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Abstract
This paper introduces four novel inconsistency-tolerant inference relations for knowledge bases. These relations are based on the minimal
hitting sets of a knowledge base, which are sets of interpretations that contains a model of every formula in the knowledge base. We prove
several useful properties of hitting sets and the inference relations based on them. The full landscape of the relationships between the four
novel inference relations and the two inferences based on maximal consistent subsets by Rescher and Manor is given. We show that all
of the considered inference relations are non-monotonic and satisfy several System P properties. Finally, we show that the respective
complexity of inference is at most in the second level of the polynomial hierarchy.
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1. Introduction
Reasoning from knowledge bases is a central topic in knowl-
edge representation and reasoning (KRR) [1]. As it is very
common for real-world knowledge bases to contain incon-
sistencies, considerable research has been dedicated to iden-
tifying and dealing with inconsistencies. Much has been
achieved in the area of measuring inconsistencies in knowl-
edge bases [2], and the resolving of inconsistency has, for
instance, addressed in belief change [3] or ontology engi-
neering [4, 5]. However, reasoning from inconsistencies is
sometimes unavoidable, as resolving inconsistencies is hard,
or one does not want to alter the knowledge base. Thus, the
ability to reason effectively under inconsistency becomes
critically important. It is well-known that classical reasoning
approaches fail to provide meaningful inference in the pres-
ence of inconsistencies. Any formula is classically entailed
by an inconsistent knowledge base [6]. Research on reason-
ing from inconsistent knowledge bases was conducted in the
seventies [7], and is an active field until today [8, 9, 10, 11].

A powerful approach to inconsistency-tolerant reasoning
is due to Rescher and Manor [7], where reasoning with maxi-
mally consistent subsets is utilized. Given a knowledge base
K of (propositional) formulas, a maximally consistent subset
is a set M ⊆ K such that M ̸|=⊥, and there is no M′ ⊊ M that
is consistent M′ ̸|=⊥. The strict inference relation |∼mc

i arises
from consistent partitions, where K |∼mc

i φ holds if M |= φ

for all maximal consistent subsets M of K. The inference
relation |∼mc possesses many favourable properties, notably
aligning with classical entailment when the knowledge base
is consistent. However, reasoning with maximal consistent
subsets is highly dependent on the syntax of the knowledge
base. For example, for the knowledge base K1 = {p∧q,¬p},
strict inference based on maximal subsets does not yield any
non-trivial inference.

In this paper, we introduce an approach to inconsistency-
tolerant inference relations that employ the minimal hitting
sets of a knowledge base. Hitting sets of a knowledge base K
were defined by Thimm [12] as those sets of interpretations
that contain at least one model of each formula in K. The
minimality of hitting sets is defined by cardinality (instead
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of subset relation). We identify and prove several useful
properties of hitting sets, which were not known before.

The main observation of this paper is that one can define
inference of a formula φ from a knowledge base K based on
whether models of φ appear in hitting sets of K under certain
conditions. We define four inference relations |∼ns, |∼nc, |∼ps

and |∼pc. The most sceptical inference relation |∼ns states
that K entails φ if all interpretations in all minimal hitting
sets of K are models of φ . The most credulous inference
relation |∼pc states that φ follows from K, if there is at least
some model of φ in some minimal hitting set of K. According
to |∼nc-inference, φ follows from K if all minimal hitting
sets contain at least some model of φ , and, likewise, in |∼pc-
inference, φ follows from K if all interpretations in some
minimal hitting set are models of φ . We show that |∼ns and
|∼nc inference relations coincide with classical entailment
under consistency. All inference relations |∼ns, |∼nc, |∼ps

and |∼pc are pairwise distinct and are different from those
based on maximal consistent subsets by Rescher and Manor
[7]. Furthermore, we observe that none of these inference
relations is monotonic, yet that inference relations based
on minimal hitting sets satisfy several rationality postulates
(System P) known from non-monotonic reasoning [13]. The
complexity of inference for all four inference relations is NP-
hard and within the second level of the polynomial hierarchy.

In summary, the main contributions of this paper are:

• Definition of inconsistency tolerant inference rela-
tions in four degrees of skeptability, that are based
on minimal hitting sets.

• Proof of the relationship among these four inference
relations and to other inference relations.

• Several properties of hitting sets and of inference
relations based on hitting sets.

• An axiomatic evaluation of all four inference rela-
tions.

• Non-trivial bounds for the complexity of the infer-
ence problem for all four inference relations.

In the next section, we provide the necessary background
and consider the notion of hitting sets. In Section 3, we prove
several novel properties for hitting sets. Then, in Section 4,
we define four inference relations based on hitting sets. In
Section 5, we determine and prove the exact relationship
among hitting set-based inference relations and other infer-
ence relations. We show that classical and non-monotonic
reasoning properties are satisfied or violated by our infer-
ence relations in Section 6. In Section 7, we consider the
complexity of the inference problem for hitting set-based
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inference relations and show residence in the second level of
the polynomial hierarchy. Finally, in Section 8, we consider
some future work.

2. Preliminaries
In this section, we give the necessary background information
on logic, inference relations, and maximal consistent subsets.

2.1. Classical Propositional Logic
Let At be some fixed propositional signature, i. e., a finite set
of propositional variables (also called atoms), and let L (At)
be the corresponding propositional language constructed us-
ing the connectives ∧ (conjunction), ∨ (disjunction), → (im-
plication), ↔ (bi-implication) and ¬ (negation). We use the
symbol ⊤ to express a tautology and ⊥ to represent falsity.

If Φ is a formula or a set of formulas we write At(Φ) to
denote the set of propositions appearing in Φ. For a set Φ =
{φ1, . . . ,φn} let

⋀︁
Φ = φ1∧ . . .∧φn and ¬Φ = {¬φ | φ ∈ Φ}.

Moreover, we use overlining to denote the complement of
a formula, i. e., for every formula φ , if φ = ¬ψ then φ = ψ

and otherwise φ = ¬φ .
Semantics to a propositional language are given by in-

terpretations where an interpretation ω on At is a function
ω : At → {true, false}. Let Ω(At) denote the set of all in-
terpretations for At (with the convention that ω(⊤) = true
and ω(⊥) = false). An interpretation ω satisfies (or is a
model of) an atom a ∈ At, denoted by ω |= a, if and only if
ω(a) = true. The satisfaction relation |= is extended to for-
mulas, such that, for some subset of the language Φ⊆L (At)
we define ω |= Φ if and only if ω |= φ for every φ ∈ Φ. As
an abbreviation we sometimes identify an interpretation ω

with its complete conjunction, i. e., if a1, . . .an ∈ At are ex-
actly those propositional variables that are assigned true by
ω and an+1, . . . ,am ∈ At are exactly those variables that are
assigned false by ω we identify ω by a1 . . .anan+1 . . .am (or
any permutation of this). For example, the interpretation ω1
on {a,b,c} with ω(a) = ω(c) = true and ω(b) = false is
abbreviated by abc.

In the following, let Φ,Φ1,Φ2 be sets of formulas. De-
fine the set of models Mod(Φ) = {ω ∈ Ω(At) | ω |= Φ}.
We write Φ1 |= Φ2 if Mod(Φ1) ⊆ Mod(Φ2). We say that
Φ1,Φ2 are equivalent, denoted by Φ1 ≡ Φ2, if Mod(Φ1) =
Mod(Φ2). If Mod(Φ) = /0 we also write Φ |=⊥ and say that
Φ is inconsistent.

In this work, we are only considering knowledge bases that
are non-empty and do not contain formulas that contradict
themselves.

Definition 1. A knowledge base K is a finite set of formulas
K ⊆ L (At), where: K ̸= /0 and, every formula φ ∈ K is
consistent. Let K be the set of all knowledge bases.

Note that every formula in the knowledge base K is consis-
tent. However, the knowledge base itself can be inconsistent.
For example K = {p,q,¬p∨¬q}.

2.2. On Inference from Inconsistency
In this subsection, we consider inferences from inconsistent
knowledge that are based on maximally consistent subsets.

Definition 2 ([7]). Let K be a knowledge base. A set M ⊆ K
is a maximal consistent subset of K if M ̸|= ⊥ and for all

M′ ⊊ M holds M′ |=⊥. With MCS(K) we denote the set of
all maximally consistent subsets of K.

We demonstrate Definition 2 in the following example.

Example 1. We consider the knowledge base K = {p,q,r∧
¬p}. First, observe that K is inconsistent. One can see eas-
ily that MCS(K) = {{p,q},{q,r∧¬p}} are the maximally
consistent subsets of K.

By employing Definition 2, one can formally define the
approach by Rescher and Manor to inconsistent-tolerant rea-
soning [7].

Definition 3 ([7]). Let K be a knowledge base.

• A formula φ is said to be an inevitable conse-
quence of K, shortly K |∼mc

i φ , if M |= φ for all
M ∈ MCS(K).

• A formula φ is said to be an weak consequence of K,
shortly K |∼mc

w φ , if M |= φ for some M ∈ MCS(K).

A basic observation is that |∼mc
i and |∼mc

w are distinct
relations.

Proposition 4 ([7]). |∼mc
i ⊊ |∼mc

w .

Consider the knowledge base K1 = {p,q,s,s → t,¬t}. Ob-
viously, K1 is inconsistent, as there is an apparent incon-
sistency in the subset {s,s → t,¬t} of K. However, there
are some formulas that do not contribute to an inconsistency,
namely, p and q. Such formulas (or any deductible formula of
them) can be inferred by the inevitable consequence relation
(|∼mc

i ). Moreover, one can infer the formulas contributing
to inconsistency like s, s → t, or ¬t, using the weak conse-
quence inference relation (|∼mc

w ). However, knowledge bases
like K1 = {p∧ q,¬p}, one cannot infer q using |∼mc

i even
though the atom itself is not contributing the inconsistency.

2.3. Hitting Sets
A hitting set H ⊆ Ω(At) for a knowledge base K ensures that
every formula φ ∈ K is satisfied by at least one interpretation.

Definition 5 ([12, 14]). Let K be a set of formulas. A set
H ⊆ Ω(At) is a hitting set of K, if for all φ ∈ K there is
ω ∈ H with ω |= φ . A hitting set H is minimal if there is no
hitting set H ′ with |H ′|< |H|. Let H (K) denote the set of
minimal hitting sets of K.

Hitting sets have been used in [12, 14] to detect incon-
sistencies by identifying minimal subsets of interpretations
that cover all formulas in a knowledge base. The hitting set
inconsistency measure is defined as follows.

Definition 6 ([12, 14]). The hitting-set inconsistency mea-
sure Ihs : K−→ N is defined as:

Ihs(K) = min{|H| | H is a hitting set of K }−1

Note that Ihs is well-defined, since we assume that every
formula of a knowledge is (in itself) consistent, see item 3 of
Proposition 7 below.

3. Properties of Hitting Sets
In this section, we will discover several properties of hitting
sets. These properties will turn out very useful for the proofs
we conduct later in this paper. We start by considering an
example that demonstrates the notion of hitting sets and the
hitting-set inconsistency measure.
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Example 2. Consider the knowledge base K3 = {p,¬p∧
r,q} Possible minimal hitting sets are: H1 = {pqr, p̄qr},
H2 = {pqr, p̄q̄r}, H3 = {pqr̄, p̄qr} , H4 = {pqr̄, p̄q̄r},
H5 = {pq̄r̄, p̄qr} and H6 = {pq̄r, p̄qr} Making H (K1) =
{H1,H2,H3,H4,H5,H6}. Note that H7 = { pq̄r, p̄qr, p̄q̄r} is
a hitting set of K3, but H7 is not a minimal hitting set of K.
This is because minimality is defined in terms of cardinality,
and thus we have H7 /∈ H (K). Let us label the interpreta-
tions for later reference as follows: ω1 = pqr, ω2 = pqr̄,
ω3 = pq̄r , ω4 = pq̄r̄, ω5 = p̄qr, ω6 = p̄q̄r. Applying the
hitting-set inconsistency measure will result in Ihs(K3) = 2.

Note that a set of formulas S contain an inconsistent for-
mula exactly when there is no hitting set for S [14]. However,
knowledge bases do not contain such formulas. Thus, for
every knowledge base there is always a hitting set. Similarly,
empty knowledge bases are satisfied by any interpretation,
thus the minimal ones would be also the empty sets. In the
following, we summarize some nice properties of hitting sets
for knowledge bases.

Proposition 7. The following statements hold for each
knowledge base K.

1. K is consistent iff |H|= 1 for some H ∈ H (K).
2. H (K) is non-empty.
3. Each H ∈ H (K) is non-empty.
4. |H|= |H ′| for all H,H ′ ∈ H (K).

Proof. We consider each of the statements independently.

1. We show statement 1 by showing each direction in-
dependently.

“⇒” if K is consistent, let ω be a model of K. Then
H = {ω} is a (minimal) hitting set with |H|=
1.

“⇐” Let |H|= 1 for some H ∈H (K), so H = {ω}.
Then ω |= φ for all φ ∈ K and we have that ω

is a model of K. Therefore K is consistent.

2. Recall that every formula in K is consistent. Thus,
for each formula φ in K there is an interpretation ωφ

such that ωφ |= φ . It is easy to see that {ωφ | φ ∈ K}
is a hitting set of K. Because we are in a finite setting,
the existence of a hitting set implies the existence of
a minimal hitting set. Hence, H (K) is a non-empty
set.

3. Because K is non-empty, i.e., there is at least one
formula φ ∈ K. Since every hitting set H ∈ H (K)
contains a model of φ , H is non-empty.

4. For some knowledge base K, and by definition of H ,
each member of H (K) is minimal in the sense of
cardinality. Consequently, there is no hitting set H ′

of K where H ′ is of smaller size than any member of
H (K).

The following notion of a consistent partitioning was given
by Thimm [14].

Definition 8 ([14]). For a knowledge base K, a consistent
partitioning of K is a set Φ = {Γ1, . . . ,Γn} with Γ1 ∪ . . .∪
Γn = K and Γi ∩Γ j = /0 for any i ̸= j and every Γi is consis-
tent. We say Φ is a minimal consistent partitioning if there is
no other consistent partitioning Φ′ with |Φ′|< |Φ|.

Hitting sets can be conceptualized in terms of consistent
partitions.

Proposition 9. For every minimal hitting set of size n there
is a minimal consistent partitioning of size n. And vice versa.

Proof. We show each direction independently.

“⇒” We prove this by contradiction. For a knowledge
base K, assume there exist a a minimal hitting set
H ∈ H (K) of size n, and there does not exist a mini-
mal consistent partitioning of the same size n. Given
that H is a hitting set of K then for each interpretation
ω ∈ H satisfies a set of formulas Γ ⊆ K, and if we
have n number of interpretations we will have n num-
ber of subsets of K, these subsets must be consistent,
because there exist exactly one interpretation that sat-
isfies it. Let Φ be the set that contains all Γ′s of K.
Thus, Φ is a consistent partitioning of K. Following
our assumptions that means that that Φ is not mini-
mal, so there must be a smaller set that is a consistent
partitioning. However, having such a set would result
in having a hitting set H ′ where |H| = x, such that,
each Γ ∈ Φ is satisifiable by one interpretation since
they are consistent, and x < n. Which means that, H ′

is a hitting set of K, which would violate our assump-
tion that H is a minimal hitting set of K. Hence, for
every minimal hitting set of size n there is a minimal
consistent partitioning of size n.

“⇐” This is shown by construction for some knowl-
edge base K and a consistent partitioning Φ =
{K1, . . . ,Kn}. One would construct for each Ki ∈ Φ

one interpretation that models such a set. Which
would create a set H that is a hitting set of K. Further-
more, H is minimal because assuming H ′ exists and
it is smaller than H. That would result in a smaller
consistent partitioning of the same size according the
earlier point. Which is a contradiction, therefore, H ′

can’t exist, and H is a minimal hitting set.

The next example demonstrates the relationship between
hitting sets and consistent partitions.

Example 3. We consider the knowledge base K2 =
{p,q,s,s → t,¬t}. One can easily see that K2 is inconsistent
and that Φ = {{p,q,s → t},{s,¬t}} is a minimal consistent
partitioning of K2. The set H = {pqst, pqst} is minimal hit-
ting set of K. Clearly, every interpretation in H is a model of
exactly one of the elements in Φ.

We consider now some basic observations on the dynamics
of hitting sets when a formula is added to a knowledge base
K. The first proposition shows that adding a formula will
only increase the number of elements in a minimal hitting
set.

Proposition 10. Let K be a knowledge base and φ a con-
sistent formula. For each H ∈ H (K) and for each H ′ ∈
H (K ∪{φ}) holds |H| ≤ |H ′|.

Proof. Towards a contradiction assume the contrary. Let
H,H ′ be minimal hitting sets (of K and K ∪{φ}) such that
|H ′| < |H|. Clearly, because H ′ is a hitting set of K ∪{φ},
it is also a hitting set of K. Thus, |H ′|< |H| contradicts the
minimality of H.

A direct consequence of Proposition 10 is that Ihs(K) ≤
Ihs(K ∪{φ}) holds for every knowledge base K and very
formula φ [14].
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The following property guarantees that when extending
K to K ∪ {φ}, there is always one minimal hitting set of
K ∪{φ} that is an extension of a minimal hitting set of K.

Proposition 11. Let K be a knowledge base and φ a consis-
tent formula. There is a minimal hitting set H ∈ H (K) and
a minimal hitting set H ′ ∈ H (K ∪{φ}) such that H ⊆ H ′.

Proof. First, recall that due to Proposition 7, every knowl-
edge base has at least one hitting set. Let H ′

0 ∈ H (K ∪{φ})
be a minimal hitting set of K∪{φ}. Clearly, H ′

0 is also hitting
set of K. Let H0 ⊆ H ′

0 be a ⊆-minimal subset of H ′
0 that is

still a hitting set of K. If H0 is a minimal hitting set of K,
we are done. We consider the case of H0 is not a minimal
hitting of K. This means that there is a minimal hitting set
H of K with |H|< |H0|. As H is a hitting set of K, for each
formula ψ ∈ K there is a model ωψ of ψ with ωψ ∈ H. Be-
cause φ is consistent, there is also a model ωφ for φ . Now
let H ′ = H ∪{ωφ}, which is clearly a hitting set of K ∪{φ},
because H ′ contains a model of every formula of K ∪{φ}.
In summary, we have |H| < |H0| ≤ |H ′

0| and thus, we have
that |H|+1 = |H ′| ≤ |H0| ≤ |H ′

0| holds. From this last obser-
vation and because H ′

0 is a minimal hitting set of K ∪{φ},
we obtain that H ′ is a minimal hitting set of K ∪ {φ} by
employing Corollary 4.

A very basic observation that complements Proposition 11
is that if a minimal hitting set H of a knowledge base K
contains a model of φ , then H is also a minimal hitting set
of K ∪{φ}.

Proposition 12. Let K be a knowledge base and φ a con-
sistent formula. If a minimal hitting set H ∈ H (K) con-
tains a model of φ , then H (K ∪{φ}) ⊆ H (K) and H ∈
H (K ∪{φ}).

Proof. First, recall that due to Proposition 7, every knowl-
edge base has at least one hitting set. Let Hφ ∈ H (K) be a
minimal hitting set of K that contains a model of φ . Clearly,
Hφ is then also a hitting set of K ∪ {φ} and furthermore,
due to Proposition 10, also minimal. Thus, we obtain that
Hφ ∈ H (K ∪ {φ}). For the second part of the statement,
let H ′ ∈ H (K ∪{φ}) be a hitting set of K ∪{φ} such that
H ′ /∈ H (K). Clearly, H ′ has to be also a hitting set of K,
because H ′ contains a model of every formula in K. More-
over, because of Corollary 4, we obtain H ′ is also a minimal
hitting set of K.

Finally, we observe that there might be minimal hitting
sets of K and of K ∪{φ} that are completely unrelated to all
minimal hitting sets of the respective other knowledge base.

Proposition 13. There are knowledge bases K and consistent
formulas φ witnessing the following statements:

1. There is a minimal hitting set H ∈ H (K) such that for
all minimal hitting sets H ′ ∈ H (K∪{φ}) holds H ̸⊆ H ′.

2. There is a minimal hitting set H ′ ∈H (K∪{φ}) such that
for all minimal hitting sets H ∈ H (K) holds H ̸⊆ H ′.

Proof. For Statement 1, let K = {p,¬p∧ r,q} be the knowl-
edge base from Example 2 and let φ = ¬p∧¬q∧ r. Observe
that H = {pq̄r, p̄qr̄} is a minimal hitting set of K, but no
superset of H is a minimal hitting set of K ∪{φ}.

For Statement 2, let K = {p∧ r, p∧ q} and let φ = p∧
q∧¬r. Note that H ′ = {pq̄r, pqr̄} is a minimal hitting set
of K ∪{φ}. We have that H = {pqr} is the one and only
minimal hitting set of K, which not a subset of H ′.

Formula K3 |∼ns K3 |∼nc K3 |∼ps K3 |∼pc

p∨ r ✓ ✓ ✓ ✓
¬p ✗ ✓ ✗ ✓

q∧ r ✗ ✗ ✓ ✓
¬q ✗ ✗ ✗ ✓

p∧ r ✗ ✗ ✗ ✗

Figure 1: Entailment of |∼ns, |∼nc, |∼ps, and |∼pc for the knowl-
edge base K3 = {p,¬p∧ r,q} and the formulas from Example 4.

4. Inference Based on Hitting Sets
By leveraging hitting sets we can define several inference
relations based on different criteria of model satisfaction.
These inference relations help determine the logical conse-
quences of a knowledge base under various conditions of
certainty and possibility.

We will consider multiple inference relations, written |∼
with superscripts, that are relations of type P(K)×L (At).
For such a relation |∼, we ease notation and write φ |∼ ψ for
{φ} |∼ ψ . Given knowledge bases K,K′, we are lifting |∼ by
saying that K′ follows from K′ w.r.t. |∼, written K |∼ K′, if
for all φ ∈ K′ holds K |∼ φ .

Definition 14. Define inference relations |∼ns, |∼nc, |∼ps and
|∼ps such that

K |∼ns
φ if ∀H ∈ H (K) : ∀ω ∈ H : ω |= φ

K |∼nc
φ if ∀H ∈ H (K) : ∃ω ∈ H : ω |= φ

K |∼ps
φ if ∃H ∈ H (K) : ∀ω ∈ H : ω |= φ

K |∼pc
φ if ∃H ∈ H (K) : ∃ω ∈ H : ω |= φ

for every knowledge base K and formula φ .

If K |∼ns φ holds, we say that φ is a necessary skeptical
inference of K. If K |∼nc φ holds, we say that φ is a necessary
credulous inference of K. If K |∼ps φ holds, we say that φ is
a possible skeptical inference of K. If K |∼pc φ holds, we say
that φ is a possible credulous inference of K.

The following example considers the four inference rela-
tions |∼ns, |∼nc, |∼ps and |∼pc.

Example 4. We consider again K3 = {p,¬p∧ r,q} from
Example 2, and the formulas p∨ r , ¬p, q∧ r, ¬q and p∧ r.
One can observe the following:

1. K3 |∼ns p∨ r, since all interpretation in each minimal
hitting set in H (K3) satisfy p∨ r

2. K3 |∼nc ¬p, since in every minimal hitting set in
H (K3) there is an ω that models ¬p.

3. K3 |∼ps q∧ r, since both interpretations of H1 model
q∧ r.

4. K3 |∼pc ¬q, since there exist an interpretation in a
hitting set that model ¬q, like ω6.

5. K3 ̸|∼ns ¬p, because there is some interpretation (like
ω2 ) that does not model ¬p

6. K3 ̸|∼nc q∧ r, because there is some hitting set H4
where all interpretations does not model q∧ r

7. K3 ̸|∼ps ¬p because for every minimal hitting set
there will always be some interpretation that satisfies
p since it exists as formula in the knowledge base.

8. K3 ̸|∼pc p∧ r since no interpretation satisfies p∧ r

Figure 1 summarizes the entailment of |∼ns, |∼nc, |∼ps, |∼pc.

The following lemma highlights the logical dualities be-
tween possible and necessary inference.

4



Yehia Hatab et al. CEUR Workshop Proceedings 1–10

Lemma 15. Let K be a knowledge base and φ a formula.
Then

• K |∼ps φ iff K ̸|∼nc ¬φ .
• K |∼pc φ iff K ̸|∼ns ¬φ .

Proof. We start by showing the first statement. The follow-
ing sequence of equivalences yields the statement.

K |∼ps
φ ⇔∃H ∈ H (K) : ∀ω ∈ H : ω |= φ

⇔¬¬∃H ∈ H (K) : ∀ω ∈ H : ω |= φ

⇔¬∀H ∈ H (K) : ∃ω ∈ H : ω ̸|= φ

⇔¬∀H ∈ H (K) : ∃ω ∈ H : ω |= ¬φ

⇔ K ̸|∼nc ¬φ

and similarly for item 2 as follows,

K |∼pc
φ ⇔∃H ∈ H (K) : ∃ω ∈ H : ω |= φ

⇔¬¬∃H ∈ H (K) : ∃ω ∈ H : ω |= φ

⇔¬∀H ∈ H (K) : ∀ω ∈ H : ω ̸|= φ

⇔¬∀H ∈ H (K) : ∀ω ∈ H : ω |= ¬φ

⇔ K ̸|∼ns ¬φ

Intuitively, |∼ns is the strictest inference of all four and
|∼pc is the most permissive inference relation among all
four. The inference relation |∼nc and |∼ps are somewhat in
the middle, yet incomparable. In the following theorem we
formally confirm our intuition of these inference relations.
More precisely, we fully clarify the relationship among the
four inference relations |∼ns, |∼nc, |∼ps and |∼pc. We consider
this as one of the main contributions of this paper.

Theorem 16. The relationships among |∼ns, |∼nc, |∼ps, and
|∼pc hold:

1. |∼ns ⊊ |∼nc

2. |∼ns ⊊ |∼ps

3. |∼nc ⊊ |∼pc

4. |∼ps ⊊ |∼pc

5. |∼ps ̸⊆ |∼nc

6. |∼nc ̸⊆ |∼ps

Proof. For any two arbitrary inference relations |∼x, |∼y, to
prove that |∼x⊊|∼y it is enough to show that for every pair
(K,φ) ∈|∼x there exist the same pair (K,φ) ∈|∼y. We start
by showing set inclusion.

1. We show |∼ns ⊊ |∼nc. For some set K and formula φ .
If K |∼ns φ then that means that every interpretation
ω in every hitting set H ∈ H (K) also models φ .
Then it must be the case that for every hitting set
H ∈ H (K), there exists some interpretation ω |= φ .
Then (K,φ) ∈|∼nc.

2. We show |∼ns ⊊ |∼ps. For some set K and formula φ .
if K |∼ns φ then that means that every interpretation
ω in every hitting set H ∈ H (K) also models φ .
Then, it must be the case that all interpretations of
some hitting set H ∈ H (K) where ω |= φ . Then
(K,φ) ∈|∼ps.

3. We show |∼nc ⊊ |∼pc. For some set K and formula
φ . if K |∼nc φ then that means that for every hit-
ting set H ∈ H (K) there exist some interpretation
ω that models φ . Then it must be the case that
there exist some interpretations ω of some hitting
set H ∈ H (K) where ω |= φ . Then (K,φ) ∈|∼pc.

4. We show |∼ps ⊊ |∼pc. For some set K and formula
φ . if K |∼ps φ then that means that there exist some
hitting set H ∈ H (K) such that every interpretation
ω ∈ H, ω |= φ . Then it must be the case that there
exist some interpretations ω of some hitting set H ∈
H (K) where ω |= φ . Then (K,φ) ∈|∼pc.

Note that Example 4 witnesses that all set inclusions in State-
ments 1. to 4. are strict. Moreover, Example 4 witnesses
Statements 5 and 6.

Theorem 16 establishes that |∼ns is the most “strict" of
the four inference relations we proposed; and that |∼pc is the
least “strict" inference relation. Meaning anything entailed by
|∼ns is also entailed by |∼nc and |∼ps. On the other spectrum,
|∼nc and |∼ps are subsumed by |∼pc. Shaping a lattice where
|∼ns and |∼pc are acting as upper and lower bounds.

5. On Relationships to other
Inference Relations

In this section we study the relationship of our newly discov-
ered inference relations |∼ns, |∼nc, |∼ps, and |∼pc to classical
propositional logic, and inference relations based on maxi-
mally consistent subsets. Furthermore, we discuss how the
inference relations interact within consistency.

5.1. MCS Based Inference
We start by considering |∼mc

i and |∼mc
w from Rescher and

Manor [7], presented in Section 2. In examining the duality
between minimal hitting sets and maximal consistent subsets
of a knowledge base K, one can observe that the set of all
minimal hitting sets H (K) inherently includes all possible
variations of minimal hitting sets. Given this comprehensive
nature, some of these hitting sets will inevitably strive to
maximize the number of formulas they satisfy in their in-
terpretations. This implies that among minimal hitting sets,
there will be at least one minimal hitting set that satisfies
each maximally consistent subset of K. This relationship is
formally stated in the following proposition.

Proposition 17. Let K be a knowledge base. Then

∀M ∈ MCS(K) : ∃H ∈ H (K) : ∃ω ∈ H : ω |= M

Proof. We prove this by contradiction. Given a knowledge
base K, say that for some maximally consistent subset M ∈
MCS(K), there does not exist an interpretation ω in any
hitting set of K that satisfies M. By the definition of hitting
sets in Section 2 Definition 5, each hitting set must satisfy
each formula in the knowledge base, so each interpretation
satisfies some formulas in the knowledge base. Therefore,
there exist an interpretation ω ∈ H where H ∈ H (K) such
that, ω |= Φ and Φ ⊆ M. Since M is consistent, then there
must exist an interpretation ω ′ that satisfies M. However, if
we replace ω in H with ω ′, that would result in a set H ′

that is the same size as H, i.e, minimal, and is more general
in the sense that it satisfies everything that H satisfies plus
previously unsatisfied elements of M. Consequently H ′ is a
minimal hitting set of K, leading to a contradiction to our
assumption.

In other words, for every maximally consistent subset M
of a knowledge base K, there exists at least one interpretation
ω in a minimal hitting set of K that satisfies M.

5
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|∼nc

|∼ps

|∼pc|∼mc
i |∼mc

w
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Figure 2: Relationship among |∼ns, |∼nc, |∼ps, |∼pc, |∼mc
i , and |∼mc

w
discovered in this paper. Note that |∼mc

i ⊊ |∼mc
w was shown by

Rescher and Manor [7].

We continue with an example on the relationship between
|∼ns and |∼mc

i , respectively, |∼mc
w and |∼pc.

Example 5. We consider again the knowledge base K =
{p,q,r∧¬p} from Example 1. Recall that the maximal con-
sistent subsets are MCS(K) = {{p,q},{q,r∧¬p}}. One can
see easily that K |∼mc

i q holds and that K ̸|∼ns q holds. This is
because there is a minimal hitting set H = { p̄q̄r, pqr} which
contains a countermodel of q. Furthermore, it is the case that
K |∼pc r and K ̸|∼mc

w r hold. This shows that |∼ns ⊊ |∼mc
i and

|∼mc
w ⊊ |∼pc holds.

The following observation is a consequence of Proposi-
tion 17 and Example 5.

Theorem 18. It holds:

1. |∼ns ⊊|∼mc
i

2. |∼mc
w ⊊|∼pc

Proof. Example 5 provides proof for the strictness of the
inference relations. We show the inclusions given in State-
ment 1 and Statement 2.

Statement 1 follows from Proposition 17. Since all maxi-
mally consistent subsets are satisfied by some interpretation
in a hitting set. Then assuming the antecedent results in hav-
ing all interpretations of every hitting set satisfying φ . Which
shows that all maximally consistent subsets satisfy φ . Then
we obtain that K |∼mc

i φ holds.
For Statement 2 observe that all maximally consistent sub-

sets are satisfied by an interpretation in a minimal hitting
set. Meaning that, when assuming the antecedent K |∼mc

w φ ,
indicates there is some maximally consistent subset that sat-
isfies φ . Hence, there is some interpretation in some minimal
hitting set that satisfy φ . Consequently, we have that K |∼pc φ

holds.

Proposition 18 confirm our intuition about the upper and
lower bounds induced by inference relations |∼ns and |∼pc.

We have provided a full landscape of all these relation-
ships that points out that all these six inference operations
are distinct approaches for inconsistent-tolerant reasoning.
Figure 2 summarizes the results on the relationships among
|∼ns, |∼nc, |∼ps, |∼pc, |∼mc

i , and |∼mc
w given in Theorem 16

and Theorem 18. Recall that it was shown that |∼mc
i ⊊ |∼mc

w
holds [7] (see Proposition 4).

5.2. Consistent Knowledge Bases
Given the consistency of a knowledge base, several results
can be obtained. Specifically, consistency allows us to demon-
strate that certain inference relations align perfectly with
classical entailment. For instance, when the knowledge base
is consistent, both the necessary skeptical inference and the
necessary credulous inference coincide with classical en-
tailment, ensuring that our reasoning framework maintains
logical soundness.

Proposition 19. Let K be a consistent knowledge base and
φ a formula. Then, K |∼ns φ iff K |∼nc φ iff K |= φ .

Proof. We first begin by proving that necessary skeptical
(|∼ns) and necessary credulous (|∼nc) are equivalent if the
knowledge base is consistent.

If K |∼ns φ then K |∼nc φ since the universal quantifier ∀
encompasses the case of the existential quantifier ∃ (due to
Proposition 7).

If K |∼nc φ then K |∼ns φ . If K |∼nc φ and K is consistent,
then by Proposition 7, there is always one element in each
hitting set. i.e. in the case of consistency for all H ∈ H (K)
holds |H|= 1. Thus, there exist some ω ∈ H encompasses
the only element in H.

Next, we prove that K |∼ns φ iff K |= φ .

“⇒” if K |∼ns φ then K |= φ . Assuming that the antecedent
is true; then because K is consistent we obtain that
each H ∈ H (K) is a singleton set due to Proposi-
tion 7 Clearly, because we have K |∼ns φ , for each
H = {ω} with H ∈ H (K), we have ω |= φ . Which
satisfies the definition of classical entailment.

“⇐” if K |= φ , then K |∼ns φ . Assuming that the an-
tecedent is true, every model of K is a model of φ .
Moreoever, because K is consistent, there exist an in-
terpretation that satisfies every formula in K. Hence,
for each ω ∈Mod(K), {ω} is a minimal hitting set.
due to Definition 5 of minimal hitting sets. Therefore,
K |∼ns φ .

When knowledge bases are consistent, we can also prove
that possible skeptical and possible credulous inferences
yield non-trivial outcomes, providing meaningful insights
into the semantics of the knowledge base.

Proposition 20. Let K be a consistent knowledge base and
φ a formula. Then: K |∼ps φ iff K |∼pc φ iff K ∪{φ} ̸|=⊥

Proof. First part is similarly proven like Proposition 19,
possible skeptical (|∼ps) and possible credulous (|∼pc) are
equivalent if the knowledge base is consistent. If K |∼ps φ

then K |∼pc φ since the universal quantifier ∀ encompasses
the the case of existential quantifier ∃

If K |∼pc φ then K |∼ps φ . Since K is consistent, then by
Proposition 7, there is always one element in each hitting
set. i.e. in the case of consistency for all H ∈ H (K) holds
|H|= 1. Thus, there exist some ω ∈ H encompasses the only
element in H. Establishing the same result for all ω ∈ H.

Second part is to prove that K |∼pc φ iff K ∪{φ} ̸|=⊥.

“⇒” If K |∼pc φ then K ∪ {φ} ̸|=⊥, assuming the an-
tecedent is true, then there exist an interpretation ω

that satisfies K such that ω |= K. Then by definition
of classical logic satisfiability, there exist an interpre-
tation that satisfies {φ}∪K then {φ}∪K ̸|=⊥.

6
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“⇒” If K∪{φ} ̸|=⊥ then K |∼pc φ . when the antecedent is
true, we have that K∪{φ} is consistent. Thus, there is
an interpretation ω such that ω |=K and ω |= φ holds.
Since hitting sets are minimal, there is a H ∈ H that
contains ω and thus, K |∼pc φ holds.

6. Evaluation Regarding Properties
Classical logics, e. g., propositional logic or first-order logic,
fall into the class of Tarskian logics. Those logics are char-
acterized by having the property that logical entailment is a
closure operator. We take inspiration from Tarskian logics
and consider the following closure-like properties:

If φ ∈ K, then K |∼ φ . (Extensivity)

If K |∼ K′ and K′ |∼ φ , then K |∼ φ . (Idempotency)

If ψ is consistent and K |∼ φ , then K ∪{ψ} |∼ φ .
(Consistent Monotonicity)

The properties (Extensivity) and (Idempotency) are the same
as for closure operators. (Consistent Monotonicity) is similar
to monotonicity, but respects that knowledge bases do not
contain inconsistent formulas. The following proposition
shows that none of the inference relations considered are
monotonic logics, and most of them violate all properties of
a Tarskian logic.

Theorem 21. In general, the following statements hold:

• |∼nc and |∼pc satisfy (Extensivity).
• |∼ns and |∼ps violate (Extensivity).
• |∼ns, |∼nc, |∼ps and |∼pc violate (Idempotency) and

(Consistent Monotonicity).

Proof. We start by proving that |∼nc and |∼pc satisfy
(Extensivity).

|∼nc. Assume that φ ∈ K holds. For each hitting set H ∈
H (K), there is an interpretation ωφ ∈ H such that
ωφ |= φ . Hence, we have K |∼nc φ .

|∼pc. Assume that φ ∈ K holds. Note that due to Proposi-
tion 7, there is at least one minimal hitting set in
H (K) . Moreover, for each hitting set H ∈ H (K),
there is an interpretation ωφ ∈ H such that ωφ |= φ .
Hence, we have K |∼ps φ .

Next, we show that |∼ns and |∼ps violate (Extensivity).

|∼ns. Consider the knowledge base K = {a,¬a} over the
signature Σ = {a}. A minimal hitting set of K is
H = {a, ā}. Hence, we have that a ∈ K holds, yet we
have that K ̸|∼ns a holds. Clearly, this is a violation
of (Extensivity).

|∼ps. Consider the knowledge base K = {a,¬a} over the
signature Σ = {a}. The only minimal hitting set of
K is H = {a, ā}. Hence, we have that a ∈ K holds,
yet we have that K ̸|∼ps a holds. Clearly, this is a
violation of (Extensivity).

In the following, we show that |∼ns, |∼nc, |∼ps and |∼pc vio-
late (Idempotency). Let K = {p∧q, p∧¬q}, let K′ = {p ↔
q,¬q}, and let φ = ¬p∧¬q. We obtain the following sets of
minimal hitting sets:

H (K) = {H} with H = {pq, pq̄}

H (K′) = {H ′} with H ′ = { p̄q̄}

Note that we have Mod(φ) = { p̄q̄} and thus, we have K′ |∼ φ

and K ̸|∼ φ for all |∼∈ {|∼ns, |∼nc, |∼ps, |∼pc}.
In the following, we show that |∼ns, |∼nc, |∼ps and |∼pc

violate (Consistent Monotonicity).

|∼ns, |∼nc and |∼ps. The proof holds for all |∼ ∈
{|∼ns, |∼nc, |∼ps}. Let K = {p ∧ r, p ∧ q}, let
φ = p ∧ q ∧ r let ψ = p ∧ q ∧ ¬r. We obtain the
following sets of minimal hitting sets:

H (K) = {H0} with H0 = {pqr}
H (K ∪{ψ}) = {H1,H2} with H1 = {pqr, pqr̄}

H2 = {pq̄r, pqr̄}

Hence, we have K |∼nc φ and K ∪{ψ} ̸|∼nc φ .

|∼pc. Let K = {p,¬p∧ r,q}, let ψ = ¬p∧¬q∧ r and let
φ = ¬p∧ q∧¬r. Observe that H = {pq̄r, p̄qr̄} is a
minimal hitting set of K, and thus, we have K |∼pc φ .
The minimal hitting sets of K ∪{ψ} are:

H (K ∪{ψ}) = {H1,H2} with H1 = {pqr, p̄q̄r}
H2 = {pqr̄, p̄q̄r}

Consequently, we have K ∪{ψ} ̸|∼pc φ , which con-
tradicts (Consistent Monotonicity).

The following properties are similar to those of System P
[13], but reflect that knowledge bases may not contain incon-
sistent formulas (yet the knowledge bases may be inconsis-
tent at all).

If φ is consistent, then φ |∼ φ . (Consistent Reflexivity)

If φ |= ψ and K |∼ φ , then K |∼ ψ . (Right Weakening)

If K, K′ are consistent, K ≡ K′ and K |∼ φ , then K′ |∼ φ .
(Consistent LLE)

If ψ is consistent, K ∪{ψ} |∼ φ and K |∼ ψ , then K |∼ φ .
(Consistent Cut)

If ψ is consistent, K |∼ ψ and K |∼ φ , then K ∪{ψ} |∼ φ .
(Consistent CM)

If φ ,ψ are consistent, φ |∼ χ and ψ |∼ χ , then φ ∨ψ |∼ χ .
(Consistent Or)

Note that in the area of non-monotonic logic, System P is
known as the conservative core, as it captures preferential
entailment [13]; respectively, all properties of System P, ex-
cept for the property Or, are known due to Gabbay as basic
properties of non-monotonic inference relations [15].

The following proposition attests that the inference rela-
tions considered in this paper satisfy (almost) all of the our
adaption of the System P properties.

Theorem 22. In general, the following statements hold

• |∼ns, |∼nc, |∼ps and |∼pc satisfy
(Consistent Reflexivity), (Right Weakening),
(Consistent LLE), (Consistent Cut) and
(Consistent Or).

• |∼ns and |∼nc satisfy (Consistent CM).
• |∼ps and |∼pc violate (Consistent CM).

7
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Proof. We start by showing that |∼ns, |∼nc, |∼ps and |
∼pc satisfy (Consistent Reflexivity). For |∼ns and |∼nc sat-
isfaction of (Consistent Reflexivity) follows from Proposi-
tion 19 and satisfaction of (Consistent Reflexivity) by clas-
sical propositional logic. For |∼ps and |∼pc satisfaction
of (Consistent Reflexivity) follows from Proposition 20 di-
rectly.

Next, we show that |∼ns, |∼nc, |∼ps and |∼pc satisfy
(Right Weakening). Note that we have that φ |= ψ holds
if Mod(φ) ⊆Mod(ψ) holds. From this, and the definition
of |∼ns, |∼nc, |∼ps and |∼pc, we obtain that K |∼ φ implies
K |∼ ψ for all |∼ ∈ {|∼ns, |∼nc, |∼ps, |∼pc}.

We show that |∼ns, |∼nc, |∼ps and |∼pc satisfy
(Consistent LLE). For |∼ns and |∼nc satisfaction of
(Consistent LLE) follows from Proposition 19 and satisfac-
tion of (Consistent LLE) by classical propositional logic. For
|∼ ∈ {|∼ps, |∼pc} observe that due to Proposition 19, for each
consistent K, we have that K |∼ φ holds whenever K∪{φ} is
consistent. This is a purely semantical definition, and hence,
we obtain easily that (Consistent LLE) is satisfied for |∼.

We show that |∼ns, |∼nc, |∼ps and |∼pc satisfy
(Consistent Cut).

|∼ns and |∼nc. Let |∼ one of |∼ns or |∼nc in the following.
Assume that K |∼ α and K ∪{α} |∼ns β holds. From
K |∼ α , we obtain that every minimal hitting set
H ∈ H (K) contain a model of α . Note that due
to Proposition 7, H (K) is not empty, hence, such
an H is also guaranteed to exist. Then, by employ-
ing Proposition 12, we obtain from the observations
above that each minimal hitting set H of K is also
a minimal hitting set of K ∪ {α}, which implies
that H (K) =H (K∪{α}) holds. Consequently, we
have that K ∪{α} |∼ β implies that K |∼ β holds.

|∼ps and |∼pc. In the following we will give the proof for
|∼ps. The proof for |∼pc is analogue, but Hβ is a
minimal hitting set that contains a model of β .

Form K |∼ps α , we obtain that there is minimal hit-
ting set H ∈ H (K) of K that contains only models
of α . Note that due to Proposition 7, we obtain that
H a non-empty set. Consequently, H contains at least
one model of α . Moreover, from K ∪ {α} |∼ps β ,
we obtain that there is a minimal hitting set Hβ ∈
H (K∪{α}) contains only models of β . By employ-
ing Proposition 12 and our observations from above,
we obtain H (K∪{α})⊆H (K). Consequently, Hβ

is also a hitting set of K. Consequently, we obtain
that K |∼ps β holds.

We show that |∼ns, |∼nc, |∼ps and |∼pc satisfy
(Consistent Or).

|∼ns and |∼nc. Let |∼ either be |∼ns or |∼nc. Note that
(Consistent Or) is satisfied by entailment |= of classi-
cal propositional logic. Consequently, due to Propo-
sition 19, (Consistent Or) is also satisfied by |∼ns.

|∼ps and |∼pc. Let |∼ either be |∼ps or |∼pc. Assume that
{φ} |∼ps χ and {ψ} |∼ps χ hold. By employing
Proposition 20, our assumptions are equivalent to
stating that {φ ,χ} is consistent and, respectively,
that {ψ,χ} is consistent. This implies also that
{φ ∨ ψ,χ} is consistent. By employing Proposi-
tion 20 again, the latter yields {φ ∨ψ} |∼ps χ .

|∼ns |∼nc |∼ps |∼pc

Extensivity ✗ ✓ ✗ ✓
Idempotency ✗ ✗ ✗ ✗

Consistent Monotonicity ✗ ✗ ✗ ✗

Consistent Reflexivity ✓ ✓ ✓ ✓
Right Weakening ✓ ✓ ✓ ✓

Consistent LLE ✓ ✓ ✓ ✓
Consistent Cut ✓ ✓ ✓ ✓
Consistent CM ✓ ✓ ✗ ✗
Consistent Or ✓ ✓ ✓ ✓

Figure 3: Overview of the satisfaction (✓), respectively violation
(✗), of inference properties by |∼ns, |∼nc, |∼ps, and |∼pc.

Next, we show that |∼ns and |∼nc satisfy (Consistent CM).
Let |∼ be one of |∼ns or |∼nc. Assume that K |∼ α and K |∼ β

holds. From K |∼ α , we obtain that every minimal hitting set
H ∈ H (K) contain a model of α and a model of β . Note
that due to Proposition 7, H (K) is not empty, hence, such an
H is also guaranteed to exist. By employing Proposition 12,
we obtain from the observations above that each minimal
hitting set H of K is also a minimal hitting set of K ∪{α}.
Our observations imply that H (K) = H (K ∪{α}) holds.
Consequently, we have that K ∪{α} |∼ β holds.

As last step of this proof, we show that |∼ps and |∼pc

violate (Consistent CM). We give the proof for the violation
of (Consistent CM) by |∼ps. The proof for |∼ps is the same,
but with β = p∧q∧¬r. Let K = {p∧q∧ r, p∧ (q ↔¬r)},
let α = ¬q∧ r and let β = p∧q. The minimal hitting sets of
K, respectively K ∪{α}, are:

H (K) = {H1,H2} with H1 = {pqr, pqr̄}
H (K ∪{α}) = {H2} H2 = {pqr, pq̄r}

Then, we have that K |∼ps α and K |∼ps β holds. However, H2
contains no models of β . Thus, we obtain that K∪{α} ̸|∼ps β

holds; which witnesses a violation of (Consistent CM).

We have seen that |∼ns, |∼nc, |∼ps, and |∼pc are all non-
monotonic logics that satisfy most of the (consistent versions)
of the System P properties. Figure 3 summarizes the results
of the axiomatic study presented here.

7. Computational complexity
Understanding the computational complexity of the pro-
posed inference operators is crucial for assessing their prac-
tical applicability. By analyzing the decision problems as-
sociated with each inference operator, we can determine
how feasible it is to implement these operators in real-
world reasoning systems. This analysis reveals the complex-
ity classes of these inference operators, particularly in de-
riving logical consequences under inconsistency, thereby
evaluating the efficiency and scalability of the proposed
methods. We consider the following decision problem for
|∼∈ {|∼ns, |∼nc, |∼ps, |∼pc}:

|∼-INFERENCE:
Input Knowledge base K, formula φ

Output YES iff K |∼ φ , otherwise NO

First, we analyze the complexity of hitting sets, which
are the building blocks of our inference relations. In the
following lemma, we show the computational complexity of
deciding whether a set is a hitting set.

8
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Lemma 23. Let K be a knowledge base and H ⊆ Ω(At).
Deciding whether H is a hitting set of K can be solved in
polynomial time.

Proof. Verifying whether for an interpretation ω and a for-
mula φ , we have ω |= φ , can be solved in polynomial time.
We therefore check for all φ ∈ K and all ω ∈ H, whether
ω |= φ . If we find for each φ ∈ K a positive answer, H is a
hitting set.

Lemma 24. Let K be a knowledge base and H ⊆ Ω(At).
Deciding whether H is a minimal hitting set of K is coNP-
complete.

Proof. For coNP membership consider the complementary
problem of deciding whether H is not a minimal hitting set.
This is either because H is not a hitting set or it is not minimal.
The first case can be solved in (deterministic) polynomial
time due to Lemma 23. For the latter case, this can be solved
by guessing a set H ′ ⊆ Ω(At) with |H ′|< |H| and verifying
that H ′ is a hitting set, cf. Lemma 23. The problem of decid-
ing whether H is not a minimal hitting set can therefore be
solved in NP. It follows that deciding whether H is a minimal
hitting set of K is in coNP.

For coNP-hardness, we provide a reduction from the coNP-
complete problem of deciding whether a given propositional
formula φ is undecidable. On input φ we construct an in-
stance (Kφ ,Hφ ) for our problem via (let x /∈At(φ) be a fresh
atom)

Kφ = {x,¬x∨φ}
Hφ = {ω1,ω2}

where ω1,ω2 : At(φ)∪{x}→ {true, false} are defined via

ω1(x) = true ω1(a) = true for all a ∈ At(φ)

ω2(x) = false ω1(a) = true for all a ∈ At(φ)

Observe that (Kφ ,Hφ ) can be constructed in polynomial time
wrt. φ . We claim that φ is unsatisfiable if and only if Hφ is a
minimal hitting set of Kφ .

• “⇒”: Assume that φ is unsatisfiable, i. e., there is
no ω with ω |= φ . Observe first that Hφ is a hitting
set of Kφ since we have ω1 |= x and ω2 |= ¬x∨ φ .
Assume there is a hitting set H ′ with |H ′|< |Hφ |= 2,
so H ′{ω}. Then ω |= x and ω |= ¬x∨φ . It follows
that ω |= φ , contradicting the assumption that φ is
unsatisfiable. It follows that Hφ is a minimal hitting
set.

• “⇐”: We show the contraposition, i. e., if φ is satisfi-
able then Hφ is not a minimal hitting set. So assume
that φ is satisfiable and let ω |= φ . We extend ω to
an interpretation over At(φ)∪{x} via ω(x) = true.
Then observe that ω |= Kφ and therefore {ω} is a
minimal hitting set with 1 = |{ω}| < |Hφ | = 2. So
Hφ is not a minimal hitting set.

Theorem 25. |∼ps-INFERENCE and |∼pc-INFERENCE are
both in ΣP

2 .

Proof. For ΣP
2 = NPNP membership, consider the following

algorithm. On input K and φ , guess a set H ⊆ Ω(At) (with
maximally |K| elements) and verify using the NP-oracle
(=coNP-oracle) that H is a minimal hitting set, see Lemma 24.
Then, in deterministic polynomial time, check ω |= φ for all
ω ∈ H (note that there are at most |K| many elements in

H). If all (resp. at least one) check is positive, the answer
to |∼ps-INFERENCE (resp. |∼pc-INFERENCE) is positive as
well. It should be clear that this algorithms runs in ΣP

2 and
correctly solves the given problem.

Theorem 26. |∼ns-INFERENCE and |∼nc-INFERENCE are
both in ΠP

2 .

Proof. For ΠP
2 = coNPNP membership, we consider the cor-

responding complementary problems, i. e., given K and φ

decide whether K ̸|∼ns φ and K ̸|∼nc φ , respectively. Then, the
statement of this theorem follows directly from Theorem 25
and Lemma 15.

The next proposition shows that all inferences considered
here are NP-hard.

Proposition 27. |∼ns-INFERENCE, |∼nc-INFERENCE, |∼ps-
INFERENCE and |∼pc-INFERENCE are NP-hard.

Proof. In the following, let |∼ be one of the inference rela-
tions of |∼ns, |∼nc, |∼ps, or |∼pc. Let φ a formula in KNF, i.e.,
φ consists of clauses C1, . . . ,Cn and let K = {φC1 , . . . ,φCn},
whereby φCi =

⋁︁
l∈Ci

l denotes the disjunction of all literals
for a clause Ci. Note that an interpretation ω is a model of φ

if and only if ω is a model of all formulas in K.
We show that φ is satisfiable if and only if K |∼ φ .

“⇒” If φ is satisfiable, then we have that K is satisfiable.
Hence, due to Proposition 7, we have that every min-
imal hitting set of K has exactly one element. More-
over, the one and only interpretation in every minimal
hitting set from H (K) is a model of every formula
in K and, hence, also a model of φ . So, regardless
of which of the inference relations from above we
consider, we have K |∼ φ (c.f. Definition 14).

“⇐” If φ is not satisfiable, then we have that K is un-
satisfiable. Towards a contradiction, we assume that
K |∼ φ holds. Due to Proposition 7, this means that re-
gardless which of the inference relations from above
we consider, there is at least one minimal hitting
set H ∈ H (K) of K that contains a model ω of φ .
Now, recall that ω is consequently also a model of
all formulas in K. From the latter and because H is
minimal, we obtain that H has to be a singleton set,
i.e., H = {ω}. However, because φ is not satisfiable,
we have that every minimal hitting set of K contains
at least two elements due to Proposition 7. Leading
to the desired contradiction.

We highly suspect that |∼ps-INFERENCE and |∼pc-
INFERENCE are also ΣP

2 -hard and |∼ns-INFERENCE and |∼nc-
INFERENCE are also ΠP

2 -hard. However, a proof as, so far,
eluded us.

8. Summary and Future work
In this paper, we defined novel inference relations. A spe-
cific feature of these inference relation is that they allow
paraconsistent reasoning. We established the relationship
among these inference relations and also among inference
relations based on maximal consistent subsets. Our findings
concluded that inference relations derived from hitting sets
not only align with classical entailment when the knowledge
base is consistent but also provide a nuanced approach to
handling inconsistencies. Moreover, we showed how two of

9
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the proposed inference relations, namely necessary skeptical
inference and possible credulous inference, form a lattice to
all other inference relations, including ones not introduced
in this work.

Finally, we showed that the implications of our work are
significant for developing more reliable AI systems capable
of reasoning under uncertainty, by proving it’s reasoning ca-
pabilities in nonmonotonic reasoning. By leveraging hitting
sets, one can achieve a more comprehensive understanding
of inconsistent knowledge bases, by facilitating improved
decision-making processes in uncertain and complex envi-
ronments.

While our study has laid a solid foundation, there are sev-
eral avenues for future research. One apparent result to be
explored is the hardness of these inference relations. More-
over, extending our framework to other types of logical sys-
tems and exploring its applicability in different domains
could provide valuable insights. For instance, investigating
the interplay between hitting sets and many-valued logics,
like priest’s three-valued logic [16]. Finally, we strive for
finding complete axiomatizations of the inference relations
introduced in this paper.
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