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Abstract
Nonmonotonic reasoning from conditional belief bases typically depends on a structure over possible worlds that relies on the verifi-
cation and falsification of conditionals. A major challenge in implementing such reasoning approaches is that the number of worlds
in these structures grows exponentially with the number of propositional variables occurring in the belief base. For addressing this
problem by using the power of current solvers, recently an implementation of reasoning with system W using Partial MaxSAT prob-
lems has been proposed. In this paper, we investigate this approach in more detail, present a formal correctness proof of the system W
inference algorithm SWinf , and extend its empirical evaluation. Furthermore, we show that the approach can be transferred to imple-
menting Pearl’s system Z by using SAT problems, and prove the correctness of the resulting system Z inference algorithm SZinf . Our
implementations of system Z and system W demonstrate that they outperform previous implementations and allow for signature and
knowledge base sizes that have been infeasible before.

1. Introduction
Conditionals play a major role in knowledge representa-
tion and reasoning, and many different semantics have been
proposed for conditional belief bases, like probability dis-
tributions, plausibility orderings, possibility distributions,
ranking functions and special instances of them, or condi-
tional objects (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8]). However, soft-
ware systems implementing any of these inference methods
have attracted much less attention. Any such implementa-
tion of inference with respect to a conditional belief base Δ
has to cope with the number of worlds growing exponen-
tially with the number of propositional variables occurring
in Δ. For addressing this practical side of nonmonotonic
reasoning, we consider Pearl’s well-known system Z [9],
and system W [10] that exhibits some notable properties like
extending system Z and thus rational closure [11], avoid-
ing the drowning problem [12], and fully complying with
syntax splitting [13, 14] and also with conditional syntax
splitting [15]. Because the first implementation of system W
[16] severely limits the number of propositional variables
in Δ to about 20 for practical applications, corresponding
to about one million worlds, recently an implementation of
reasoning with system W using partial MaxSAT problems
has been developed, with first evaluation results of up to 60
variables and thus 260 worlds [17].

This paper extends our work presented in [17] in several
directions, providing the following main contributions:

• We elaborate the approach in [17] in more detail and
provide a formal correctness proof for its system W
inference algorithm SWinf .

• We extend its empirical evaluation, demonstrating
that it scales up system W inference up to 120 vari-
ables and thus 2120 worlds and to belief bases of up
to 200 conditionals.

• We show how the approach can be transferred, yield-
ing a SAT-based realization of system Z.
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• We give a correctness proof for our system Z infer-
ence algorithm SZinf .

• We implement system Z correspondingly, outper-
forming previous implementations and allowing for
signature and knowledge base sizes that have not
been possible before.

This paper is organized as follows. After briefly recalling
the background on conditional logic in Section 2 and sys-
tem W in Section 3, we present and illustrate our algorithm
SWinf for system W in Section 4 and prove its correctness
in Section 5. We adapt this approach for system Z in Sec-
tion 6, illustrate the resulting algorithm SZinf and prove
this algorithm’s correctness in Section 7. Finally we evalu-
ate the runtimes of our new algorithms for system W and
system Z in Section 8 before concluding and pointing out
future work in Section 9.

2. Background: Conditional Logic
A (propositional) signature is a finite set Σ of propositional
variables, andℒΣ denotes the propositional language overΣ.
We may denote a conjunction 𝐴∧𝐵 by 𝐴𝐵 and a negation
¬𝐴 by 𝐴. The set of interpretations over a signature Σ,
also called worlds, is ΩΣ. We may identify a world with
the corresponding complete conjunction of all elements Σ
in either positive or negated form. An 𝜔 ∈ ΩΣ is a model
of 𝐴 ∈ ℒΣ if 𝐴 holds in 𝜔, denoted as 𝜔 |= 𝐴, and the
set of models of 𝐴 is Mod Σ(𝐴) = {𝜔 ∈ ΩΣ | 𝜔 |= 𝐴},
sometimes denoted as Ω𝐴. A formula 𝐴 entails a formula 𝐵,
written 𝐴 |= 𝐵, if Mod Σ(𝐴) ⊆ Mod Σ(𝐵). Furthermore,
for 𝐹 ∈ ℒΣ and 𝑀 ⊆ ℒΣ, we use the notation 𝜔 |= 𝑀 iff
𝜔 |= 𝐹𝑖 for every 𝐹𝑖 ∈ 𝑀 ; Ω𝑀 = {𝜔 ∈ ΩΣ | 𝜔 |= 𝑀};
𝑀 = {𝐹 𝑖 | 𝐹𝑖 ∈𝑀}; and 𝐹 ∧𝑀 = 𝐹 ∧ 𝐹1 ∧ . . . ∧ 𝐹𝑚

for 𝑀 = {𝐹1, . . . , 𝐹𝑚}.
A conditional (𝐵|𝐴) connects two formulas 𝐴,𝐵 and

represents the rule “If 𝐴 then usually 𝐵”. The conditional
language over Σ is (ℒ|ℒ)Σ = {(𝐵|𝐴) | 𝐴,𝐵 ∈ ℒΣ}. A
belief base Δ is a finite set of conditionals. For a world
𝜔, a conditional (𝐵|𝐴) is either verified by 𝜔 if 𝜔 |= 𝐴𝐵,
falsified by 𝜔 if 𝜔 |= 𝐴𝐵, or not applicable to 𝜔 if 𝜔 |= 𝐴
[18]. An example for semantics of conditionals are functions
𝜅 : ΩΣ → N such that 𝜅(𝜔) = 0 for at least one 𝜔 ∈
ΩΣ, called ranking functions or ordinal conditional functions
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(OCF), introduced (in a more general form) by Spohn (1988).
They express degrees of plausibility where a lower degree
denotes “less surprising”. Each 𝜅 uniquely extends to a
function 𝜅 : ℒΣ → N ∪ {∞} with 𝜅(𝐴) = min{𝜅(𝜔) |
𝜔 |= 𝐴} where min ∅ =∞. A ranking function 𝜅 accepts
a conditional (𝐵|𝐴), written 𝜅 |= (𝐵|𝐴), if 𝜅(𝐴𝐵) <
𝜅(𝐴𝐵), and 𝜅 accepts Δ, written 𝜅 |= Δ, if 𝜅 accepts all
conditionals in Δ, and Δ is consistent if there is a ranking
function accepting Δ. Every 𝜅 induces a nonmonotonic
inference relation |∼ 𝜅 between formulas in ℒΣ, given by

𝐴 |∼ 𝜅𝐵 iff 𝐴 ≡ ⊥ or 𝜅(𝐴𝐵) < 𝜅(𝐴𝐵). (1)

3. SystemW
An inductive inference operator completes an explicitly
given belief base to the inference relation representing all
conditional beliefs an agent can derive [13]. One such infer-
ence operator is System W [19, 10] which takes into account
the tolerance information expressed by the Z-partition (also
called ordered partition) of a belief base Δ, defined in the
following.

Definition 1 (Z-partition OP(Δ) [9]). Let Δ =
{(𝐵1|𝐴1), . . . , (𝐵𝑛|𝐴𝑛)} be a belief base. A conditional
(𝐵|𝐴) is tolerated by a set of conditionals Δ if there exists a
world 𝜔 ∈ ΩΣ that verifies (𝐵|𝐴) and does not falsify any
conditional in Δ, i.e., 𝜔 |= 𝐴𝐵 and 𝜔 |=

⋀︀𝑛
𝑖=1(𝐴𝑖 ∨ 𝐵𝑖).

The Z-partition OP(Δ) = (Δ0, . . . ,Δ𝑘) of a belief base Δ
is the partition of Δ where each Δ𝑖 is the (with respect to set
inclusion) maximal subset of

⋃︀𝑘
𝑗=𝑖 Δ

𝑗 that is tolerated by⋃︀𝑘
𝑗=𝑖 Δ

𝑗 .

It is well-known that OP(Δ) exists iff Δ is consistent;
moreover, because the Δ𝑖 are chosen inclusion-maximal,
the Z-partition is unique [20]. System W combines the
Z-partition with the structural information about which
conditionals are falsified by a world, yielding the preferred
structure on worlds <w

Δ underlying system W.

Definition 2 (𝜉𝑗 , preferred structure <w
Δ on worlds

[19, 10]). Let Δ = {(𝐵1|𝐴1), . . . , (𝐵𝑛|𝐴𝑛)} with
OP(Δ) = (Δ0, . . . ,Δ𝑘). For 𝑗 = 0, . . . , 𝑘, the function 𝜉𝑗

maps worlds to the set of falsified conditionals from the set
Δ𝑗 :

𝜉𝑗(𝜔) := {𝑟𝑖 ∈ Δ𝑗 | 𝜔 |= 𝐴𝑖𝐵𝑖}, (2)

The preferred structure on worlds is the binary relation <w
Δ

defined by, for 𝜔, 𝜔′ ∈ ΩΣ:

𝜔 <w
Δ 𝜔′ iff there exists 𝑚 ∈ {0 , . . . , 𝑘} such that

𝜉𝑖(𝜔) = 𝜉𝑖(𝜔′) ∀𝑖 ∈ {𝑚+ 1 , . . . , 𝑘}, and

𝜉𝑚(𝜔) ⫋ 𝜉𝑚(𝜔′) . (3)

Thus, 𝜔 <w
Δ 𝜔′ if and only if 𝜔 falsifies strictly fewer

conditionals than 𝜔′ in the partition with the biggest index
𝑚 where the conditionals falsified by 𝜔 and 𝜔′ differ.

Definition 3 (system W, |∼w
Δ[10]). Let Δ be a consistent

belief base and let 𝐴,𝐵 ∈ ℒΣ be formulas. Then 𝐵 is a
system W inference from 𝐴 (in the context of Δ), denoted
𝐴 |∼w

Δ 𝐵, if we have:

for every 𝜔′ ∈ Ω𝐴𝐵

there is an 𝜔 ∈ Ω𝐴𝐵 such that 𝜔 <w
Δ 𝜔′ .

(4)

𝑏 𝑝 𝑓 𝑤 𝑏 𝑝 𝑓 𝑤

𝑏 𝑝 𝑓 𝑤

𝑏 𝑝 𝑓 𝑤 𝑏 𝑝 𝑓 𝑤 𝑏 𝑝 𝑓 𝑤

𝑏 𝑝 𝑓 𝑤 𝑏 𝑝 𝑓 𝑤

𝑏 𝑝 𝑓 𝑤 𝑏 𝑝 𝑓 𝑤 𝑏 𝑝 𝑓 𝑤

𝑏 𝑝 𝑓 𝑤 𝑏 𝑝 𝑓 𝑤 𝑏 𝑝 𝑓 𝑤 𝑏 𝑝 𝑓 𝑤 𝑏 𝑝 𝑓 𝑤

Figure 1: The preferred structure onworlds<w
Δbird

in Example 1.
An edge 𝜔 → 𝜔′ indicates that 𝜔 <w

Δbird
𝜔′; edges that can be

obtained from transitivity are omitted.

Example 1 (Δbird ). Let Σ = {𝑏, 𝑝, 𝑓, 𝑤} represent
birds, penguins, flying things and winged things, and let
Δbird contain 𝑟1 = (𝑓 |𝑏), 𝑟2 = (𝑓 |𝑝), 𝑟3 = (𝑏|𝑝), and
𝑟4 = (𝑤|𝑏). E.g., 𝑟1 expresses “birds usually fly”. Then
OP(Δbird) = (Δ0,Δ1) with Δ0 = {(𝑓 |𝑏), (𝑤|𝑏)} and
Δ1 = {(𝑓 |𝑝), (𝑏|𝑝)}. Using <w

Δbird
(Figure 1), we can check

that 𝑝 |∼w
Δbird

𝑤 holds, i.e., that penguins usually have
wings is a system W inference in the context of Δbird .

System W captures system Z in the sense that every en-
tailment that is possible with system Z is also possible with
system W, i.e., the system W inferences of a belief base Δ
are a superset of the system Z inferences of Δ. Further-
more, there are belief bases where this superset relationship
is strict, i.e., where system W licenses strictly more infer-
ences than system Z [10]. System W strictly extends also
c-inference [21, 10]; further properties of system W and its
relationshsips to other inductive inference operators are
described in [22, 23, 24].

For a set 𝑀 and a partial order < on 𝑀 , the minimal
elements of 𝑁 ⊆ 𝑀 are denoted by: min(𝑁,<) = {𝑛 ∈
𝑁 | there is no 𝑛′ ∈ 𝑁 s.t. 𝑛′ < 𝑛}. Because <w

Δ is a strict
partial order [10], Definition 3 directly implies that is suf-
fices to consider only the <w

Δ-minimal worlds for checking
whether |∼w

Δ holds.

Proposition 1 (|∼w
Δ). Let Δ be a consistent belief base and

𝐴,𝐵 ∈ ℒΣ. Then

𝐴 |∼w
Δ 𝐵 iff for every 𝜔′ ∈ min(Ω𝐴𝐵 , <

w
Δ)

there is an 𝜔 ∈ min(Ω𝐴𝐵 , <
w
Δ)

such that 𝜔 <w
Δ 𝜔′ .

4. Algorithm SWinf: SystemW
Inference using MaxSAT

In this section we introduce the algorithm SWinf(Δ, 𝐴,𝐵)
(system W inference with Partial MaxSAT, Algorithm 1)
[17] which takes a belief base Δ and two formulas 𝐴,𝐵 as
input and answers the question whether 𝐴 |∼w

Δ 𝐵 holds.
Implementing system W by computing the relation <w

Δ

[16] will work for small signatures but does not scale well
because of the number of worlds to be considered grows
exponentially with the size of the signature. Therefore, we
will employ Partial MaxSAT concepts [25] in SWinf and
utilize the power of current SAT-solvers. Given a set of
formulas 𝑆 of soft constraints and a set of formulas 𝐻 of
hard constraints the extended partial maximum satisfiability



Algorithm 1 SWinf(Δ, 𝐴,𝐵)
Input: consistent belief base Δ and formulas 𝐴,𝐵
Output: Yes if 𝐴 |∼w

Δ 𝐵, and No otherwise
1: let OP(Δ) = (Δ0, . . . ,Δ𝑘)

2: function recWinf (𝑗,𝐻)
3: 𝒱 ← MCS(nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵})
4: ℱ ← MCS(nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵})
5: if ¬(∀𝑁 ′ ∈ ℱ ∃𝑁 ∈ 𝒱 . 𝑁 ⊆ 𝑁 ′) then
6: return No
7: for all 𝑁 ∈ 𝒱 ∩ ℱ do
8: if 𝑗 = 0 then
9: return No

10: 𝐻new ← (nf (Δ𝑗) ∖𝑁) ∪𝑁
11: if recWinf (𝑗 − 1, 𝐻 ∪𝐻new ) = No then
12: return No
13: return Yes
14: end function
15: return recWinf (𝑘, ∅)

problem EPMaxSAT (𝑆,𝐻) is the optimization problem of
maximizing the number of satisfied formulas in 𝑆 over all
interpretations 𝜔 ∈ Ω𝐻 and determining all subsets of 𝑆
that are maximal with this property.

Definition 4 (MCS(𝑆,𝐻)). Let 𝑆 = {𝑆1, . . . , 𝑆𝑠} ⊆ ℒΣ

be a set of formulas called soft constraints, and let 𝐻 =
{𝐻1, . . . , 𝐻ℎ} ⊆ ℒΣ be a set of formulas called hard con-
straints. A maximal satisfiable subset (MSS) with respect to
(𝑆,𝐻) is a set 𝑀 ⊆ 𝑆 such that 𝑀 ∪𝐻 is (classically) con-
sistent and for every 𝑀 ′ ⊆ 𝑆 with 𝑀 ⫋ 𝑀 ′ the set 𝑀 ′∪𝐻
is not consistent. A set 𝑁 ⊆ 𝑆 is a minimal correction subset
(MCS) with respect to (𝑆,𝐻) if 𝑆∖𝑁 is an MSS w.r.t. (𝑆,𝐻).
Then, MCS(𝑆,𝐻) denotes the set of all MCS w.r.t. (𝑆,𝐻).

For using the concepts of MSS and MCS in our context,
we rely in particular on the non-falsification of conditionals.
For a conditional (𝐵|𝐴), the formula 𝐴 ∨𝐵 expressing its
non-f alsification is denoted bynf (𝐵|𝐴), andnf is extended
canonically to a set Δ of condtionals. Thus

nf (Δ) = {𝐴 ∨𝐵 | (𝐵|𝐴) ∈ Δ}

nf (Δ) = {𝐴𝐵 | (𝐵|𝐴) ∈ Δ}

are the sets of non-falsifying and falsifying formulas, respec-
tively, for the conditionals in Δ.

Example 2. Let Δbird and OP(Δbird) = (Δ0,Δ1) as
in Example 1. For 𝑆 = nf (Δ1) and 𝐻 = {𝑝𝑤} we get
MSS(nf (Δ1), {𝑝𝑤}) = MSS({𝑝 ∨ 𝑓, 𝑝 ∨ 𝑏}, {𝑝𝑤}) =
{{𝑝 ∨ 𝑓, 𝑝 ∨ 𝑏}}, and thus MCS(nf (Δ1), {𝑝𝑤}) = {∅}.
For 𝑆 = nf (Δ0) and 𝐻 = nf (Δ1) ∪ {𝑝𝑤} we get

MSS(nf (Δ0),nf (Δ1) ∪ {𝑝𝑤})

=MSS({𝑏 ∨ 𝑓, 𝑏 ∨ 𝑤}, {𝑝 ∨ 𝑓, 𝑝 ∨ 𝑏, 𝑝𝑤})

={{𝑏 ∨ 𝑤}}

and thus MCS(nf (Δ0),nf (Δ1) ∪ {𝑝𝑤}) = {{𝑏 ∨ 𝑓}}.

In addition to using the minima as in Proposition 1 for
computing |∼w

Δ, SWinf exploits the fact that the under-
lying relation 𝜔 <w

Δ 𝜔′ (cf. Equation (2)) can be deter-
mined by iteratively considering the subbases in OP(Δ) =
(Δ0, . . . ,Δ𝑘) starting from the the highest partition el-
ement Δ𝑘 . If 𝜉𝑗(𝜔) ̸= 𝜉𝑗(𝜔′) we can decide whether

𝜔 <w
Δ 𝜔′ or 𝜔 ̸<w

Δ 𝜔′ holds after considering 𝜉𝑗 ; only in
case that 𝜉𝑙(𝜔) = 𝜉𝑙(𝜔′) for all 𝑙 ∈ {𝑗, . . . , 𝑘} we continue
by considering the next lower element Δ𝑗−1.

Assume we have Δ with OP(Δ) = (Δ0, . . . ,Δ𝑘). The
central part of SWinf is the recursive function recWinf
that takes the index for one of the sets in the Z-partition
and a set of formulas as arguments. It is initially called
for the last part Δ𝑘 of the Z-partition. Each set in 𝒱 =
MCS(nf (Δ𝑘), {𝐴𝐵}) corresponds to a maximal selection
of conditionals in Δ𝑘 such that there is a model of 𝐴𝐵
not falsifying them, and thus to a selection of worlds that
falsify a minimal set of conditionals in Δ𝑘 . Analogously,
this holds forℱ = MCS(nf (Δ𝑘), {𝐴𝐵}) and𝐴𝐵. If there
is an 𝑁 ∈ ℱ for which there is no 𝑁 ′ ∈ 𝒱 with 𝑁 ⊆ 𝑁 ′,
there is a world 𝜔′ ∈ Mod Σ(𝐴𝐵) for which there is no
world 𝜔 ∈ Mod Σ(𝐴𝐵) with 𝜉𝑘(𝜔) ⊆ 𝜉𝑘(𝜔′). Thus, if the
condition in Line 5 holds, we have that𝐴 ̸|∼w

Δ 𝐵. Otherwise,
we continue to consider the intersection 𝒱 ∩ ℱ . Each set
𝑁 ∈ 𝒱 ∩ ℱ corresponds to a selection of conditionals that
is a minimal set of falsified conditionals in Δ𝑘 both for
some models of 𝐴𝐵 and 𝐴𝐵. If there is no such 𝑁 , then
all inclusions we considered in Line 5 are strict inclusions
and we have 𝐴 |∼w

Δ 𝐵. Otherwise, for each such 𝑁 we
need to consider the parts of the Z-partition with lower
indices to check whether for each world 𝜔′ ∈ Mod Σ(𝐴𝐵)
that falsifies the conditionals in 𝑁 there is a world 𝜔 ∈
Mod Σ(𝐴𝐵) that falsifies the conditionals in 𝑁 . To do this,
we add (nfΔ𝑘 ∖ 𝑁) ∪ 𝑁 as hard constraints to fix the
falsification behaviour onΔ𝑘 and call the function recWinf
recursively.

Example 3. Executing SWinf(Δbird , 𝑝, 𝑤) results in two
successive calls of recWinf involving the following values
and conditions, cf. Example 2:

recWinf (𝑗 = 1, 𝐻 = ∅)
𝒱 = {∅}
ℱ = {∅}
(∀𝑁 ′ ∈ ℱ ∃𝑁 ∈ 𝒱 . 𝑁 ⊆ 𝑁 ′) = true
𝒱 ∩ ℱ = {∅}
𝑗 = 1 > 0
return Yes iff recWinf (0, {𝑝 ∨ 𝑓, 𝑝 ∨ 𝑏}) =
Yes

recWinf (𝑗 = 0, 𝐻 = {𝑝 ∨ 𝑓, 𝑝 ∨ 𝑏})
𝒱 = {{𝑏 ∨ 𝑓}}
ℱ = {{𝑏 ∨ 𝑓, 𝑏 ∨ 𝑤}}
(∀𝑁 ′ ∈ ℱ ∃𝑁 ∈ 𝒱 . 𝑁 ⊆ 𝑁 ′) = true
𝒱 ∩ ℱ = ∅ → return Yes

Thus, SWinf(Δbird , 𝑝, 𝑤) returns Yes, and 𝑝 |∼w
Δbird

𝑤.
When asking whether 𝑤 can be inferred from 𝑝 in the con-

text of Δbird with system W, SWinf(Δbird , 𝑝, 𝑤) yields No:

recWinf (𝑗 = 1, 𝐻 = ∅)
𝒱 = {∅}
ℱ = {∅}
(∀𝑁 ′ ∈ ℱ ∃𝑁 ∈ 𝒱 . 𝑁 ⊆ 𝑁 ′) = true
𝒱 ∩ ℱ = {∅}
𝑗 = 1 > 0
return Yes iff recWinf (0, {𝑝 ∨ 𝑓, 𝑝 ∨ 𝑏}) =
Yes

recWinf (𝑗 = 0, 𝐻 = {𝑝 ∨ 𝑓, 𝑝 ∨ 𝑏})
𝒱 = {{𝑏 ∨ 𝑓, 𝑏 ∨ 𝑤}}
ℱ = {{𝑏 ∨ 𝑓}}
(∀𝑁 ′ ∈ ℱ ∃𝑁 ∈ 𝒱 . 𝑁 ⊆ 𝑁 ′) = false →
return No



5. Correctness Proof for SWinf

An important characteristic of the search space of the al-
gorithm SWinf is described by the falsification and non-
falsification behaviour of the conditionals inΔ𝑗+1∪· · ·∪Δ𝑘

for a given 𝑗 ∈ {0, . . . , 𝑘}. For formally characterizing this
behaviour we use the following notion.

Definition 5 (nf/f -condition for (Δ, 𝑗)). Let OP(Δ) =
(Δ0, . . . ,Δ𝑘), and let 𝑗 ∈ {0, . . . , 𝑘}. A set of formulas 𝐻
is a non-falsifying/falsifying condition (nf/f -condition) for
(Δ, 𝑗) if there are, for 𝑖 ∈ {𝑗+1, . . . , 𝑘} sets Δ𝑖

nf ,Δ
𝑖
f ⊆ Δ𝑖

such that Δ𝑖 = Δ𝑖
nf ∪Δ𝑖

f and Δ𝑖
nf ∩Δ𝑖

f = ∅, and

𝐻 =
⋃︁

𝑖∈{𝑗+1,...,𝑘}

nf (Δ𝑖
nf ) ∪ nf (Δ𝑖

f )

Thus, an nf/f -condition 𝐻 for (Δ, 𝑗) contains either the
non-falsifying formula 𝐴∨𝐵 or the falsifying formula 𝐴𝐵
for every conditional (𝐵|𝐴) ∈ Δ𝑗+1∪. . .∪Δ𝑘 ; this way the
nf/f -condition 𝐻 ensures that for any two worlds 𝜔, 𝜔′ ∈
ΩΣ with 𝜔 |= 𝐻 and 𝜔′ |= 𝐻 we have 𝜉𝑙(𝜔) = 𝜉𝑙(𝜔′) for
all 𝑙 ∈ {𝑗 + 1, . . . , 𝑘}.

To prove the correctness of SWinf , we prove the follow-
ing three lemmas first. Lemma 1 describes the condition in
Line 5 of SWinf .

Lemma 1. Let Δ be a consistent belief base with OP(Δ) =
(Δ0, . . . ,Δ𝑘), let 𝑗 ∈ {0, . . . , 𝑘}, 𝐴,𝐵 ∈ ℒΣ, and 𝐻 be
an nf/f -condition for (Δ, 𝑗). Let

𝒱 = MCS(nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵}) and

ℱ = MCS(nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵}).

Then ¬(∀𝑁 ′ ∈ ℱ ∃𝑁 ∈ 𝒱 . 𝑁 ⊆ 𝑁 ′) holds iff there
is a world 𝜔′ ∈ Mod Σ(𝐻 ∧ 𝐴𝐵) such that for all 𝜔 ∈
Mod Σ(𝐻 ∧𝐴𝐵) it holds that 𝜉𝑗(𝜔) ̸⊆ 𝜉𝑗(𝜔′).

Proof. Direction ⇒: Assume ¬(∀𝑁 ′ ∈ ℱ ∃𝑁 ∈
𝒱 . 𝑁 ⊆ 𝑁 ′); this is equivalent to ∃𝑁 ′ ∈ ℱ ∀𝑁 ∈ 𝒱 . 𝑁 ̸⊆
𝑁 ′. Let 𝑁 ′ ∈ ℱ be such a set with ∀𝑁 ∈ 𝒱 . 𝑁 ̸⊆ 𝑁 ′.

Let 𝜔′ ∈ Mod Σ(𝐻 ∧ 𝐴𝐵) be a world that satisfies
nf (Δ𝑖) ∖𝑁 ′; such a world exists because nf (Δ𝑖) ∖𝑁 ′ is
consistent by the construction of MCS. Let 𝜔 be any world
in Mod Σ(𝐻 ∧𝐴𝐵). Let 𝑁 ∈ 𝒱 such that 𝑁 ⊆ nf (𝜉𝑗(𝜔));
such an 𝑁 exists because nf (𝜉𝑗(𝜔)) is a (not necessarily
minimal) correction set. By assumption, 𝑁 ̸⊆ 𝑁 ′. There-
fore, also nf (𝜉𝑗(𝜔)) ̸⊆ 𝑁 ′. Because MCS yields minimal
correction sets, 𝜔′ falsifies all conditionals 𝑐 ∈ Δ𝑗 with
nf (𝑐) ∈ 𝑁 ′, and 𝜔′ does not falsify the conditionals 𝑑 ∈ Δ𝑗

with nf (𝑑) /∈ 𝑁 ′; in summary nf (𝜉𝑗(𝜔)) = 𝑁 ′. With
nf (𝜉𝑗(𝜔)) ̸⊆ 𝑁 ′ we have 𝜉𝑗(𝜔) ̸⊆ 𝜉𝑗(𝜔′).

Direction⇐: We prove this direction by contrapo-
sition. Assume that ∀𝑁 ′ ∈ ℱ ∃𝑁 ∈ 𝒱 . 𝑁 ⊆ 𝑁 ′. Let 𝜔′ be
any world in Mod Σ(𝐻 ∧𝐴𝐵); we need to show that there
is an 𝜔 ∈ Mod Σ(𝐻 ∧𝐴𝐵) such that 𝜉𝑗(𝜔) ⊆ 𝜉𝑗(𝜔′).

Let 𝑁 ′ ∈ ℱ such that 𝑁 ′ ⊆ nf (𝜉𝑗(𝜔′)); such an 𝑁 ′

exists because nf (𝜉𝑗(𝜔′)) is a (not necessarily minimal)
correction set. By assumption there is an 𝑁 ∈ 𝒱 such that
𝑁 ⊆ 𝑁 ′. Let 𝜔 ∈ Mod Σ(nf (Δ

𝑗) ∖𝑁); such a world exists
because nf (Δ𝑗) ∖𝑁 is consistent by the definition of MCS.
Because MCS yields minimal correction sets, 𝜔 falsifies all
conditionals 𝑐 ∈ 𝑁Δ𝑗 with nf (𝑐) ∈ 𝑁 . Furthermore, 𝜔′

falsifies all conditionals 𝑑 ∈ Δ𝑗 with nf (𝑑) ∈ 𝑁 ′. There-
fore, 𝑁 ⊆ 𝑁 ′ implies 𝜉𝑗(𝜔) ⊆ 𝜉𝑗(𝜔′).

Lemma 2 describes conditions on sets of falsified condi-
tionals that require a certain set 𝑆 to be in 𝒱 ∩ ℱ .

Lemma 2. Let Δ be a consistent belief base with OP(Δ) =
(Δ0, . . . ,Δ𝑘), let 𝑗 ∈ {0, . . . , 𝑘}, 𝐴,𝐵 ∈ ℒΣ, and let 𝐻
be an nf/f -condition for (Δ, 𝑗). Let

𝒱 = MCS(nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵}) and

ℱ = MCS(nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵}).

Let 𝜔 ∈ Mod Σ(𝐻 ∧ 𝐴𝐵) such that there is no
𝜔* ∈ Mod Σ(𝐻 ∧ 𝐴𝐵) with 𝜉𝑗(𝜔*) ⫋ 𝜉𝑗(𝜔),
and let 𝜔′ ∈ Mod Σ(𝐻 ∧ 𝐴𝐵) such that there is no
𝜔′* ∈ Mod Σ(𝐻 ∧ 𝐴𝐵) with 𝜉𝑗(𝜔′*) ⫋ 𝜉𝑗(𝜔′). Then
𝜉𝑗(𝜔) = 𝜉𝑗(𝜔′) implies that there is an 𝑆 ∈ 𝒱 ∩ ℱ with
𝜔, 𝜔′ |= nf (Δ𝑗) ∖ 𝑆.

Proof. Assume that 𝜉𝑗(𝜔) = 𝜉𝑗(𝜔′). Then 𝑆 = nf (𝜉𝑗(𝜔))
is a correction set with respect to (nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵}),
because 𝜔 is a model of all nf (𝑟) with 𝑟 ∈ Δ𝑗 ∖ 𝜉𝑗(𝜔). We
need to show that 𝑆 is a minimal correction set. Towards a
contradiction assume that there is an 𝑅 ∈ nf (𝜉𝑗(𝜔)) such
that 𝐶 = (𝐻 ∪ {𝐴𝐵}) ∪ nf (Δ𝑗) ∖ nf (𝜉𝑗(𝜔)) ∪ {𝑅} is
consistent. Let 𝜔𝑐 be a model of 𝐶 . The world 𝜔𝑐 does not
falsify any of the conditionals in Δ𝑗 ∖ 𝜉𝑗(𝜔) because it is a
model of nf (Δ𝑗) ∖ nf (𝜉𝑗(𝜔)). There must be an 𝑟 ∈ 𝜉𝑗(𝜔)
such that nf (𝑟) = 𝑅. The world 𝜔𝑐 also does not falsify
𝑟 because it is a model of 𝑅. Therefore, 𝜉𝑗(𝜔𝑐) ⫋ 𝜉𝑗(𝜔).
This contradicts that there is no 𝜔* ∈ Mod Σ(𝐻∧𝐴𝐵) with
𝜉𝑗(𝜔*) ⫋ 𝜉𝑗(𝜔); therefore 𝑆 is indeed a minimal correction
set with respect to (nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵}).

Analogously we can show that 𝑆 = nf (𝜉𝑗(𝜔′)) =
nf (𝜉𝑗(𝜔′)) is a minimal correction set with respect to
(nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵}). In summary, 𝑆 ∈ 𝒱 ∩ ℱ and
𝜔, 𝜔′ |= nf (Δ𝑗) ∖ 𝑆.

Lemma 3 describes an effect of a set 𝑆 ∈ 𝒱 ∩ ℱ on sets
of falsified conditionals.

Lemma 3. Let Δ be a consistent belief base with OP(Δ) =
(Δ0, . . . ,Δ𝑘), let 𝑗 ∈ {0, . . . , 𝑘}, 𝐴,𝐵 ∈ ℒΣ, and let 𝐻
be an nf/f -condition for (Δ, 𝑗). Let

𝒱 = MCS(nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵}) and

ℱ = MCS(nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵}).

Then, for 𝑆 ∈ 𝒱 ∩ ℱ and every 𝜔 ∈ Mod Σ(𝐻 ∧𝐴𝐵) with
𝜔 |= nf (Δ𝑗) ∖ 𝑆, and every 𝜔′ ∈ Mod Σ(𝐻 ∧ 𝐴𝐵) with
𝜔′ |= nf (Δ𝑗) ∖ 𝑆, it holds that 𝜉𝑗(𝜔) = 𝜉𝑗(𝜔′) = {𝑟 ∈
Δ𝑗 | nf (𝑟) ∈ 𝑆}.

Proof. Let 𝑅𝑆 = {𝑟 ∈ Δ𝑗 | nf (𝑟) ∈ 𝑆}. Because 𝜔 |=
nf (Δ𝑗)∖𝑆, we have that 𝜔 falsifies no conditionals in Δ𝑗 ∖
𝑅𝑆 , i.e., 𝜉𝑗(𝜔) ⊆ 𝑅𝑆 . Because 𝑆 is a minimal correction
set in 𝒱 , there is no 𝑟 ∈ 𝑅𝑆 that does is not falsified by 𝜔:
if there were such an 𝑟 then 𝑆 ∖ {nf (𝑟)} would be an even
smaller correction set. Therefore, 𝜉𝑗(𝜔) = 𝑅𝑆 .

Analogously we can show that 𝜉𝑗(𝜔′) = 𝑅𝑆 .

Now we can use Lemma 1, Lemma 2, and Lemma 3 to
show Proposition 2 on the output of the recursive algorithm
recWinf .

Proposition 2. Let Δ be consistent with OP(Δ) =
(Δ0, . . . ,Δ𝑘), let 𝑗 ∈ {0, . . . , 𝑘}, 𝐴,𝐵 ∈ ℒΣ, and let



𝐻 be an nf/f -condition for (Δ, 𝑗). Then recWinf (𝑗,𝐻)
returns “Yes” iff

for every 𝜔′ ∈ Mod Σ(𝐻 ∧𝐴𝐵)

there is an 𝜔 ∈ Mod Σ(𝐻 ∧𝐴𝐵) with 𝜔 <w
Δ 𝜔′.

(5)

Proof. We prove this by induction over 𝑗. Let

𝒱 = MCS(nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵}) and

ℱ = MCS(nf (Δ𝑗), 𝐻 ∪ {𝐴𝐵})

as assigned in Lines 3 and 4 (Algorithm 1).

Base Case (𝑗 = 0): By observing Lines 5 – 9 and 13
we see that recWinf (𝑗,𝐻) returns “Yes” iff

not ¬(∀𝑁 ′ ∈ ℱ ∃𝑁 ∈ 𝒱 . 𝑁 ⊆ 𝑁 ′) and 𝒱 ∩ ℱ = ∅. (6)

We show that (6) is equivalent to (5) by showing both direc-
tions of this equivalence.

Direction ⇒: Assume (6) holds. Let 𝜔′ be any
world in Mod Σ(𝐻 ∧𝐴𝐵). Because 𝐻 is an nf/f -condition
for (Δ, 0), every model of 𝐻 falsifies the same conditionals
in Δ1, . . . ,Δ𝑘 . Therefore, we need to show that there is a
world 𝜔 ∈ Mod Σ(𝐻 ∧𝐴𝐵) with 𝜉0(𝜔) ⫋ 𝜉0(𝜔′).

W.l.o.g. assume that there is no 𝜔′* with 𝜉0(𝜔′*) ⫋
𝜉0(𝜔′). With Lemma 1 and the first part of (6) we have
that there is an 𝜔 ∈ Mod Σ(𝐻 ∧𝐴𝐵) with 𝜉0(𝜔) ⊆ 𝜉0(𝜔′).
W.l.o.g. assume that there is no 𝜔* with 𝜉0(𝜔*) ⫋ 𝜉0(𝜔).
Towards a contradiction, assume that 𝜉0(𝜔) = 𝜉0(𝜔′).
With Lemma 2 we have that there is an 𝑆 ∈ 𝒱 ∩ ℱ which
contradicts (6). Therefore, 𝜉0(𝜔) ⫋ 𝜉0(𝜔′).

Direction⇐: Assume that (5) holds. Because 𝐻 is
an nf/f -condition for (Δ, 0), every model of 𝐻 falsifies the
same conditionals in Δ1, . . . ,Δ𝑘 . Therefore, with Lemma 1
it follows that the part left of the and in (6) holds.

It is left to show 𝒱 ∩ ℱ = ∅. Towards a contradiction
assume that 𝒱 ∩ℱ ̸= ∅, i.e., there is an 𝑆 ∈ 𝒱 ∩ℱ . Because
𝑆 is a correction set of ℱ , there is an 𝜔′ ∈ Mod Σ(𝐻 ∧𝐴𝐵)
with 𝜔′ |= nf (Δ0) ∖ 𝑆. By (5) there is an 𝜔 ∈ Mod Σ(𝐻 ∧
𝐴𝐵) with 𝜔 <w

Δ 𝜔′. Because 𝜔 <w
Δ 𝜔′ and 𝐻 is an nf/f -

condition for (Δ, 0) we have 𝜉0(𝜔) ⊆ 𝜉0(𝜔′) and therefore
𝜔 |= nf (Δ0) ∖ 𝑆. W.l.o.g. assume that there is no 𝜔* ∈
Mod Σ(𝐻 ∧ 𝐴𝐵) with 𝜔* |= nf (Δ0) ∖ 𝑆 and 𝜉0(𝜔*) ⫋
𝜉0(𝜔). By Lemma 3 we have 𝜉0(𝜔) = 𝜉0(𝜔′). This implies
𝜉(𝜔) = 𝜉(𝜔′) and contradicts 𝜔 <w

Δ 𝜔′. Therefore, 𝒱 ∩
ℱ = ∅ and (6) holds.

Induction Step: Let 𝑗 > 0 and assume the propo-
sition holds for 𝑗′ = 𝑗 − 1. We show that recWinf (𝑗,𝐻)
returns “Yes” iff (5) holds by showing both directions of this
equivalence.

Direction⇒: Assume that recWinf (𝑗,𝐻) returns
“Yes”; therefore the algorithm reaches Line 13 at some point.
It is left to show that (5) holds. Let 𝜔′ be any world in
Mod Σ(𝐻 ∧𝐴𝐵). W.l.o.g. assume that there is no 𝜔′* with
𝜉𝑗(𝜔′*) ⫋ 𝜉𝑗(𝜔′).

The algorithm passes Lines 5 and 6 without returning
“No”. Therefore, there is a world 𝜔 ∈ Mod Σ(𝐻 ∧𝐴𝐵) such
that 𝜉𝑗(𝜔) ⊆ 𝜉𝑗(𝜔′). W.l.o.g. assume that there is no 𝜔*

with 𝜉𝑗(𝜔*) ⊊ 𝜉𝑗(𝜔). We can distinguish two cases.
Case 1: 𝜉𝑗(𝜔) ⫋ 𝜉𝑗(𝜔′).

Because 𝐻 is an nf/f -condition for (Δ, 𝑗), all models of
𝐻 , including 𝜔 and 𝜔′, falsify the same conditionals in
Δ𝑗+1, . . . ,Δ𝑘 . Therefore, 𝜔 <w

Δ 𝜔′.
Case 2: 𝜉𝑗(𝜔) = 𝜉𝑗(𝜔′).

By Lemma 2 there is an𝑆 ∈ 𝒱∩ℱ with𝜔, 𝜔′ |= nf (Δ𝑗)∖𝑆.

Because 𝑆 is a minimal correction set in both 𝒱 and ℱ , we
have 𝜔, 𝜔′ |= 𝑆. Because the algorithm passes Lines 7–12
without returning “No”, for 𝐻new ← (nf (Δ𝑗) ∖ 𝑆)∪ 𝑆 the
function call recWinf (𝑗 − 1, 𝐻 ∪𝐻new ) returns “Yes”. By
construction, 𝐻 ∪𝐻new is an nf/f -condition for (Δ, 𝑗− 1).
Furthermore, 𝜔 |= 𝐻∧𝐴𝐵. Using the induction hypothesis,
there is an 𝜔𝑎 ∈ Mod Σ(𝐻 ∧𝐴𝐵) with 𝜔𝑎 <w

Δ 𝜔′.
In summary, (5) holds.
Direction⇐: Assume that (5) holds. We need to

show that recWinf (𝑗,𝐻) returns “Yes”. With Lemma 1 and
because 𝐻 is an nf/f -condition for (Δ, 𝑗), we have that
¬(∀𝑁 ′ ∈ ℱ ∃𝑁 ∈ 𝒱 . 𝑁 ⊆ 𝑁 ′) does not hold; therefore
the algorithm passes Lines 5 and 6 without returning “No”.

It is left to show that the algorithm passes Lines 7–12
without returning “No”. Let 𝑆 be any set in 𝒱 ∩ ℱ . By
construction, 𝐻new is an nf/f -condition for (Δ, 𝑗 − 1). Let
𝜔′ be any world in Mod Σ(𝐻 ∧𝐻new ∧𝐴𝐵). Because 𝜔′ |=
𝐻new we have 𝜔 |= nf (Δ𝑗) ∖ 𝑆. Because of (5), there
is a world 𝜔 ∈ Mod Σ(𝐻 ∧ 𝐴𝐵) with 𝜔 <w

Δ 𝜔′. Using
∀𝑁 ′ ∈ ℱ ∃𝑁 ∈ 𝒱 . 𝑁 ⊆ 𝑁 ′ again, we know that 𝜉(𝜔) ⊆
𝜉(𝜔′) = {𝑟 ∈ Δ𝑗 | nf (𝑟) ∈ 𝑆} (the last equation holding
due to Lemma 3); therefore𝜔 |= nf (Δ𝑗)∖𝑆. Using Lemma 3
again, we have 𝜉𝑗(𝜔) = {𝑟 ∈ Δ𝑗 | nf (𝑟) ∈ 𝑆} and
therefore 𝜔 |= 𝐻new . Hence, for every 𝜔′ ∈ Mod Σ(𝐻 ∧
𝐻new ∧𝐴𝐵) there is an 𝜔 ∈ Mod Σ(𝐻 ∧𝐻new ∧𝐴𝐵) with
𝜔 <w

Δ 𝜔′. Employing the induction hypothesis, we have
that recWinf (𝑗 − 1, 𝐻 ∪𝐻new ) returns “Yes”.

Thus, algorithm passes Lines 7–12 without returning
“No”, and then returns “Yes” in Line 13.

Now it is straightforward to show the correctness of
SWinfwith Proposition 2.

Theorem 1. Given a consistent belief base Δ and 𝐴,𝐵 ∈
ℒΣ, the call SWinf(Δ, 𝐴,𝐵) always terminates, and it re-
turns “Yes” iff 𝐴 |∼w

Δ 𝐵.

Proof. SWinf(Δ, 𝐴,𝐵) terminates because 𝒱,ℱ and thus
also 𝒱 ∩ ℱ are always finite sets, and for every recursive
call the index 𝑗 is decreased by one. SWinf(Δ, 𝐴,𝐵) re-
turns “Yes” iff recWinf (𝑘, ∅) returns “Yes”. Because ∅ is
an nf/f -condition for (Δ, 𝑘), according to Proposition 2,
this happens iff for every 𝜔 ∈ Mod Σ(∅ ∧𝐴𝐵) there is an
𝜔′ ∈ Mod Σ(∅ ∧ 𝐴𝐵) with 𝜔 <w

Δ 𝜔′, which is equivalent
to 𝐴 |∼w

Δ 𝐵.

6. Algorithm SZinf for System Z
Pearl’s system Z [20] is a well-known inductive inference
operator that was shown to coincide with rational closure
[26, 27]

Definition 6 (System Z [20]). Let Δ be consistent with
OP(Δ) = (Δ0, . . . ,Δ𝑘). The ranking function 𝜅𝑧

Δ is de-
fined as follows: If 𝜔 ∈ ΩΣ does not falsify any conditional
in Δ, then let 𝜅𝑧

Δ(𝜔) := 0. Otherwise, let Δ𝑗 be the last part
in OP(Δ) that contains a conditional falsified by 𝜔, and let
𝜅𝑧
Δ(𝜔) := 𝑗 +1. System Z maps Δ to the inference relation
|∼𝑧

Δ induced by 𝜅𝑧
Δ according to (1).

For any consistent Δ, the function 𝜅𝑧
Δ is the unique least

ranking model of Δ [20].

Example 4. For the belief base Δbird from Exam-
ple 1 we have OP(Δbird) = (Δbird

0,Δbird
1) with

Δbird
0 = {𝑟1, 𝑟4} and Δbird

1 = {𝑟2, 𝑟3}. The



𝜔 𝜅𝑧
Δbird

(𝜔)

𝑏 𝑝 𝑓 𝑤 2
𝑏 𝑝 𝑓 𝑤 2

𝑏 𝑝 𝑓 𝑤 1

𝑏 𝑝 𝑓 𝑤 1
𝑏 𝑝 𝑓 𝑤 0
𝑏 𝑝 𝑓 𝑤 1

𝑏 𝑝 𝑓 𝑤 1

𝑏 𝑝 𝑓 𝑤 1

𝑏 𝑝 𝑓 𝑤 2

𝑏 𝑝 𝑓 𝑤 2

𝑏 𝑝 𝑓 𝑤 2

𝑏 𝑝 𝑓 𝑤 2

𝑏 𝑝 𝑓 𝑤 0

𝑏 𝑝 𝑓 𝑤 0

𝑏 𝑝 𝑓 𝑤 0

𝑏 𝑝 𝑓 𝑤 0

Table 1
System Z ranking function 𝜅𝑧

Δbird
for Δbird in Example 4.

Algorithm 2 SZinf(Δ, 𝐴,𝐵)

Input: consistent belief base Δ and formulas 𝐴,𝐵
Output: Yes if 𝐴 |∼z

Δ 𝐵, and No otherwise
1: let OP(Δ) = (Δ0, . . . ,Δ𝑘)

2: function recZinf (𝑗)
3: 𝑉 ← SAT(

⋃︀𝑘
𝑖=𝑗 nf (Δ

𝑖)∪{𝐴𝐵})
4: if 𝑉 = UNSAT then
5: return No
6: 𝐹 ← SAT(

⋃︀𝑘
𝑖=𝑗 nf (Δ

𝑖)∪{𝐴𝐵})
7: if 𝐹 = SAT then
8: if 𝑗 = 0 then
9: return No

10: if recZinf (𝑗 − 1) = No then
11: return No
12: return Yes
13: end function
14: return if 𝐴 ≡ ⊥ then Yes else recZinf (𝑘)

Z-ranking function induced by Δbird is displayed in
Table 1. We have 𝜅𝑧

Δbird
(𝑝𝑏) = 0 and 𝜅𝑧

Δbird
(𝑝𝑏) = 2,

and thus 𝑏 |∼𝑧
Δbird

𝑝. Analogously, we can check that
𝜅𝑧
Δbird

(𝑤𝑝) = 𝜅𝑧
Δbird

(𝑤𝑝) = 1, yielding 𝑝 ̸|∼𝑧
Δbird

𝑤.
Note that this also illustrate that system Z, in contrast to,

e.g., system W, suffers from the drowning problem [12] be-
cause the birds property of having wings is drowned for pen-
guins because penguins are exceptional birds with respect to
the property flying.

Implementations of system Z have to cope with the expo-
nentially growing number of worlds for larger signatures.
Based on the approach of SWinf we design a similar algo-
rithm SZinf (Algorithm 2) for system Z.

One of the main differences between system W and sys-
tem Z is that, while <w

Δ compares the sets of conditionals
falsified by each world, 𝜅𝑧

Δ only takes into account the latest
𝑗 for which any conditional in Δ𝑗 is falsified by each world.
This simplifies the algorithm SZinf compared to SWinf in
two ways.

First, instead of finding a minimal set of falsified con-
ditionals in Δ𝑗 with MCS(nf (Δ𝑗), 𝐻 ∪ {𝐴�̇�}), it is suf-
ficient to check if there is a world 𝜔 with 𝜔 |= 𝐴�̇� that

falsifies no conditionals in Δ𝑗 for each �̇� ∈ {𝐵,𝐵}. This
does not even require solving a Partial MaxSAT problem;
instead we just have to check two sets of formulas for their
satisfiability.

Second, because there are no different minimal sets of
falsified conditionals to choose from, we do not need an ar-
gument 𝐻 of the recursive function to keep track of the
(non-)falsified conditionals in the previously considered
parts of OP(Δ). Instead, we straightforwardly check the
satisfiability of

⋃︀𝑘
𝑖=𝑗 nf (Δ

𝑖)∪{𝐴�̇�}.
For determining whether 𝐴 entails 𝐵, SZinf(Δ, 𝐴,𝐵)

considers the parts in OP(Δ) beginning with the latest
Δ𝑘 . The main part of SZinf is a recursive function
recZinf (𝑗) whose argument is the index of the part
of OP(Δ) that is considered next. For each Δ𝑗 , the
algorithm determines 𝑉 𝑗 = SAT(

⋃︀𝑘
𝑖=𝑗 nf (Δ

𝑖)∪{𝐴𝐵})
and 𝐹 𝑗 = SAT(

⋃︀𝑘
𝑖=𝑗 nf (Δ

𝑖)∪{𝐴𝐵}). Note that for
𝑗 < 𝑘, recZinf (𝑗) is only called if 𝐹 𝑗+1 = 𝑆𝐴𝑇 (cf. Line
7), implying that 𝜅𝑧

Δ(𝐴𝐵) < 𝑗 + 2. If 𝑉 = UNSAT, then
𝜅𝑧
Δ(𝐴𝐵) ⩾ 𝑗+1 and thus 𝜅𝑧

Δ(𝐴𝐵) ̸< 𝜅𝑧
Δ(𝐴𝐵), implying

𝐴 ̸|∼𝑧
Δ 𝐵. If 𝑉 = SAT and 𝐹 = UNSAT, then we can

conclude that 𝜅𝑧
Δ(𝐴𝐵) < 𝑗 + 1 and 𝜅𝑧

Δ(𝐴𝐵) ⩾ 𝑗 + 1
and thus 𝜅𝑧

Δ(𝐴𝐵) < 𝜅𝑧
Δ(𝐴𝐵), implying 𝐴 |∼𝑧

Δ 𝐵. If
𝑉 = SAT and 𝐹 = SAT, we continue by recursively calling
recZinf (𝑗 − 1) to check the parts of OP(Δ) with a lower
index. Line 14 contains the initial call to recZinf and
the handling of the border case that the antecedent is an
inconsistent formula.

Note that the function recZinf in SZinf can be easily
rewritten to use a loop instead of recursion, but we decided
to present it with recursive calls to point out the similarity
to SWinf .

Example 5. Executing SZinf(Δbird , 𝑝, 𝑤) yields two succe-
sive calls of recZinf involving as values and conditions:

recZinf (𝑗 = 1),
𝑉 ← SAT ,
𝑉 ̸= UNSAT ,
𝐹 ← SAT ,
𝐹 = SAT ,
𝑗 ̸= 0,
return No iff recZinf (0) = No

recZinf (𝑗 = 0),
𝑉 ← UNSAT ,
𝑉 = UNSAT ⇒ return No

Thus, SZinf(Δbird , 𝑝, 𝑤) returns No, and 𝑝 |̸∼z
Δbird

𝑤.

7. Correctness Proof for SZinf
For proving the correctness of SZinf , we first show the
following lemma connecting the satisfiablility of

𝑆𝑗
𝐴 =

𝑘⋃︁
𝑖=𝑗

nf (Δ𝑖)∪{𝐴}

to the rank of a formula 𝐴.

Lemma 4. Let Δ be a consistent belief base with OP(Δ) =
(Δ0, . . . ,Δ𝑘), let 𝑗 ∈ {0, . . . , 𝑘}, and let 𝐴 ∈ ℒΣ.

1. If 𝑆𝑗
𝐴 is consistent, then 𝜅𝑧

Δ(𝑆) < 𝑗 + 1.
2. If 𝑆𝑗

𝐴 is not consistent, then 𝜅𝑧
Δ(𝑆) ⩾ 𝑗 + 1.



Proof. Ad (1.): Assume that 𝑆𝑗
𝐴 is consistent. Then there

is a world 𝜔 with 𝜔 |=
⋃︀𝑘

𝑖=𝑗 nf (Δ
𝑖) and 𝜔 |= 𝐴. Because

𝜔 |=
⋃︀𝑘

𝑖=𝑗 nf (Δ
𝑖), the world 𝜔 does not falsify any con-

ditional in
⋃︀𝑘

𝑖=𝑗 Δ
𝑖, and thus 𝜅𝑧

Δ(𝜔) < 𝑗 + 1. Because
𝜔 |= 𝐴 and 𝜅𝑧

Δ(𝐴) = min{𝜅𝑧
Δ(𝜔) | 𝜔 |= 𝐴}, this implies

𝜅𝑧
Δ(𝐴) < 𝑗 + 1.
Ad (2.): Assume that 𝑆𝑗

𝐴 is not consistent. Then every
world 𝜔 with 𝜔 |= 𝐴 falsifies at least one conditional in⋃︀𝑘

𝑖=𝑗 Δ
𝑖. Therefore, 𝜅𝑧

Δ(𝐴) ⩾ 𝑗 + 1.

Now we can prove the correctness of recZinf .

Proposition 3. Let Δ be a consistent belief base with
OP(Δ) = (Δ0, . . . ,Δ𝑘), let 𝑗 ∈ {0, . . . , 𝑘}, and let
𝐴,𝐵 ∈ ℒΣ. If 𝑆𝑗+1

𝐴𝐵 and 𝑆𝑗+1

𝐴𝐵
are consistent, then

recZinf (𝑗) returns “Yes” iff 𝜅𝑧
Δ(𝐴𝐵) < 𝜅𝑧

Δ(𝐴𝐵).

Proof. We prove this by induction over 𝑗.
Base Case (𝑗 = 0): By assumption 𝑆𝑗+1

𝐴𝐵 and 𝑆𝑗+1

𝐴𝐵
are consistent, and thus, by Lemma 4 we have 𝜅𝑧

Δ(𝐴𝐵) <
𝑗 + 2 = 2 and 𝜅𝑧

Δ(𝐴𝐵) < 𝑗 + 2 = 2, implying that
𝜅𝑧
Δ(𝐴𝐵), 𝜅𝑧

Δ(𝐴𝐵) ∈ {0, 1}.
If 𝑆𝑗

𝐴𝐵 is consistent and 𝑆𝑗

𝐴𝐵
is inconsistent, then by

Lemma 4 we have 𝜅𝑧
Δ(𝐴𝐵) = 0 and 𝜅𝑧

Δ(𝐴𝐵) = 1 and thus
𝜅𝑧
Δ(𝐴𝐵) < 𝜅𝑧

Δ(𝐴𝐵). In this case the checks in Lines 4 and
7 fail and recZinf returns “Yes”.

In all other cases we have 𝜅𝑧
Δ(𝐴𝐵) ̸< 𝜅𝑧

Δ(𝐴𝐵) and
recZinf returns “No” because one of the checks in Lines 4
and 7 succeeds.

In both cases the proposition holds.
Induction Step: Let 𝑗 > 0 and assume the proposi-

tion holds for 𝑗′ = 𝑗−1. By assumption 𝑆𝑗+1
𝐴𝐵 and 𝑆𝑗+1

𝐴𝐵
are

consistent, and thus, by Lemma 4 we have 𝜅𝑧
Δ(𝐴𝐵) < 𝑗+2

and 𝜅𝑧
Δ(𝐴𝐵) < 𝑗 + 2. We can distinguish several cases

Case 1: 𝑆𝑗
𝐴𝐵 is inconsistent

By Lemma 4 we have 𝜅𝑧
Δ(𝐴𝐵) ⩾ 𝑗 + 1 implying that

𝜅𝑧
Δ(𝐴𝐵) ̸< 𝜅𝑧

Δ(𝐴𝐵). Also, the check in Line 4 succeeds
and recZinf returns “No”. The proposition holds.

Case 2: 𝑆𝑗
𝐴𝐵 is consistent and 𝑆𝑗

𝐴𝐵 is inconsistent
By Lemma 4 we have𝜅𝑧

Δ(𝐴𝐵) < 𝑗+1 and𝜅𝑧
Δ(𝐴𝐵) ⩾ 𝑗+1

implying that 𝜅𝑧
Δ(𝐴𝐵) < 𝜅𝑧

Δ(𝐴𝐵). The checks in Line 4
and 7 fail and recZinf returns “Yes”. The proposition holds.

Case 3: 𝑆𝑗
𝐴𝐵 is consistent and 𝑆𝑗

𝐴𝐵 is consistent
In this case the function recZinf is called recursively for 𝑗−
1. The preconditions for applying this proposition for 𝑗′ =
𝑗−1 are satisfied, and therefore, by the induction hypothesis,
recZinf (𝑗) returns “Yes” iff 𝜅𝑧

Δ(𝐴𝐵) < 𝜅𝑧
Δ(𝐴𝐵). The

proposition holds.

Using Proposition 3, we can now show the correctness of
SZinf .

Theorem 2. Given a consistent belief base Δ and 𝐴,𝐵 ∈
ℒΣ, the call SZinf(Δ, 𝐴,𝐵) always terminates, and it re-
turns “Yes” iff 𝐴 |∼𝑧

Δ 𝐵.

Proof. For 𝐴 ≡ ⊥, SWinf(Δ, 𝐴,𝐵) returns “Yes” (cf. Line
14) and 𝐴 |∼𝑧

Δ 𝐵, thus the theorem holds in this case. For
the remainder of the proof assume that 𝐴 ̸≡ ⊥.

SWinf(Δ, 𝐴,𝐵) terminates because for every recursive
call of recZinf the index 𝑗 is decreased by one, and the
algorithm terminates at latest for 𝑗 = 0. For 𝑗 = 𝑘, the sets
𝑆𝑗+1
𝐴𝐵 and 𝑆𝑗+1

𝐴𝐵
are empty and are thus trivially consistent.

By Proposition 3, the call SWinf(Δ, 𝐴,𝐵) returns “Yes” iff
𝜅𝑧
Δ(𝐴𝐵) < 𝜅𝑧

Δ(𝐴𝐵), which is equivalent to𝐴 |∼𝑧
Δ 𝐵.

8. Implementation and Evaluation
Results

We implemented SWinf and SZinf in Python and using the
SMT solver Z3 [28] accessed through the pySMT API [29].
In the implementation of SWinf , we used the optimizing
features of the Z3 SMT Solver to find Pareto fronts [30]
(which, in our case, is equivalent to finding the sets of all
MSS and thus allows deriving the set of all MCS).

For checking the correctness of our implementations, we
verified that the output of the implementations of SWinf
and SZinf match the output of earlier implementations of
system W [16] and of system Z [31]. For all queries with
respect to all belief bases small enough to be processed by
these older implementations without running into a timeout,
the different implementations of system W and system Z,
respectively, yielded exactly the same result.

For evaluating the implementations of SWinf and SZinf ,
belief bases and queries were constructed by a random-
ized scheme taking a signature Σ as input; a detailed de-
scription of this scheme and algorithms realizing it are
given in [32]. Only consistent belief bases build during
this process were used for benchmarking because system W
as given in Definition 3 and system Z as given in Defini-
tion 6 are defined only for consistent belief bases; reasoning
with system W with respect to belief bases that are only
weakly consistent [33, 34] has been introduced only very re-
cently [33, 24]. In the evaluation, belief bases with signature
sizes |Σ| ranging from 6 to 120 and number of conditionals
|Δ| ranging from 6 to 200 were considered. For different
(|Σ|, |Δ|)-combinations, in summary, 2 800 belief bases and
28 000 queries were created; the belief bases and queries
obtained thereby are available at the CLKR repository [35]
at https://www.fernuni-hagen.de/wbs/clkr/ as problem set
CLKR-PS004.

We benchmarked our (Partial Max-)SAT based Python
implementations of SWinf and SZinf against existing Java-
based approaches for inference according to system-W (WJ)
and system-Z (ZJ) that both consider all possible worlds
explicitly [16, 31]. No other previous system implementa-
tions of system W exist, and to the best of our knowledge all
other existing implementations of system Z, e.g., [36, 37, 38],
cannot handle belief bases over signature size of 50 or more.

Performance was assessed on a machine with an Intel i7-
3770 CPU and 32GB RAM under Arch Linux (Linux kernel
6) and Python 3.11 (single threaded). Each implementation
was tested on the full set of randomly generated belief bases
and queries described above. The run times presented in
Table 2 are averaged over 1,000 queries across 100 belief
bases for every combination of (|Σ|, |Δ|). Time is presented
in ms, timeout was set to 5 minutes.

The evaluation results in Table 2 show that only for the
very smallest (|Σ|, |Δ|)-combinations with |Σ| = 6 and
|Δ| = 6 the Java-based implementations WJ and ZJ of
system W and system Z, respectively, are faster than our im-
plementations of SWinf and SZinf . Furthermore, for every
(|Σ|, |Δ|) combination with |Σ| ⩾ 18 both WJ and ZJ ran
into a timeout in our evaluation scenario, while SWinf and
SZinf successfully cope with all (|Σ|, |Δ|) combinations
up to |Σ| = 120 and |Δ| = 200. It is interesting to note
that SZinfconsistently performs faster than SWinf in our
evaluation only by a factor of up to 2 across all (|Σ|, |Δ|)
combinations. In summary, this comparative evaluation
showcases SWinf’s and SZinf’s superior scalability and ef-

https://www.fernuni-hagen.de/wbs/clkr/


|Σ| 6 8 10 12 14 16 18 20 30 40 50 60 60 60 60 80 80 80 80 100 100 100 100 120 120 120 120 120

|Δ| 6 8 10 12 14 16 18 20 30 40 50 60 80 100 120 60 80 120 160 60 100 160 200 60 80 120 160 200

WJ 19 204 4967 248323 to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to.

SWinf 32 37 44 49 53 55 61 64 87 106 157 156 181 218 259 130 212 254 343 135 294 320 407 123 179 785 334 403

ZJ 11 52 302 1705 10337 80014 to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to. to.

SZinf 32 35 38 40 42 44 45 46 55 62 74 78 106 129 143 78 95 150 200 75 104 175 219 75 92 128 177 224

Table 2
Evaluation of implementations of inference with system W and system Z, time in milliseconds, timeout (to.) is at 5 min.

ficiency, particularly in handling queries on larger belief
bases within reasonable time frames.

9. Conclusions and Future Work
In this paper, we presented SAT and Partial MaxSAT based
approaches for implementing nonmonotonic reasoning with
system Z and system W. We presented the corresponding
algorithms SZinf and SWinf and gave formal correctness
proofs for them. The Python-based implementations of
SZinf and SWinf use the power of current SAT and Partial
MaxSAT solvers and scale up reasoning both with system Z
and system W to a new dimension, easily coping with belief
bases over 120 variables and containing up to 200 condition-
als. This advancement also puts larger practical applications
into reach for the first time.

Our current and future work includes extending the pre-
sented work in multiple ways. For instance, while the eval-
uation presented in Section 8 focuses on runtime, we will
further evaluate SZinf and SWinf by taking also the mem-
ory consumption into account. We will also analyse the
complexity of the algorithms. While previous practical ap-
plications were limited by small belief base sizes, we will
address larger and more realistic scenarios in the medical
and bio-medical domain as they have already been modelled
with conditional logic [39], using the new opportunities
opened up by the enriched power of our new implementa-
tions of nonmonotonic inference.
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