)
is both a sufficient activator and a sufficient inactivator
of 𝑁 wrt. 𝜏 because (𝐴+, 𝐴−) ⊑ (𝐴+ ∪ 𝐼+, 𝐴− ∪ 𝐼−)
and (𝐼+, 𝐼−) ⊑ (𝐴+ ∪ 𝐼+, 𝐴− ∪ 𝐼−) hold. According to
the definitions of sufficient (in)activators, for appropriate
values 𝑦𝑁′ for 𝑁 ′ ∈ pa(𝑁),

1− 𝜏 ≤ 𝜑(𝛽𝑁 +
∑︁

𝑁′∈pa𝑁

𝜈𝑁′,𝑁 · 𝑦𝑁′) ≤ 𝜏

follows. This implies 1 − 𝜏 ≤ 𝜏 or, equivalent 0.5 ≤ 𝜏 ,
which contradicts 𝜏 ∈ [0, 0.5).

Lemma 1 states that there is no neuron 𝑁 in ℳlog for
which both 𝛿𝜏,+𝑁 (supporting 𝑁 ) and 𝛿𝜏,−𝑁 (supporting 𝑁 )
can be applicable at the same time.

Proposition 5. Let (ℳlog, 𝜏) be a classification scheme.
Then, the belief base Δ𝜏

ℳlog
extracted from ℳlog is consis-

tent.

Proof. We show that Δ𝜏
ℳlog

has a tolerance partition from
which its consistency follows. Let 𝑚+ 1 be the number of
layers in ℳlog and, for 𝑗 = 0, 1, . . . ,𝑚, let 𝒩𝑗 be the set
of neurons in the 𝑗-th layer. Then, (Δ1, . . . ,Δ𝑚) with

Δ𝑗 = {𝛿𝜏,+𝑁 ∈ Δ𝜏
ℳlog

| 𝑁 ∈ 𝒩𝑗}

∪ {𝛿𝜏,−𝑁 ∈ Δ𝜏
ℳlog

| 𝑁 ∈ 𝒩𝑗}

for 𝑗 = 1, . . . ,𝑚 is a partition of Δ𝜏
ℳlog

(modulo empty
sets). Let 𝛿 ∈ Δ𝑗 , provided hat Δ𝑗 ̸= ∅. We have to
show that 𝛿 is tolerated by

⋃︀𝑚
𝑘=𝑗 Δ𝑘 . For this, let 𝛿 be

of the form 𝛿𝜏,+𝑁 for some 𝑁 ∈ 𝒩𝑗 . The proof for 𝛿 of
the form 𝛿𝜏,−𝑁 is analogous. By construction of 𝛿𝜏,+𝑁 , there
is (𝐴+, 𝐴−) ∈ 𝒮𝒜𝜏

min(𝑁) and a (partial) possible world
𝜔 ∈ Ω(𝒩𝑗−1) with 𝜔 |=

⋀︀
𝑁′∈𝐴+ 𝑁

′ ∧
⋀︀

𝑁′∈𝐴− 𝑁 ′ (𝐴+

and 𝐴− are disjoint).
Thanks to Lemma 1, we can extend𝜔 to a (partial) possible

world 𝜔′ ∈ Ω(𝒩𝑗−1 ∪𝒩𝑗) such that all conditionals in Δ𝑗

are either not applicable or verified by concatenating 𝑁 ′

to 𝜔 in case of 𝜔 |= 𝜓𝜏,+
𝑁′ or concatenating 𝑁 ′ to 𝜔 in case

of 𝜔 |= 𝜓𝜏,−
𝑁′ for 𝑁 ′ ∈ 𝒩𝑗 . In particular, 𝜔′ verifies 𝛿𝜏,+𝑁 .

By a repeated application of this argument, we can construct
a (partial) possible world 𝜔′′ ∈ Ω(

⋃︀𝑚
𝑘=𝑗−1 𝒩𝑘) which veri-

fies 𝛿𝜏,+𝑁 and falsifies no conditional from
⋃︀𝑚

𝑘=𝑗 Δ𝑘 . Even-
tually, this (partial) possible world can be extended to a
possible world in Ω(

⋃︀𝑚
𝑘=0 𝒩𝑘) by the concatenation of the

remaining ground atoms, either positive or negated which
can be chosen freely.

Note that the belief base Δ𝜏
ℳlog

might be empty, namely
if for all neurons in ℳlog there is no sufficient (in)activator.
On the contrary, if a neuron 𝑁 can be (in)activated, then
there is a sufficient (in)activator of 𝑁 so that there is a
conditional wrt. 𝑁 in Δ𝜏

ℳlog
. Thus, Δ𝜏

ℳlog
reflects the

most important information flow in ℳlog .

5. Binary Classification with Δ𝜏
ℳlog

Now, we discuss how to perform binary (multi-class) clas-
sification based on the belief base Δ𝜏

ℳlog
which we have

extracted from a multilayer perceptron ℳlog (cf. Defini-
tion 9). Recall that, following Definition 2, we can say that
an input vector �⃗� of ℳlog is classified (resp. declassified)
as 𝒞𝑁 represented by the neuron 𝑁 from the output layer
of ℳlog if ℳlog(�⃗�) ≥ 1− 𝜏 (resp. ℳlog(�⃗�) ≤ 𝜏 ) where 𝜏
is a tolerance factor. We denote this with

ℳlog, �⃗� |∼𝜏 𝑁 iff ℳlog(�⃗�) ≥ 1− 𝜏

ℳlog, �⃗� |∼𝜏 𝑁 iff ℳlog(�⃗�) ≤ 𝜏.

We lift this idea of classifying �⃗� from ℳlog to the belief
base Δ𝜏

ℳlog
. Thereby, we make use of the System Z ranking

model 𝜅𝑍
Δ𝜏

ℳlog
of Δ𝜏

ℳlog
.

Definition 10 (Z-Classification). Let (ℳlog, 𝜏) be a clas-
sification scheme, let Δ𝜏

ℳlog
be the belief base extracted

from ℳlog, and let 𝜅𝑍
ℳlog,𝜏

= 𝜅𝑍
Δ𝜏

ℳlog
be its System Z

ranking model. With 𝐴𝜏
�⃗� we denote the set of neurons from

the input layer of ℳlog which are activated by �⃗� wrt. 𝜏 , and
with 𝐼𝜏�⃗� the set of neurons which are inactivated. Then, we
say that an input vector �⃗� of ℳlog is

• Z-classified as 𝒞𝑁 wrt. a neuron 𝑁 from the output
layer of ℳlog , denoted by

Δ𝜏
ℳlog

, �⃗� |∼𝑍
𝜏 𝑁, iff 𝜅𝑍

ℳlog,𝜏 accepts

(𝑁 |
⋀︁

𝑁′∈𝒜𝜏
�⃗�

𝑁 ′ ∧
⋀︁

𝑁′∈ℐ𝜏𝑥

𝑁 ′),

• Z-declassified as 𝒞𝑁 , denoted by



Δ𝜏
ℳlog

, �⃗� |∼𝑍
𝜏 𝑁, iff 𝜅𝑍

ℳlog,𝜏 accepts

(𝑁 |
⋀︁

𝑁′∈𝒜𝜏
�⃗�

𝑁 ′ ∧
⋀︁

𝑁′∈ℐ𝜏𝑥

𝑁 ′).

We obtain the following central result stating
that 𝜅𝑍

ℳlog,𝜏
does not “invent” inferences but yields

inferences that can be drawn from ℳlog only. Instead,
inferences drawn from 𝜅𝑍

ℳlog,𝜏
can be understood, in some

sense, as the most reliable inferences from ℳlog .

Proposition 6. Let (ℳlog, 𝜏) be a classification scheme,
letΔ𝜏

ℳlog
be the belief base extracted fromℳlog , let 𝜅𝑍

ℳlog,𝜏

be its System Z ranking model, and let �⃗� be an input vector
of ℳlog . Then,

Δ𝜏
ℳlog

, �⃗� |∼𝑍
𝜏 𝑁 implies ℳlog, �⃗� |∼𝜏 𝑁,

and, analogously,

Δ𝜏
ℳlog

, �⃗� |∼𝑍
𝜏 𝑁 implies ℳlog, �⃗� |∼𝜏 𝑁.

Proof. Let 𝒜𝜏
�⃗� and ℐ𝜏

�⃗� be the sets of the neurons from the
input layer of ℳlog which are activated resp. inactivated
by the input �⃗� wrt. 𝜏 (cf. Definition 10). Further, let 𝑚+ 1
be the number of layers in ℳlog , and, for 𝑗 = 0, 1, . . . ,𝑚,
let 𝒩𝑗 be the set of neurons in the 𝑗-th layer of ℳlog. We
prove that Δ𝜏

ℳlog
, �⃗� |∼𝑍

𝜏 𝑁 implies ℳlog, �⃗� |∼𝜏 𝑁 . The

proof that Δ𝜏
ℳlog

, �⃗� |∼𝑍
𝜏 𝑁 implies ℳlog, �⃗� |∼𝜏 𝑁 is anal-

ogous.
Let Δ𝜏

ℳlog
, �⃗� |∼𝑍

𝜏 𝑁 , i.e., by definition, 𝜅𝑍
ℳlog,𝜏

accepts
the conditional (𝑁 |𝜒𝑁 ) with

𝜒𝑁 =
⋀︁

𝑁′∈𝒜𝜏
�⃗�

𝑁 ′ ∧
⋀︁

𝑁′∈ℐ𝜏
�⃗�

𝑁 ′.

Following the construction of possible worlds in the proof
of Proposition 5, every (partial) possible world 𝜔 ∈ Ω(𝒩0)
with 𝜔 |= 𝜒𝑁 can be extended to a possible world
𝜔′ ∈ Ω(

⋃︀𝑚
𝑗=0 𝒩𝑗) such that no conditional from Δ𝜏

ℳlog

is falsified. Hence, 𝜅𝑍
ℳlog,𝜏

(𝜔′) = 0. Because 𝜅𝑍
ℳlog,𝜏

ac-
cepts the conditional (𝑁 |𝜒𝑁 ), none of these extensions 𝜔′

satisfies 𝑁 . Otherwise, 𝜅𝑍
ℳlog,𝜏

(𝑁 ∧ 𝜒𝑁 ) = 0 would hold
which contradicts the acceptance of (𝑁 |𝜒𝑁 ). As a con-
sequence, the conditional 𝛿𝜏,+𝑁 (cf. Definition 9) must be
in Δ𝜏

ℳlog
which is the only possibility to exclude 𝑁 from

the extensions 𝜔′ (and which is also accepted in all the ex-
tensions 𝜔′). Otherwise, there is no reason why not to have
an extension 𝜔′ with 𝜔′ |= 𝑁 .

In more detail, either there is an extension 𝜔′ of 𝜔 with
𝜔′ |= 𝑁 and 𝜅𝑍

ℳlog,𝜏
(𝜔′) = 0 which contradicts the accep-

tance of (𝑁 |𝜒𝑁 ), or 𝜅𝑍
ℳlog,𝜏

(𝜔′) > 0 for all such exten-
sion 𝜔′ which requires a conditional in Δ𝜏

ℳlog
that is falsi-

fied in 𝜔′. The only candidate for such a conditional would
be 𝛿𝜏,+𝑁 . As a consequence of the acceptance of 𝛿𝜏,+𝑁 , the
input vector �⃗� activates at least one sufficient activator of𝑁 .
From this, it follows that �⃗� also activates 𝑁 in ℳlog .

We recall our running example to illustrate this proposi-
tion.

Example 8. We consider the same scenario as in Exam-
ple 1, i.e., the multilayer perceptron ℳex

log , the tolerance factor
𝜏 = 0.3, and the input vector �⃗� = (0.9, 0.8, 0.1). Then,

𝒜0.3
�⃗� = {𝑁0,0, 𝑁0,1}, ℐ0.3

�⃗� = {𝑁0,2}.

Further, the Z-partition of Δ0.3
ℳlog

is 𝑍(Δ0.3
ℳex

log
) = (Δ0.3

ℳex
log

),

so that, for (𝑁2,2|𝜒𝑁2,2) with 𝜒𝑁2,2 = 𝑁0,0 ∧𝑁0,1 ∧𝑁0,2,
we have, with Δ = Δ0.3

ℳex
log

,

𝜅𝑍
Δ(𝑁2,2 ∧ 𝜒𝑁2,2) = 0 < 1 = 𝜅𝑍

Δ(𝑁2,2 ∧ 𝜒𝑁2,2)

Thus, we classify �⃗� as an instance of 𝒞𝑁2,2 in accordance with
the result from Example 1.

Our approach focuses attention on the main dependencies
among the neurons in multilayer perceptrons. In contrast
to the synaptic conditionals in Section 3, the influence of
several parent nodes on a neuron 𝑁 is aggregated, with
the guarantee that the aggregated parent nodes are able to
(in)active 𝑁 . A depiction of these aggregated influences is
shown in Figure 4 for our running example. Figure 4 can be
understood as a visualization of the main information flow
in ℳex

log .

6. Conclusions
We proposed an approach on extracting propositional con-
ditional belief bases from multilayer perceptrons (MLPs) for
binary multi-class classification. The conditionals relate to
the main information flow in the multilayer perceptron de-
tached from specific input vectors. Therewith, our approach
abstracts from both the input data as well as overlay effects
in the network and rebuilds the backbone of the network
within a prevalent KRR formalism. The main idea of our ap-
proach is to exploit sufficient (in)activators of neurons𝑁 the
(in)activation of which guarantees that 𝑁 is (in)activated
as well. The extracted conditional belief base allows for
drawing inferences in a principled way, for instance, under
System Z. It is guaranteed that the belief base is consistent
and does not invent inferences that cannot be drawn from
the multilayer perceptron.

In recent work [17] it has been shown that there is a tight
connection between multilayer perceptrons and quantitative
bipolar argumentation frameworks. Roughly speaking, MLPs
can be seen as specific argumentation frameworks under a
so-called MLP-semantics. To make this connection useful
for explanations, some ideas on sparsification have been
considered [18]. In future work, we want to investigate
the connections between our approach and the approaches
from [17, 18]. Exploiting sparsified networks may simplify
the computation of conditional belief bases. The other way
round, the qualitative conditionals could perhaps be used to
construct argumentation frameworks in order to simulate
the MLPs that are easier to interpret than the argumentation
frameworks obtained from the current approaches.

Also in future work, we want to extract conditionals
from multilayer perceptrons that are based on “necessary
(in)activators” and can be used for explaining classifications
that are made by the multilayer perceptrons. Therewith,
we expect to be able to bound all possible classifications
from two directions (upper and lower bound) which, as we
hope, can help to better understand the essence of binary
multi-class classification based on multilayer perceptrons.
Further research directions could be to investigate how the
choice of the tolerance factor influences the shape of the
conditional belief base and how different inference opera-
tors, e.g., based on System P [8], lexicographic closure [19],
or c-representations [9], relate to the binary multi-class
classification with multilayer perceptrons.
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