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Abstract
Strong Persistence pSPq, since its perception ten years ago, has been at the center of attention in the realm of forgetting in logic
programming. So-called forgetting instances, for which it is possible to obtain pSPq were characterized; semantic classes of procedures
satisfying pSPq when possible, or various relaxations when it is not, were found; and concrete operators representing these classes
were constructed. Recently, pSPq was relaxed in a novel dimension, taking into account the strong persistence of a forgetting result
relativized to a subset of the remaining atoms. In this paper, we construct a syntactic forgetting operator that satisfies this newly defined
desideratum relativized Strong Persistence prSPq, whenever possible.

1. Introduction
Logic programming (LP) under answer set semantics is a
declarative non-monotonic reasoning formalism with a ro-
bust theoretical (and monotonic) foundation based in in-
tuitionistic logic [1]. In essence, answer sets (which are
sometimes referred to as stable models) are a second-order
notion over classical formulas [2], providing more expres-
sive power than first-order logic, making it possible, for
example, to identify Hamiltonian cycles [3].

The question of how a program may be simplified is not
simply answered. The surge of research around it, rather
suggests that it is very nuanced, where the limits and pos-
sibilities vary greatly, depending on the exact definition of
what is meant by being simpler, and the concrete formal-
ism that is being investigated. Such processes might find
application, e.g. in a legal context; in order to exclude de-
pendencies that are no longer deemed relevant; or to reduce
the complexity of reasoning tasks.

Forgetting [4, 5, 6], or variable elimination, which is one
such possible interpretation of simplification, intuitively
means that a programs signature is restricted, while the log-
ical dependencies of the remaining atoms are left unchanged.
It has been considered with respect to many properties in-
cluding strong persistence pSPq which seemingly captures
best its intuitions [7]. In essence, pSPq ensures that the
result of forgetting atoms 𝑉 from a program 𝑃 exerts the
same behavior as 𝑃 under the addition of a context program
𝑅 not containing any forgotten atoms. There are instances
for which pSPq is impossible to be achieved [8]. Follow-
ing this negative result, several relaxations of pSPq were
proposed, which are attainable through different semantic
means [9, 10, 11].

While results of forgetting using the desired seman-
tics may be obtained by counter-model construction [12]
and perhaps be minimized using a version of the Quine-
McCluskey algorithm [13], a much more direct and conser-
vative approach is to forget by syntactically manipulating an
input program. There are several such syntactical operators
in the literature [14, 15, 16, 17, 18, 19, 20], where notably
fSP, as its name suggests, satisfies pSPq whenever possible.

Example 1.1. It is possible that by forgetting an atom we
may introduce double negations. E.g. forgetting 𝑞 from 𝑃 “
t𝑎 Ð 𝑛𝑜𝑡 𝑞; 𝑞 Ð 𝑛𝑜𝑡 𝑎u results in 𝑃 1

“ t𝑎 Ð 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑎u
If an atom is forgotten that appears in such a self-loop, the
syntactic derivations are a bit opaque. Consider forgetting 𝑞
from the following program:
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𝑎Ð 𝑞 𝑏Ð 𝑛𝑜𝑡 𝑞 𝑞 Ð 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑞

Already, it is impossible to satisfy pSPq [8]. However, a possi-
ble result satisfying a relaxation of pSPq may be [17]:

𝑎_ 𝑏Ð 𝑏Ð 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑏 𝑎Ð 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑎

where 𝑎 and 𝑏 each support themselves, and at least one of
them is true.

The fact that forgetting in practice should not be done by
hand, is probably best witnessed by the fact that forgetting
about multiple atoms may not be reduced to forgetting them in
iteration. Rather, the result is derived by a recursive derivation
tree [19]. 1

Abstraction by omission [21, 22, 23] can be seen as a re-
laxed version of forgetting, where atoms are removed from
a program, but its answer-sets are only required to behave
as before, under no addition of another program 𝑅.

The aptly named Simplification [24] reduces the signature
of a program 𝑃 by a set of atoms 𝐴 as well, requiring the
result to behave the same as 𝑃 under a context program 𝑅
that may contain atoms 𝐴 in a restricted way.

These different ideas as well as several versions of equiv-
alence were recently captured by an overarching notion of
𝐴-simplifications of𝑃 relative to𝐵, where𝐴 is a set of atoms
that is to be removed, and𝐵 is the signature of possible con-
text programs 𝑅 [25]. Interestingly, by taking into account
the full spectrum of all of these ideas, a novel, relaxed ver-
sion of pSPq, so-called relativized Strong Persistence prSPq
emerged.

What is missing from the picture now, is a concrete syn-
tactic transformation frSP that satisfies prSPq, whenever
possible. Since pSPq and prSPq coincide in some cases, it is
clear that we should start our search at fSP and see how we
get to frSP from there. While the question this paper is out
to answer may appear simple at first, its answer is far from
it. To be able to construct frSP, it turns out that it is neces-
sary to intrically modify sub-procedures of fSP. Finally, with
this operator at our disposal, we are then able to construct
syntactically general 𝐵-relativized 𝐴-simplifications.

Given that the class of forgetting operators FrSS to satisfy
prSPq, whenever possible, is defined methodologically to
meet this criterion, and that the operator frSP is defined
methodologically to match FrSS, we assume any intuition
about the derivation rules one may find to be ‘post hoc’. We
therefore leave the task of finding an intuitive explanation
of why they are as they are for future studies.
1There are accessible implementations of all forgetting operators staying
within logic programs available online, including the ones in this paper:
https://service.scadsai.uni-leipzig.de/ForgettingWeb
https://github.com/mattiberthold/ForgettingWeb
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2. Background
Given that FrSS and therefore frSP require the understanding
of several topics that are ‘non-canon’ and scientific papers
should be self-contained there is a surprising amount of
research to be recalled, in spite of the fact that the topic of
this paper is forgetting. Therefore, after recalling the foun-
dations of logic programming, we compile and streamline a
rather long list of definitions and results from the literature.

Logic Programs. We assume a propositional signature Σ.
A logic program 𝑃 over Σ is a finite set of rules of the form

𝑎1 _ . . ._ 𝑎𝑘 Ð 𝑏1, . . . , 𝑏𝑙, 𝑛𝑜𝑡 𝑐1, . . . , 𝑛𝑜𝑡 𝑐𝑚,

𝑛𝑜𝑡 𝑛𝑜𝑡 𝑑1, . . . , 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑑𝑛,

where all 𝑎1, . . . , 𝑎𝑘, 𝑏1, . . . , 𝑏𝑙, 𝑐1, . . . , 𝑐𝑚, and 𝑑1, . . . , 𝑑𝑛
are atoms of Σ [26]. Such rules 𝑟 are also written more
succinctly as

H p𝑟q Ð B`
p𝑟q, 𝑛𝑜𝑡B´

p𝑟q, 𝑛𝑜𝑡 𝑛𝑜𝑡B´´
p𝑟q,

where H p𝑟q “ t𝑎1, . . . , 𝑎𝑘u, B`
p𝑟q “ t𝑏1, . . . , 𝑏𝑙u,

B´
p𝑟q “ t𝑐1, . . . , 𝑐𝑚u, and B´´

p𝑟q “ t𝑑1, . . . , 𝑑𝑛u,
and we will use both forms interchangeably. Given a rule
𝑟, H p𝑟q is called the head of 𝑟, and Bp𝑟q “ B`

p𝑟q Y
𝑛𝑜𝑡B´

p𝑟qY𝑛𝑜𝑡 𝑛𝑜𝑡B´´
p𝑟q is called the body of 𝑟, where,

for a set 𝐴 of atoms, 𝑛𝑜𝑡𝐴 “ t𝑛𝑜𝑡 𝑞 | 𝑞 P 𝐴u and
𝑛𝑜𝑡 𝑛𝑜𝑡𝐴 “ t𝑛𝑜𝑡 𝑛𝑜𝑡 𝑞 | 𝑞 P 𝐴u.

Σp𝑃 q and Σp𝑟q denote the set of atoms appearing in 𝑃
and 𝑟, respectively.

Given a program 𝑃 and an interpretation, i.e., a set
𝐼 Ď Σ of atoms, the reduct of 𝑃 given 𝐼 , is defined as
𝑃 𝐼

“ tH p𝑟q Ð B`
p𝑟q | 𝑟 P 𝑃 such that B´

p𝑟q X 𝐼 “
H and B´´

p𝑟q Ď 𝐼u. An HT-interpretation is a pair x𝑋,𝑌 y
s.t. 𝑋 Ď 𝑌 Ď Σ. Given a program 𝑃 , an HT-interpretation
x𝑋,𝑌 y is an HT-model2 of 𝑃 , x𝑋,𝑌 y |ù 𝑃 , iff 𝑌 |ù 𝑃
and 𝑋 |ù 𝑃𝑌 , where |ù both denotes the standard sat-
isfaction relation for classical logic and for HT-logic.3 An
HT-interpretation x𝑋,𝑌 y is total iff 𝑋 “ 𝑌 . Given a rule
𝑟, x𝑋,𝑌 y |ù 𝑟, iff x𝑋,𝑌 y |ù t𝑟u. We admit that the
set of HT-models of a program 𝑃 is restricted to Σp𝑃 q
even if Σp𝑃 q Ă Σ. We denote by ℋ𝒯 p𝑃 q the set of all
HT-models of 𝑃 . A set of atoms 𝑌 is an answer set of
𝑃 iff x𝑌, 𝑌 y P ℋ𝒯 p𝑃 q, and there is no 𝑋 Ă 𝑌 such
that x𝑋,𝑌 y P ℋ𝒯 p𝑃 q. We term HT-models x𝑋,𝑌 y s.t.
𝑋 Ă 𝑌 witnesses. The set of all answer sets of 𝑃 is de-
noted by 𝒜𝒮p𝑃 q. Two programs 𝑃1, 𝑃2 are equivalent iff
𝒜𝒮p𝑃1q “ 𝒜𝒮p𝑃2q and strongly equivalent, 𝑃1 ” 𝑃2,
iff 𝒜𝒮p𝑃1 Y 𝑅q “ 𝒜𝒮p𝑃2 Y 𝑅q for any program 𝑅. It
is well-known that 𝑃1 ” 𝑃2 exactly when ℋ𝒯 p𝑃1q “

ℋ𝒯 p𝑃2q [27]. Given a set 𝑉 Ď Σ, the 𝑉 -exclusion of a set of
answer sets (a set of HT-interpretations) ℳ, denoted ℳ‖𝑉 ,
is t𝑋z𝑉 | 𝑋 Pℳu (tx𝑋z𝑉, 𝑌 z𝑉 y | x𝑋,𝑌 y Pℳu).

Forgetting: Properties and Operators. Let 𝒫 be the
set of all logic programs. A forgetting operator is a (partial)
function f : 𝒫 ˆ 2Σ Ñ 𝒫 . The program fp𝑃, 𝑉 q is inter-
preted as the result of forgetting about 𝑉 from 𝑃 . Moreover,

2Although it is possible to define HT-semantics more broadly over
(propositional) formulas, here we use a more succinctly definition over
logic programs that is closer to the usual definition of answer sets.

3For brevity, parentheses, commas and union signs within HT-
interpretations may be omitted, such that, for example, xH, 𝑌 𝑝𝑞y

means xH, 𝑌 Y t𝑝, 𝑞uy.

Σpfp𝑃, 𝑉 qq Ď Σp𝑃 qz𝑉 is usually required. In the follow-
ing we introduce some well-known properties for forgetting
operators [8].

Strong persistence is presumably the best known one [16].
It requires that the result of forgetting fp𝑃, 𝑉 q is strongly
equivalent to the original program 𝑃 , modulo the forgotten
atoms.

pSPq f satisfies strong persistence iff, for each program 𝑃
and each set of atoms 𝑉 , we have:
𝒜𝒮p𝑃Y𝑅q‖𝑉 “ 𝒜𝒮pfp𝑃, 𝑉 qY𝑅q for all programs
𝑅 with Σp𝑅q Ď Σ\𝑉 .

Notably, pSPq can be decomposed into the following three
properties, i.e. an operator f satisfies pSPq iff f satisfies all
pwCq, psCq and pSIq, where

pwCq f satisfies weakened consequence iff, for each 𝑃 and
each set of atoms 𝑉 : 𝒜𝒮pfp𝑃, 𝑉 qq Ě 𝒜𝒮p𝑃 q‖𝑉 .

psCq f satisfies strengthened consequence iff, for each
𝑃 and each set of atoms 𝑉 : 𝒜𝒮pfp𝑃, 𝑉 qq Ď

𝒜𝒮p𝑃 q‖𝑉 .

Strong invariance requires that rules not mentioning atoms
to be forgotten can be added before or after forgetting.

pSIq f satisfies strong invariance iff, for each program 𝑃
and each set of atoms 𝑉 , we have: fp𝑃, 𝑉 q Y 𝑅 ”
fp𝑃 Y𝑅, 𝑉 q for all programs𝑅 with Σp𝑅q Ď Σz𝑉 .

Note that the presented properties are often considered
for certain subclasses such as disjunctive, normal or Horn
programs. Moreover, they naturally extend over classes of
forgetting operators, where a class satisfies a property, iff
all its members do.

In the light of the impossibility for a forgetting operator to
satisfy pSPq for all pairs x𝑃, 𝑉 y, called forgetting instances,
where 𝑃 is a program and 𝑉 is a set of atoms to be forgot-
ten from 𝑃 [8], pSPq was defined for concrete forgetting
instances. A forgetting operator f satisfies pSPq

x𝑃,𝑉 y
, if

𝒜𝒮pfp𝑃, 𝑉 q Y 𝑅q “ 𝒜𝒮p𝑃 Y 𝑅q‖𝑉 , for all programs 𝑅
with Σp𝑅q Ď Σ\𝑉 . A sound and complete criterion Ω char-
acterizes when it is not possible to forget while satisfying
pSPq

x𝑃,𝑉 y
.

Definition 2.1 (Gonçalves et al. (2016)). Let 𝑃 be a pro-
gram over Σ and 𝑉 Ď Σ. The forgetting instance x𝑃, 𝑉 y
satisfies criterion Ω if there exists 𝑌 Ď Σz𝑉 such that the set
of sets ℛ𝑌

x𝑃,𝑉 y :“ t𝑅𝑌,𝐴
x𝑃,𝑉 y

| 𝐴 P 𝑅𝑒𝑙𝑌x𝑃,𝑉 yu is non-empty
and has no least element, where

𝑅𝑌,𝐴
x𝑃,𝑉 y

:“ t𝑋z𝑉 | x𝑋,𝑌 Y𝐴y P ℋ𝒯 p𝑃 qu, and

𝑅𝑒𝑙𝑌x𝑃,𝑉 y :“ t𝐴 Ď 𝑉 | x𝑌 Y𝐴, 𝑌 Y𝐴y P ℋ𝒯 p𝑃 q and

E𝐴1
Ă 𝐴 s.t. x𝑌 Y𝐴1, 𝑌 Y𝐴y P ℋ𝒯 p𝑃 qu.

Corresponding to the Ω criterion the classes FR and FSP

specify the HT-models of the forgetting result. It was shown
that FSP satisfies pSPq

x𝑃,𝑉 y
for all instances x𝑃, 𝑉 y that

do not satisfy Ω. Moreover, in the case where Ω is satisfied,
FSP still exhibits desirable behavior, such as satisfying pSIq
and pwCq, two of three characterizing criterions of pSPq.
FR on the other hand always satisfies psCq and pSIq, which
makes it an ideal choice, if no new answer sets should be
created [9].

The classes FR and FSP are defined as follows:

FR :“ tf | ℋ𝒯 pfp𝑃, 𝑉 qq“tx𝑋,𝑌 y | 𝑌 Ď Σp𝑃 qz𝑉 ^



𝑋 P
ď

ℛ𝑌
x𝑃,𝑉 yu, for all programs 𝑃 and 𝑉 Ď Σu,

FSP :“ tf | ℋ𝒯 pfp𝑃, 𝑉 qq“tx𝑋,𝑌 y | 𝑌 Ď Σp𝑃 qz𝑉 ^

𝑋 P
č

ℛ𝑌
x𝑃,𝑉 yu, for all programs 𝑃 and 𝑉 Ď Σu.

Abstraction and Simplification. Abstraction as an over-
approximation is defined as follows.

Definition 2.2 (Saribatur and Eiter (2018)). Given 𝑃
over Σ and 𝑄 over Σ1 with |Σ| ě |Σ1

|, and a mapping
𝑚 : Σ Ñ Σ1

Y tJu, 𝑄 is an abstraction of 𝑃 w.r.t. 𝑚, if
𝑚p𝒜𝒮p𝑃 qq Ď 𝒜𝒮p𝑄q.

For an omission abstraction, i.e. Σ1
Ď Σ, this becomes

pwCq. An abstraction is called faithful, if it additionally
satisfies psCq.

This notion was later generalized to take into account
context programs, of a certain form, where a program 𝑅
over Σ is 𝐴-separated, if there are 𝑅1 over Σz𝐴 and 𝑅2

over 𝐴, s.t. 𝑅 “ 𝑅1 Y𝑅2.

Definition 2.3 (Saribatur and Woltran (2023)). Given,
𝑃 over Σ, 𝐴 Ď Σ, and 𝑄 over Σz𝐴. Q is a strong
𝐴-simplification of 𝑃 if for any program 𝑅 over Σ that is
𝐴-separated:

𝒜𝒮p𝑃 Y𝑅q||𝐴 “ 𝒜𝒮p𝑄Y𝑅||𝐴q

where:

𝑅||𝐴 :“ tH p𝑟q Ð Bp𝑟qzp𝐴Y 𝑛𝑜𝑡 𝑛𝑜𝑡𝐴q |

pH p𝑟q Y B`
p𝑟qq X𝐴 “ Hq, 𝑟 P 𝑅u

𝑃 is strong 𝐴-simplifiable if there is such a 𝑄.

Theorem 2.4 (Saribatur and Woltran (2023)). If pro-
gram 𝑃 is strongly 𝐴-simplifiable, then 𝑃||𝐴 is a strong
𝐴-simplification of 𝑃 .

Relativized (Strong) Simplification. Recently simplifi-
cations have been relaxed to take into account relativized
equivalence, i.e. s.t. the simplification 𝑄 of 𝑃 only needs to
stay equivalent under addition of any 𝑅 over a relativized
signature 𝐵 Ď Σ.

Definition 2.5 (Woltran (2004)). A pair of interpretations
x𝑋,𝑌 y is a (relativized) B-HT-interpretation iff either𝑋 “ 𝑌
or𝑋 Ă p𝑌 z𝐵q. The former are called total and the latter non-
total B-HT-interpretations. Moreover, a B-HT-interpretation
x𝑋,𝑌 y is a (relativized) B-HT-model of a program 𝑃 iff:

1. 𝑌 |ù 𝑃 ;
2. for all 𝑌 1

Ă 𝑌 with p𝑌 1
z𝐵q “ p𝑌 z𝐵q : 𝑌 1

­|ù 𝑃𝑌 ;
and

3. 𝑋 Ă 𝑌 implies existence of a𝑋 1
Ď 𝑌 with𝑋 1

z𝐵 “
𝑋 , such that 𝑋 1

|ù 𝑃𝑌 holds.

The set of B-HT-models of 𝑃 is given by ℋ𝒯 𝐵
p𝑃 q. Two pro-

grams 𝑃1 and 𝑃2 are strongly equivalent relative to 𝐵 iff
ℋ𝒯 𝐵

p𝑃1q “ ℋ𝒯 𝐵
p𝑃2q.

Definition 2.6 (Saribatur and Woltran (2024)). Given
𝑃 over Σ, 𝐴,𝐵 Ď Σ, and 𝑄 over Σz𝐴, 𝑄 is a (strong)
𝐴-simplification of 𝑃 relative to 𝐵 if for any program 𝑅
over 𝐵 that is 𝐴-separated:

𝒜𝒮p𝑃 Y𝑅q||𝐴 “ 𝒜𝒮p𝑄Y𝑅||𝐴q

Program 𝑃 is 𝐵-relativized (strong) 𝐴-simplifiable if there
is such a 𝑄.

The relativized equivalence can similarly be taken into
account in forgetting.

Definition 2.7 (Saribatur and Woltran (2024)). A
forgetting operator f satisfies relativized strong persistence
for a relativized forgetting instance x𝑃, 𝑉,𝐵y, 𝑆 Ď 𝐴,
denoted by prSPq

x𝑃,𝑉,𝐵y
, if for all programs 𝑅 over 𝐵,

𝒜𝒮pfp𝑃, 𝑉,𝐵q Y𝑅q “ 𝒜𝒮p𝑃 Y𝑅q||𝑉 .

As Ω characterizes instances x𝑃, 𝑉 y for which pSPq
is satisfiable, Ω𝐴,𝐵 characterizes instances x𝑃,𝐴,𝐵y for
which prSPq

x𝑃,𝐴,𝐵y
is satisfiable.

Definition 2.8 (Saribatur and Woltran (2024)). Let 𝑃
be a program over Σ and 𝐴,𝐵 Ď Σ. 𝑃 satisfies criterion
Ω𝐴,𝐵 if there exists 𝑌 Ď Σz𝐴 such that the set of sets

ℛ𝑌
x𝑃,𝐴,𝐵y :“ tt𝑋z𝐴 | x𝑋,𝑌 Y𝐴1

y P ℋ𝒯 𝐵
p𝑃 qu

| 𝐴1
Ď 𝐴, x𝑌 Y𝐴1, 𝑌 Y𝐴1

y P ℋ𝒯 𝐵
p𝑃 qu

Proposition 2.9 (Saribatur and Woltran (2024)). If a
forgetting operator f satisfies pSPq

x𝑃,𝐴y
then it satisfies

prSPq
x𝑃,𝐴,𝐵y

, for any 𝐵 Ď 𝐴.

Definition 2.10 (Saribatur and Woltran (2024)). Given
program 𝑃 over Σ and 𝐴,𝐵 Ď Σ , the 𝐴-𝐵-HT-models of
𝑃 are given by the set

ℋ𝒯 𝐵
𝐴p𝑃 q :“tx𝑌, 𝑌 y||𝐴 | x𝑌, 𝑌 y P ℋ𝒯 𝐵

p𝑃 qu Y

tx𝑋,𝑌 y||𝐴 | x𝑋,𝑌 y P ℋ𝒯 𝐵
p𝑃 q, 𝑋 Ă 𝑌,

and for all x𝑌 1, 𝑌 1
y P ℋ𝒯 𝐵

p𝑃 q with 𝑌 1
||𝐴 “ 𝑌||𝐴,

x𝑋 1, 𝑌 1
y P ℋ𝒯 𝐵

p𝑃 q with 𝑋 1
“ 𝑋||𝐴u

Definition 2.11 (Saribatur and Woltran (2024)). Let 𝑃
be a program. The relativization of HT-models of 𝑃 over 𝐴
to the set 𝐵 of atoms4 is denoted by

ℋ𝒯 𝐴,𝐵
p𝑃 q :“ tx𝑋,𝑌 y | x𝑋,𝑌 y P ℋ𝒯 𝐵

p𝑃 q, 𝑌 Ď Σz𝐴u.

Definition 2.12 (Saribatur and Woltran (2024)).

FrSS :“ tf | ℋ𝒯 𝐴,𝐵
pfp𝑃,𝐴,𝐵qq “ tx𝑋,𝑌 y |

𝑌 Ď Σz𝑉 ^𝑋 P
č

ℛ𝑌
x𝑃,𝐴,𝐵yu,

for all programs 𝑃 and 𝐴,𝐵 Ď Σu

The class FrSS satisfies prSPq whenever possible.

Theorem 2.13 (Saribatur and Woltran (2024)). Every
f P FrSS satisfies prSPq

x𝑃,𝐴,𝐵y
,𝐵 Ď 𝐴, for every relativized

forgetting instance x𝑃,𝐴,𝐵y, where 𝑃 does not satisfy
Ω𝐴,𝐵 .

The following theorem confirms that forgetting can be
used as a stepping-stone to, more generally, derive 𝐵-
relativized 𝐴-simplifications.

Theorem 2.14 (Saribatur and Woltran (2024)). Let
𝑃 be 𝐵-relativized 𝐴-simplifiable, and f P FrSS. Then
fp𝑃||𝐴X𝐵 , 𝐴z𝐵,𝐵z𝐴q is a 𝐵-relativized 𝐴-simplification
of 𝑃 .

4In order to streamline the presentation the original definition was
slightly altered. In particular, ℋ𝒯 𝐴,𝐵p𝑃 q behaves as if taking into
account the complement 𝐴̄ of 𝐴.



2.1. Syntactic Tools
Defining a syntactic forgetting operators that obeys the
semantics of FrSP inevitably comes down to modifying the
existing operator fSP

5, which is why we recall it and its
auxiliary constructions. For succinctness, for examples of
established definitions, we refer to [19].

As usual [29, 30, 13, 31, 16, 17] the program is first brought
into a normal form, to avoid complications and unnecessary
calculations caused by redundant (parts of) rules.

A rule 𝑟 is tautological iff H p𝑟qXB`
p𝑟q ‰ H, B`

p𝑟qX
B´
p𝑟q ‰ H, or B´

p𝑟q X B´´
p𝑟q ‰ H; 𝑟 is fundamen-

tal, iff it is not tautological, and H p𝑟q X B´
p𝑟q “ H and

B`
p𝑟q X B´´

p𝑟q “ H.

Definition 2.15 (Cabalar et al. (2007)). Given two rules 𝑟
and 𝑠, 𝑠 subsumes 𝑟, in symbols 𝑠 ď 𝑟, iff:

1. H p𝑠q Ď H p𝑟q Y B´
p𝑟q,

2. B`
p𝑠q Ď B`

p𝑟q Y B´´
p𝑟q,

3. B´
p𝑠q Ď B´

p𝑟q,
4. B´´

p𝑠q Ď B´´
p𝑟q Y B`

p𝑟q, and
5. B`

p𝑠q X B´´
p𝑟q “ H or H p𝑠q XH p𝑟q “ H.

Proposition 2.16 (Cabalar et al. (2007)).

𝑟 ď 𝑠ô ℋ𝒯 p𝑟q Ď ℋ𝒯 p𝑠q

A rule 𝑟 is minimal in 𝑃 , iff it is not (strictly) subsumed
by another rule 𝑠 in 𝑃 , i.e. iff ␣D𝑠 P 𝑃 : 𝑠 ď 𝑟 ^ 𝑟 ę 𝑠.

Definition 2.17. Let 𝑃 be a program. The normal form
𝑁𝐹 p𝑃 q is obtained from 𝑃 by:

1. removing all tautological rules;
2. removing all atoms 𝑎 from B´´

p𝑟q in the remaining
rules 𝑟, whenever 𝑎 P B`

p𝑟q;
3. removing all atoms 𝑎 from H p𝑟q in the remaining

rules 𝑟, whenever 𝑎 P B´
p𝑟q;

4. removing from the resulting program all rules that are
not minimal.

A program 𝑃 is in normal form iff 𝑁𝐹 p𝑃 q “ 𝑃 .

The 𝑞-exclusion notation is shorthand to remove an atom.

Definition 2.18 (𝑞-exclusion Berthold (2022)).
Given an atom 𝑞 P Σ, and a set of literals 𝐿, a
rule 𝑟 and a program 𝑃 over Σ, the 𝑞-exclusions are
𝐿z𝑞 :“ 𝐿zt𝑞, 𝑛𝑜𝑡 𝑞, 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑞u, 𝑟z𝑞 :“ H z𝑞

p𝑟q Ð B z𝑞
p𝑟q

and 𝑃 z𝑞 :“ t𝑟z𝑞
| 𝑟 P 𝑃 u.

We define a partition of a program along the occurrences
of a given atom 𝑞.

Definition 2.19 (Berthold (2022)). Given a program 𝑃
in normal form over Σ and an atom 𝑞 P Σ, 𝑃 is parti-
tioned according to the occurrence of 𝑞, i.e. occp𝑃, 𝑞q :“
x𝑅,𝑅0, 𝑅1, 𝑅2, 𝑅3, 𝑅4y, where:

𝑅 :“ t𝑟 P 𝑃 | 𝑞 R Σp𝑟qu

𝑅0 :“ t𝑟 P 𝑃 | 𝑞 P 𝐵p𝑟qu

𝑅1 :“ t𝑟 P 𝑃 | 𝑛𝑜𝑡 𝑞 P 𝐵p𝑟qu

𝑅2 :“ t𝑟 P 𝑃 | 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑞 P 𝐵p𝑟q, 𝑞 R 𝐻p𝑟qu

𝑅3 :“ t𝑟 P 𝑃 | 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑞 P 𝐵p𝑟q, 𝑞 P 𝐻p𝑟qu

𝑅4 :“ t𝑟 P 𝑃 | 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑞 R 𝐵p𝑟q, 𝑞 P 𝐻p𝑟qu

5By fSP we refer to what is called f˚
SP by Berthold (2022).

There are some correspondences between the models of a
program and its rules that we can spot by this partitioning.

Proposition 2.20 (Berthold (2022)). Given a program 𝑃
in normal form over Σ, 𝑋 Ď 𝑌 Ď Σ, and an atom 𝑞 P
Σ, with 𝑞 R 𝑌 , and occp𝑃, 𝑞q “ x𝑅,𝑅0, 𝑅1, 𝑅2, 𝑅3, 𝑅4y.
Then the following equivalencies hold:

x𝑋,𝑌 y ­|ù 𝑃 ô D𝑟 P 𝑅Y𝑅1 Y𝑅4 : x𝑋,𝑌 y ­|ù 𝑟

x𝑋𝑞, 𝑌 𝑞y ­|ù 𝑃 ô D𝑟 P 𝑅Y𝑅0 Y𝑅2 : x𝑋𝑞, 𝑌 𝑞y ­|ù 𝑟

x𝑋,𝑌 𝑞y ­|ù 𝑃 ô D𝑟 P 𝑅Y𝑅2 Y𝑅3 Y𝑅4 : x𝑋,𝑌 𝑞y ­|ù 𝑟

The next construction conversely identifies, which inter-
pretations are models of a program.

The as-dual construction [17] generalizes constructions
that collect sets of conjunctions of literals aiming to replace
negated occurrences of a literal [15, 16].

Definition 2.21 (Berthold (2022)). Given a program𝑃 “
t𝑟1, . . . , 𝑟𝑛u over Σ and an atom 𝑞 P Σ, then:

𝒟𝑞
𝑎𝑠p𝑃 q :“ tt𝑙1, . . . , 𝑙𝑛u |

𝑙𝑖 P 𝑛𝑜𝑡B
z𝑞
p𝑟𝑖q Y 𝑛𝑜𝑡 𝑛𝑜𝑡H

z𝑞
p𝑟𝑖q, 1 ď 𝑖 ď 𝑛u,

where, for a set 𝑆 of literals, 𝑛𝑜𝑡 𝑆 “ t𝑛𝑜𝑡 𝑠 | 𝑠 P 𝑆u
and 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑆 “ t𝑛𝑜𝑡 𝑛𝑜𝑡 𝑠 | 𝑠 P 𝑆u, where, for 𝑝 P Σ,
we assume the simplification 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑝 “ 𝑛𝑜𝑡 𝑝 and
𝑛𝑜𝑡 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑝 “ 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑝.

By applying the as-dual to certain subsets of a program,
we are able to construct rules that point towards certain
models of a program.

Proposition 2.22 (Berthold (2022)). Given a program 𝑃
in normal form over Σ, 𝑌 Ď Σ, and an atom 𝑞 P Σ, with
𝑞 R 𝑌 , and occp𝑃, 𝑞q “ x𝑅,𝑅0, 𝑅1, 𝑅2, 𝑅3, 𝑅4y. Then the
following implications hold:

x𝑌, 𝑌 y |ù 𝑃 ñ D𝐷 P 𝒟𝑞
𝑎𝑠p𝑅1 Y𝑅4q : x𝑌, 𝑌 y ­|ù Ð 𝐷

x𝑌 𝑞, 𝑌 𝑞y |ù 𝑃 ñ D𝐷 P 𝒟𝑞
𝑎𝑠p𝑅0 Y𝑅2q : x𝑌 𝑞, 𝑌 𝑞y ­|ù Ð 𝐷

x𝑌, 𝑌 𝑞y |ù 𝑃 ñ D𝐷 P 𝒟𝑞
𝑎𝑠p𝑅3 Y𝑅4q : x𝑌, 𝑌 𝑞y ­|ù Ð 𝐷

In the case that 𝑅 “ H the first and second implication hold
in both directions.

The product of rules and programs are defined in order
to unite their models.

Definition 2.23 (Product of Rules Berthold (2022)).
Let 𝑟1 and 𝑟2 be rules. Their product 𝑟1 ˆ 𝑟2, is defined as:

H p𝑟1q YH p𝑟2q Ð Bp𝑟1q Y Bp𝑟2q

Proposition 2.24 (Berthold (2022)). Let 𝑟1, 𝑟2 be rules
over Σ, and 𝑋 Ď 𝑌 Ď Σ,

𝑌 |ù 𝑟1 ˆ 𝑟2 ô 𝑌 |ù 𝑟1 _ 𝑌 |ù 𝑟2

𝑋 |ù t𝑟1 ˆ 𝑟2u
𝑌
ô 𝑋 |ù t𝑟1u

𝑌
_𝑋 |ù t𝑟2u

𝑌

Definition 2.25 (Product of Programs Berthold (2022)).
Let 𝑃1 and 𝑃2 be programs. Their product 𝑃1 ˆ 𝑃2, is
defined as:

t𝑟1 ˆ 𝑟2 | 𝑟1 P 𝑃1 ^ 𝑟2 P 𝑃2u



Proposition 2.26 (Berthold (2022)). Let 𝑃1, 𝑃2 be pro-
grams over Σ, and 𝑋 Ď 𝑌 Ď Σ,

𝑌 |ù 𝑃1 ˆ 𝑃2 ô 𝑌 |ù 𝑃1 _ 𝑌 |ù 𝑃2

𝑋 |ù p𝑃1 ˆ 𝑃2q
𝑌
ô 𝑋 |ù 𝑃𝑌

1 _𝑋 |ù 𝑃𝑌
2

The double negation of a rule is such, to be able to reason
about, whether the second item 𝑌 of an HT-model x𝑋,𝑌 y is
a classical model, and therefore whether the corresponding
total model x𝑌, 𝑌 y is a potential answer set.

Definition 2.27 (Berthold (2022)). Given a rule 𝑟, we de-
fine the double negation of 𝑟, i.e. 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟, as:

𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟 :“Ð 𝑛𝑜𝑡H p𝑟q Y 𝑛𝑜𝑡 𝑛𝑜𝑡Bp𝑟q

Proposition 2.28 (Berthold (2022)). Given a rule 𝑟 over
Σ, and 𝑋 Ď 𝑌 Ď Σ, the following statement holds:

𝑌 |ù 𝑟 ô x𝑋,𝑌 y |ù 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟

We would like to point out that similarly, a formula 𝜓
holds classically iff „„ 𝜓 holds intuitionistically. This
connection is little surprising, given that HT-logic lies be-
tween classical and intuitionistic logic [27]. Further, if we
extend the definition of double negation over programs,
i.e. 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑃 :“ t𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟 | 𝑟 P 𝑃 u, we are able to con-
struct a program that unites the HT-models of two programs:
ℋ𝒯 p𝑃1q Y ℋ𝒯 p𝑃2q “ ℋ𝒯 pp𝑃1 Y 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑃1q ˆ p𝑃2 Y

𝑛𝑜𝑡 𝑛𝑜𝑡 𝑃2qq.
Any rule 𝑟 subsumes 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟. In order not to lose dou-

ble negated rules, we therefore restrict the normal form
construction 𝑁𝐹 to its first three steps, denoted 𝑛𝑓 , when
necessary.

We will also tweak subsumption, since as it is defined
above it has some properties that make it impractical to
use. For one, it is not anti-symmetrical, two syntactically
different rules may subsume each other, such as: 𝑟1 :“ Ð

𝑛𝑜𝑡 𝑛𝑜𝑡 𝑎 and 𝑟2 :“ Ð 𝑎, where 𝑟1 ď 𝑟2 and 𝑟2 ď 𝑟1.
Moreover, even though a rule may subsume another rule,

this relation may break, when both of them are conjoined
by ˆ with the same third rule, e.g. let 𝑟3 :“ 𝑏Ð, then

𝑟1 ˆ 𝑟3 “ 𝑏Ð 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑎 ă 𝑏Ð 𝑎 “ 𝑟2 ˆ 𝑟3.

To avoid these issues, we define a stricter version of sub-
sumption.

Definition 2.29. Given two fundamental rules 𝑟 and 𝑠, 𝑠
strongly subsumes 𝑟, in symbols 𝑠 ď𝑠 𝑟, iff:

1. H p𝑠q Ď H p𝑟q Y B´
p𝑟q,

2. B`
p𝑠q Ď B`

p𝑟q,
3. B´

p𝑠q Ď B´
p𝑟q, and

4. B´´
p𝑠q Ď B´´

p𝑟q Y B`
p𝑟q.

Then 𝑠 ă𝑠 𝑟, iff 𝑠 ď𝑠 𝑟 ^ 𝑠 ‰ 𝑟.

Proposition 2.30. Strong subsumption is finer than regular
subsumption:

𝑠 ď𝑠 𝑟 ñ 𝑠 ď 𝑟 (1)

Strong subsumption is anti-symmetric:

𝑠 ď𝑠 𝑟 ^ 𝑟 ď𝑠 𝑠ñ 𝑠 “ 𝑟. (2)

Strong subsumption is a greatest subset of regular subsump-
tion, to be anti-symmetric and transitive:

𝑠 ă 𝑟 ñ 𝑠 ă𝑠 𝑟 (3)

𝑠 ď𝑠 𝑟 ^ 𝑟 ď𝑠 𝑡ñ 𝑠 ď𝑠 𝑡. (4)

Strong subsumption is preserved under ˆ:

𝑠 ď𝑠 𝑟 ñ 𝑠ˆ 𝑡 ď𝑠 𝑟 ˆ 𝑡 for all rules 𝑡. (5)

As a consequence, strong subsumption is ‘modular’ in the
following sense:

𝑠 ď𝑠 𝑟 ô @𝐴 Ď Σ : 𝑠z𝐴
ď𝑠 𝑟

z𝐴. (6)

Proof:𝑃 ‰ 𝑁𝑃

p1q The requirement for ď𝑠 is stricter than that of ď.
p2q Follows from basic set theory and the fact that 𝑠 and

𝑟 are fundamental, and therefore H p𝑡q X B´
p𝑡q “

H “ B`
p𝑡q X B´´

p𝑡q for 𝑡 P t𝑠, 𝑟u.
p3q The requirement for ď𝑠 is stricter than that of ď.
p4q The subset relation is transitive.
p5q Adding literals to either part of 𝑠 and 𝑟 has no effect

on the required subset-relationship.
p6q Is a consequence of p5q.

A rule 𝑟 is minimal in 𝑃 , iff it is not strongly subsumed
by another rule 𝑠 in 𝑃 , i.e. iff ␣D𝑠 P 𝑃 : 𝑠 ă𝑠 𝑟.

All the aforementioned correspondences between models
and rules remain, when an atom 𝑞 is removed from a rule
as well as from an interpretation.

Proposition 2.31 (Berthold 2022). Given a program 𝑃 in
normal form over Σ, 𝑋 Ă 𝑌 Ď Σ, and an atom 𝑞 P Σ, with
𝑞 R 𝑌 , and occp𝑃, 𝑞q “ x𝑅,𝑅0, 𝑅1, 𝑅2, 𝑅3, 𝑅4y. Then the
following hold:

x𝑌, 𝑌 y ­|ù 𝑃 ô D𝑟 P 𝑅1 Y𝑅4 : x𝑌, 𝑌 y ­|ù 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟z𝑞

_ D𝑟 P 𝑅 : x𝑌, 𝑌 y ­|ù 𝑟

x𝑋,𝑌 y ­|ù 𝑃 ô D𝑟 P 𝑅Y𝑅1 Y𝑅4 : x𝑋,𝑌 y ­|ù 𝑟z𝑞

x𝑌 𝑞, 𝑌 𝑞y ­|ù 𝑃 ô D𝑟 P 𝑅0 Y𝑅2 : x𝑌, 𝑌 y ­|ù 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟z𝑞

_ D𝑟 P 𝑅 : x𝑌, 𝑌 y ­|ù 𝑟

x𝑌, 𝑌 𝑞y ­|ù 𝑃 ô x𝑌 𝑞, 𝑌 𝑞y ­|ù 𝑃

_ D𝑟 P 𝑅3 Y𝑅4 : x𝑌, 𝑌 y ­|ù 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟z𝑞

x𝑌, 𝑌 𝑞y |ù 𝑃 ô x𝑌 𝑞, 𝑌 𝑞y |ù 𝑃

^ D𝐷 P 𝒟𝑞
𝑎𝑠p𝑅3 Y𝑅4q : x𝑌, 𝑌 y ­|ù Ð 𝐷

x𝑋𝑞, 𝑌 𝑞y ­|ù 𝑃 ô D𝑟 P 𝑅Y𝑅0 Y𝑅2 : x𝑋,𝑌 y ­|ù 𝑟z𝑞

x𝑋,𝑌 𝑞y ­|ù 𝑃 ô x𝑌 𝑞, 𝑌 𝑞y ­|ù 𝑃

_ D𝑟 P 𝑅Y𝑅2 Y𝑅3 Y𝑅4 : x𝑋,𝑌 y ­|ù 𝑟z𝑞

If additionally 𝑅 “ H, then

x𝑌, 𝑌 y |ù 𝑃 ô D𝐷 P 𝒟𝑞
𝑎𝑠p𝑅1 Y𝑅4q : x𝑌, 𝑌 y ­|ù Ð 𝐷

x𝑌 𝑞, 𝑌 𝑞y |ù 𝑃 ô D𝐷 P 𝒟𝑞
𝑎𝑠p𝑅0 Y𝑅2q : x𝑌, 𝑌 y ­|ù Ð 𝐷

For all 𝑟2 P 𝑅2:

x𝑌 𝑞, 𝑌 𝑞y ­|ù 𝑟2 ô x𝑌, 𝑌 𝑞y ­|ù 𝑟2, and
x𝑋𝑞, 𝑌 𝑞y ­|ù 𝑟2 ô x𝑋,𝑌 𝑞y ­|ù 𝑟2.

The rules identified in Prop. 2.31 constitute the essential
pillars of defining forgetting operators.



2.2. Syntactic Forgetting with pSPq

Given that the semantics of FrSP and FSP coincide for some
inputs, it is not surprising that a representative of FrSP needs
to be a modification of fSP. We, hence, recall its construc-
tion [19]. The operator fSP is defined via two auxiliary opera-
tors fR and fW , each of which is again defined using auxiliary
operators f𝐴R and f𝐴W , which are defined inductively.

Definition 2.32 (f`
R ). Given a program 𝑃 in normal form

over Σ and 𝑞 P Σ s.t. occp𝑃, 𝑞q “ x𝑅,𝑅0, 𝑅1, 𝑅2, 𝑅3, 𝑅4y.
Then:

f`
R p𝑃, 𝑞q :“ 𝑛𝑓p1Y 2Y 3Y 4q

where: asd

1 :“ tÐ 𝐷 | 𝐷 P 𝒟𝑞
𝑎𝑠p𝑅3 Y𝑅4qu

2 :“ t𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟z𝑞
| 𝑟 P 𝑅0 Y𝑅2u

3 :“ t𝑟z𝑞
| 𝑟 P 𝑅Y𝑅2u

4 :“ tp𝑟0 ˆ 𝑟
1
q

z𝑞
| 𝑟0 P 𝑅0, 𝑟

1
P 𝑅3 Y𝑅4u

Proposition 2.33. Given a program 𝑃 over Σ, an atom 𝑞 P
Σ, and sets 𝑋 and 𝑌 , s.t. 𝑋 Ă 𝑌 Ď Σzt𝑞u, then:

x𝑌, 𝑌 y |ù f`
R p𝑃, 𝑞q ô t𝑞u P 𝑅𝑒𝑙𝑌x𝑃,t𝑞uy

If t𝑞u P 𝑅𝑒𝑙𝑌x𝑃,t𝑞uy, then:

x𝑋,𝑌 y |ù f`
R p𝑃, 𝑞q ô x𝑋𝑞, 𝑌 𝑞y |ù 𝑃 _ x𝑋,𝑌 𝑞y |ù 𝑃

Definition 2.34 (f´
R ). Given a program 𝑃 in normal form

over Σ and 𝑞 P Σ s.t. occp𝑃, 𝑞q “ x𝑅,𝑅0, 𝑅1, 𝑅2, 𝑅3, 𝑅4y.
Then:

f´
R p𝑃, 𝑞q :“ 𝑛𝑓p1Y 2q

where:

1 :“ t𝑟1z𝑞
| 𝑟1

P 𝑅Y𝑅1 Y𝑅4u

2 :“ t𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟1z𝑞
| 𝑟1

P 𝑅1 Y𝑅4u

The operators f𝐴R is defined inductively by nested calls on
f`
R and f´

R . In order to fix a concrete forgetting result, we
assume an arbitrary order on 𝑉 , which has no effect on the
following propositions.

Definition 2.35 (f𝐴R ). Let 𝑃 be a program over Σ, and
𝐴 Ď t𝑞1, 𝑞2, . . . , 𝑞𝑛u “ 𝑉 Ď Σ, s.t. 0 ă 𝑛, then:

f𝐴R p𝑃,Hq :“ 𝑃

f𝐴R p𝑃, 𝑉 q :“ fb𝑛
R pf𝐴

z𝑞𝑛

R p𝑃, 𝑉 zt𝑞𝑛uq, 𝑞𝑛q

where:

fb𝑛
R :“

#

f`
R , if 𝑞𝑛 P 𝐴
f´
R , otherwise

Proposition 2.36. Given a program 𝑃 over Σ, and sets 𝑋 ,
𝑌 , 𝐴 and 𝑉 , s.t. 𝐴 Ď 𝑉 Ď Σ, and 𝑋 Ď 𝑌 Ď Σz𝑉 , then

x𝑌, 𝑌 y |ù f𝐴R p𝑃, 𝑉 q ô 𝐴 P 𝑅𝑒𝑙𝑌x𝑃,𝑉 y

If 𝐴 P 𝑅𝑒𝑙𝑌x𝑃,𝑉 y, then:

x𝑋,𝑌 y |ù f𝐴R p𝑃, 𝑉 q ô D𝐴2
Ď 𝐴 : x𝑋𝐴2, 𝑌 𝐴y |ù 𝑃

Definition 2.37 (fR). Let 𝑃 be a program over Σ in normal
form and 𝑉 Ď Σ.

fRp𝑃, 𝑉 q :“ 𝑁𝐹 p
ą

𝐴Ď𝑉

f𝐴𝑅 p𝑃, 𝑉 qq

Theorem 2.38. fR P FR

The operator fW , which contradicts any x𝑋,𝑌 y for which
𝑅𝑒𝑙𝑌x𝑃,𝑉 y ‰ H and 𝑋 R ℛ𝑌

x𝑃,𝑉 y, is again defined by induc-
tion. By uniting fR with fW, we are then able to construct
fSP.

Definition 2.39 (f`
W). Given a program 𝑃 in normal form

over Σ and 𝑞 P Σ s.t. occp𝑃, 𝑞q “ x𝑅,𝑅0, 𝑅1, 𝑅2, 𝑅3, 𝑅4y,
then:

f`
Wp𝑃, 𝑞q :“ 𝑁𝐹 p1Y 2q

where:

1 :“ tp𝑟0 ˆ 𝑟
1
ˆ 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟qz𝑞 ˆ Ð 𝐷 |

𝑟0 P 𝑅0, 𝑟, 𝑟
1
P 𝑅3 Y𝑅4, 𝐷 P 𝒟𝑞

𝑎𝑠p𝑅0 Y𝑅2qu

2 :“ tp𝑟 ˆ 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟1
q

z𝑞
ˆ Ð 𝐷 |

𝑟 P 𝑅Y𝑅2, 𝑟
1
P 𝑅3 Y𝑅4, 𝐷 P 𝒟𝑞

𝑎𝑠p𝑅0 Y𝑅2qu

Definition 2.40 (f´
W). Given a program 𝑃 in normal form

over Σ and 𝑞 P Σ s.t. occp𝑃, 𝑞q “ x𝑅,𝑅0, 𝑅1, 𝑅2, 𝑅3, 𝑅4y,
then:

f´
Wp𝑃, 𝑞q :“ 𝑁𝐹 p1q

where:

1 :“ t𝑟1z𝑞
ˆ Ð 𝐷 | 𝑟1

P 𝑅Y𝑅1 Y𝑅4, 𝐷 P 𝒟𝑞
𝑎𝑠p𝑅1 Y𝑅4qu

Definition 2.41 (f𝐴W). Let 𝑃 be a program over Σ, and
𝐴 Ď t𝑞1, 𝑞2, . . . , 𝑞𝑛u “ 𝑉 Ď Σ, s.t. 0 ă 𝑛, then:

f𝐴Wp𝑃,Hq :“ 𝑃

f𝐴Wp𝑃, 𝑉 q :“ fb𝑛
W pf𝐴

z𝑞𝑛

W p𝑃 z𝑅, 𝑉 zt𝑞𝑛uq, 𝑞𝑛q Y𝑅

where:

fb𝑛
W :“

#

f`
W, if 𝑞𝑛 P 𝐴
f´
W, otherwise

𝑅 :“ t𝑟 P 𝑃 | 𝑉 X Σp𝑟q “ Hu

Proposition 2.42. Given a program 𝑃 over Σ, and sets 𝑋 ,
𝑌 , 𝐴 and 𝑉 , s.t. 𝐴 Ď 𝑉 Ď Σ, 𝑋 Ď 𝑌 Ď Σz𝑉 , and
𝑅 “ t𝑟 P 𝑃 | 𝑉 X Σp𝑟q “ Hu “ H, then:

𝐴 P 𝑅𝑒𝑙𝑌x𝑃,𝑉 y ^ @𝐴
2
Ď 𝐴 : x𝑋𝐴2, 𝑌 𝐴y ­|ù 𝑃

ô x𝑋,𝑌 y ­|ù f𝐴Wp𝑃, 𝑉 q

Definition 2.43 (fW). Given a program 𝑃 in normal form
over Σ and 𝑉 Ď Σ. Then:

fWp𝑃, 𝑉 q :“ 𝑁𝐹 p
ď

𝐴Ď𝑉

f𝐴Wp𝑃, 𝑉 qq

Definition 2.44 (f˚
SP). Let 𝑃 be a program over Σ in normal

form and 𝑉 Ď Σ.

fSPp𝑃, 𝑉 q :“ 𝑁𝐹 pfWp𝑃, 𝑉 q Y fRp𝑃, 𝑉 qq

Example 2.45. Let 𝑃2.45 “ t𝑎Ð 𝑏, 𝑞; 𝑐Ð 𝑑, 𝑛𝑜𝑡 𝑞; 𝑞 Ð
𝑛𝑜𝑡 𝑛𝑜𝑡 𝑞u, and 𝑉 “ t𝑝, 𝑞u. Then fSPp𝑃, 𝑉 q can be derived
by:

ft𝑞u

R p𝑃, 𝑉 q Ď t𝑐Ð 𝑑u ft𝑞u

W p𝑃, 𝑉 q “ t𝑎Ð 𝑏, 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑎u

fH

R p𝑃, 𝑉 q Ď t𝑎Ð 𝑏u fH

W p𝑃, 𝑉 q “ t𝑐Ð 𝑑, 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑐u

fSPp𝑃, 𝑉 q “ 𝑁𝐹 pft𝑞u

R p𝑃, 𝑉 q ˆ fH

R p𝑃, 𝑉 q

Y ft𝑞u

W p𝑃, 𝑉 q Y fH

W p𝑃, 𝑉 qq

“ t𝑎_ 𝑐Ð 𝑏, 𝑑; 𝑎Ð 𝑏, 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑎; 𝑐Ð 𝑑, 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑑u

Theorem 2.46. fSP P FSP



3. Towards Syntactic Forgetting
with prSPq

The idea in the following constructions is to modify the
results of the previous operators, to take into account a set
𝐵 to relativize to. As witnessed in the previous section, half
of the construction of fSP is a member of another class FR.
We define a relaxation FrR of this class too, to aim for first.

FrR :“ tf | ℋ𝒯 𝐴,𝐵
pfp𝑃,𝐴,𝐵qq “ tx𝑋,𝑌 y |

𝑌 Ď Σz𝑉 ^𝑋 P
ď

ℛ𝑌
x𝑃,𝐴,𝐵yu,

for all programs 𝑃 and 𝐴,𝐵 Ď Σu

While the ‘r’ in prSPq and the ‘R’ in FR both mean ‘rela-
tivized’, it is not clear in which sense FR corresponds to the
idea of relativized equivalence. Still we use the subscript
‘rR’ for this new class in reference to its origin in FR.

Assume a program 𝑃 over Σ, 𝑉,𝐵 Ď Σ, s.t. 𝑉 X 𝐵 “

H, and 𝑌 Ď 𝐵. If we take a look at the definition of the
class FrR, we can note that there is a similarity in how it
treats forgotten atoms 𝑉 and atoms that it relativizes from
Σp𝑃 qz𝐵:

• Given 𝐴 Ď 𝑉 , a total model x𝑌 𝐴, 𝑌 𝐴y of 𝑃 , s.t.
there is a 𝐴1

Ď 𝐴 with x𝑌 𝐴1, 𝑌 𝐴y |ù 𝑃 is not
considered by ℛ𝑌

x𝑃,𝑉,𝐵y;
• Similarly, given 𝐶 Ď Σp𝑃 qzp𝐵 Y 𝑉 q, a total model
x𝑌 𝐶, 𝑌 𝐶y of 𝑃 , s.t. there is a 𝐶 1

Ď 𝐶 with
x𝑌 𝐶 1, 𝑌 𝐶y |ù 𝑃 is not considered by ℛ𝑌

x𝑃,𝑉,𝐵y,
by the construction of ℋ𝒯 𝐵

p𝑃 q.

The operator fR includes an encoding for the first bullet-
point. The key-idea therefore is to manipulate the auxiliary
constructions of fR further, to encode the second bullet-
point.

For each 𝐴 Ď 𝑉 and 𝐶 Ď Σp𝑃 qzp𝐵 Y 𝑉 q, we de-
fine an auxiliary operator g𝐴,𝐶

R that determines for any
𝑌 Ď pΣp𝑃 q X 𝐵qz𝑉 whether (i) 𝑌 Y 𝐴 Y 𝐶 |ù 𝑃 ,
and whether (ii) there are no 𝐴1

Ď 𝐴 and 𝐶 1
Ď 𝐶 , s.t.

𝐴1
Y 𝐵1

Ă 𝐴 Y 𝐵, and x𝑌 𝐴1𝐶 1, 𝑌 𝐴𝐶y |ù 𝑃 . Then
g𝐴,𝐶
R p𝑃, 𝑉 q, satisfies x𝑌 𝐶, 𝑌 𝐶y, iff (i) and (ii). Further, we

let g𝐴,𝐶
R p𝑃, 𝑉 q contradict each x𝑋𝐶2, 𝑌 𝐶y with 𝑋 Ă 𝑌 ,

𝐶2
Ď 𝐶 , iff 𝑃 ­|ù x𝑌 𝐴1𝐶 1, 𝑌 𝐴𝐶y for all 𝐴1

Ă 𝐴 and
𝐶 1
Ă 𝐶 .

The operators g𝐴,𝐶
R are defined taking into account f𝐴R as

a baseline, i.e. g𝐴,𝐶
R p𝑃, 𝑉,𝐵q :“ g𝐶R pf

𝐴
R p𝑃, 𝑉 q, 𝐵q. These

g𝐶R we define inductively, starting at |𝐶| “ 1.

Definition 3.1 (g`
R ). Given a program 𝑃 in normal form

over Σ and 𝑐 P Σ s.t. occp𝑃, 𝑐q “ x𝑅,𝑅0, 𝑅1, 𝑅2, 𝑅3, 𝑅4y.
Then:

g`
R p𝑃, 𝑐q :“ 𝑛𝑓p1Y 2Y 3Y 4Y 5q

where:

1 :“ tÐ 𝐷 | 𝐷 P 𝒟𝑐
𝑎𝑠p𝑅3 Y𝑅4qu

2 :“ t𝑟 | 𝑟 P 𝑅Y𝑅2u

3 :“ t𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟 | 𝑟 P 𝑅0 Y𝑅2u

4 :“ t𝑟1
| 𝑟1

P 𝑅3 Y𝑅4u

5 :“ tÐ 𝑛𝑜𝑡 𝑐u

Proposition 3.2. Given a program 𝑃 over Σ, an atom 𝑐 P
Σ, and sets 𝑋 and 𝑌 , s.t. 𝑋 Ă 𝑌 Ď Σ, then:

𝑌 |ù g`
R p𝑃, 𝑐q ô 𝑌 |ù 𝑃 ^ 𝑐 P 𝑌 ^ 𝑌 zt𝑐u ­|ù 𝑃𝑌

If 𝑌 |ù g`
R p𝑃, 𝑐q, then:

x𝑋,𝑌 y |ù f`
R p𝑃, 𝑞q ô x𝑋,𝑌 y |ù 𝑃

Definition 3.3 (g´
R ). Given a program 𝑃 in normal form

over Σ and 𝑐 P Σ s.t. occp𝑃, 𝑐q “ x𝑅,𝑅0, 𝑅1, 𝑅2, 𝑅3, 𝑅4y.
Then:

g´
R p𝑃, 𝑐q :“ 𝑛𝑓p1Y 2Y 3q

where:

1 :“ t𝑟1
| 𝑟1

P 𝑅Y𝑅1 Y𝑅4u

2 :“ t𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟1
| 𝑟1

P 𝑅1 Y𝑅4u

3 :“ tÐ 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑐u

Proposition 3.4. Given a program 𝑃 over Σ, an atom 𝑐 P
Σ, and sets 𝑋 and 𝑌 , s.t. 𝑋 Ă 𝑌 Ď Σ, then:

𝑌 |ù g`
R p𝑃, 𝑐q ô 𝑐 R 𝑌 ^ 𝑌 |ù 𝑃

If 𝑌 |ù g`
R p𝑃, 𝑐q, then:

x𝑋,𝑌 y |ù g´
R p𝑃, 𝑐q ô x𝑋,𝑌 y |ù 𝑃

As before, in order to fix a concrete forgetting result, we
assume an arbitrary order on 𝐶 .

Definition 3.5 (g𝐶R ). Let 𝑃 be a program over Σ, 𝐵 Ď Σ
and
𝐶 Ď t𝑐1, 𝑐2, . . . , 𝑐𝑛u “ 𝐵̄ :“ Σp𝑃 qz𝐵, s.t. 0 ă 𝑛, then:

g𝐶R p𝑃,Hq :“ 𝑃

g𝐶R p𝑃,𝐵q :“ gb𝑛
R pg𝐶

z𝑐𝑛

R p𝑃,𝐶zt𝑐𝑛uq, 𝑐𝑛q

where:

gb𝑛
R :“

#

g`
R , if 𝑐𝑛 P 𝐶

g´
R , otherwise

Proposition 3.6. Given a program 𝑃 over Σ, sets of atoms
𝐵 Ď Σ, 𝐶 Ď 𝐵̄ :“ Σp𝑃 qz𝐵, and sets 𝑋 and 𝑌 , s.t. 𝑋 Ă

𝑌 Ď Σ and 𝑋 Ď 𝐵, then:

𝑌 |ù g𝐶R p𝑃,𝐵q

ô 𝑌 |ù 𝑃 ^ 𝑌 z𝐵 “ 𝐶

^ E𝑌 1
Ă 𝑌, s.t. 𝑌 1

|ù 𝑃𝑌 and 𝑌 1
X𝐵 “ 𝑌 X𝐵

If 𝑌 |ù g𝐶R p𝑃,𝐵q, then for each 𝐶 1
Ď 𝐶 :

x𝑋𝐶 1, 𝑌 y |ù g𝐶R p𝑃,𝐵q ô x𝑋𝐶 1, 𝑌 y |ù 𝑃

Definition 3.7 (gR). Let 𝑃 be a program over Σ in normal
form and 𝑉,𝐵 Ď Σ. s.t. 𝑉 X𝐵 “ H. 𝐵̄ :“ Σp𝑃 qz𝐵.

gRp𝑃, 𝑉,𝐵q :“ 𝑁𝐹 p
ą

𝐴Ď𝑉
𝐶Ď𝐵̄

g𝐴,𝐶
R p𝑃, 𝑉,𝐵qq

where

g𝐴,𝐶
R p𝑃, 𝑉,𝐵q :“ g𝐶R pf

𝐴
R p𝑃, 𝑉 q, 𝐵q

For an illustration of how gR functions we refer to Figure 1
on the last page.

Theorem 3.8. gR P FrR



4. Syntactic Forgetting with prSPq

Again we define gW s.t. it modifies an auxiliary result of
fW to take into account whether a 𝐶 Ď 𝐵̄ :“ Σp𝑃 qz𝐵 is
relevant.

Remember, that the auxiliary operators f𝐴W implement a
check for whether 𝐴 is relevant for 𝑌 (𝐴 P 𝑅𝑒𝑙𝑌x𝑃,𝑉 y), i.e.
that x𝑌 𝐴, 𝑌 𝐴y is a model of 𝑃 , but x𝑌 𝐴1, 𝑌 𝐴y is not a
model of 𝑃 for all 𝐴1

Ă 𝐴. As we have seen in the last
section this requirement extends to relativized forgetting, in
the sense that we additionally need to check whether 𝑌 Y𝐶
can be a stable model of 𝑃 under addition of rules over 𝐵 –
g𝐶W checks, whether x𝑌 𝐶, 𝑌 𝐶y |ù 𝑃 and x𝑌 𝐶 1, 𝑌 𝐶y ­|ù 𝑃
for all 𝐶 1

Ă 𝐶 .
By compounding the constructions f𝐴W with g𝐶W, i.e.

g𝐴,𝐶
W p𝑃, 𝑉,𝐵q :“ g𝐶Wpf

𝐴
Wp𝑃, 𝑉 q, 𝐵q, we get operators with

the following properties.
Given a program 𝑃 over Σ, 𝑉,𝐵 Ď Σ with 𝑉 X𝐵 “ H,

𝑋 Ď 𝑌 Ď ΣX𝐵, 𝐴 Ď 𝑉 , and 𝐶 1
Ď 𝐶 Ď Σp𝑃 qz𝐵, then,

g𝐴,𝐶
W p𝑃, 𝑉,𝐵q contradicts x𝑋𝐶 1, 𝑌 𝐶y i.e. x𝑋𝐶 1, 𝑌 𝐶y ­|ù

g𝐴,𝐶
W p𝑃, 𝑉,𝐵q, iff x𝑌 𝐶𝐴, 𝑌 𝐶𝐴y |ù 𝑃 , for all 𝐴1

Ď 𝐴 and
𝐶2

Ď 𝐶 with 𝐴1
Y 𝐶2

Ă 𝐴 Y 𝐶: x𝑌 𝐴1𝐶2, 𝑌 𝐴𝐶y ­|ù 𝑃 ,
and for all 𝐴1

Ď 𝐴: x𝑋𝐶 1𝐴1, 𝑌 𝐴𝐶y ­|ù 𝑃 .
The auxiliary operators g𝐴W are again inductively defined

via g`
W and g´

W.

Definition 4.1 (g`
W). Given a program 𝑃 in normal form

over Σ and 𝑐 P Σ s.t. occp𝑃, 𝑐q “ x𝑅,𝑅0, 𝑅1, 𝑅2, 𝑅3, 𝑅4y,
then:

g`
Wp𝑃, 𝑐q :“ 𝑁𝐹 p1Y 2q

where:

1 :“ t𝑟1
ˆ 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟 ˆ Ð 𝐷 |

𝑟, 𝑟1
P 𝑅3 Y𝑅4, 𝐷 P 𝒟𝑐

𝑎𝑠p𝑅0 Y𝑅2qu

2 :“ tp𝑟 ˆ 𝑛𝑜𝑡 𝑛𝑜𝑡 𝑟1
q ˆ Ð 𝐷 |

𝑟 P 𝑅Y𝑅2, 𝑟
1
P 𝑅3 Y𝑅4, 𝐷 P 𝒟𝑐

𝑎𝑠p𝑅0 Y𝑅2qu

The building-blocks g`
W and g´

W of our inductive definition
take into account one atom that is relativized away. We can
therefore again use the observations of Prop. 2.31 to see that
for the case |𝐶| “ 1 they have the desired properties.

Proposition 4.2. Given a program 𝑃 over Σ, an atom 𝑐 P
Σ, and sets 𝑋 and 𝑌 , s.t. 𝑋 Ă 𝑌 Ď Σ, then:

x𝑋,𝑌 y ­|ù g`
R p𝑃, 𝑐q

ô 𝑌 |ù 𝑃 ^ 𝑐 P 𝑌 ^ 𝑌 zt𝑐u ­|ù 𝑃𝑌
^ x𝑋,𝑌 y ­|ù 𝑃

Definition 4.3 (g´
W). Given a program 𝑃 in normal form

over Σ and 𝑞 P Σ s.t. occp𝑃, 𝑞q “ x𝑅,𝑅0, 𝑅1, 𝑅2, 𝑅3, 𝑅4y,
then:

g´
Wp𝑃, 𝑐q :“ 𝑁𝐹 p1q

where:

1 :“ t𝑟1
ˆ Ð 𝐷 | 𝑟1

P 𝑅Y𝑅1 Y𝑅4, 𝐷 P 𝒟𝑞
𝑎𝑠p𝑅1 Y𝑅4qu

Proposition 4.4. Given a program 𝑃 over Σ, an atom 𝑐 P
Σ, and sets 𝑋 and 𝑌 , s.t. 𝑋 Ă 𝑌 Ď Σ, then:

x𝑋,𝑌 y ­|ù g´
R p𝑃, 𝑐q

ô 𝑐 R 𝑌 ^ 𝑌 |ù 𝑃 ^ x𝑋,𝑌 y ­|ù 𝑃

To define g𝐶W for arbitrary 𝐶 Ď Σp𝑃 qz𝐵, we assume
an arbitrary ordering on Σ, e.g. the lexicographic order,
and apply repeatedly the operators g`

W or g´
W, depending

on whether an atom 𝑐 is in 𝐶 . For example, let 𝑃 be over
t𝑎, 𝑏, 𝑐, 𝑑u, 𝐵 “ t𝑎, 𝑏u and 𝐶 “ t𝑑u, then g𝐶Wp𝑃,𝐵q “
g`
Wpg

´
Wp𝑃, 𝑐q, 𝑑q.

Definition 4.5 (g𝐶W). Let 𝑃 be a program over Σ, 𝐵 Ď Σ
and
𝐶 Ď t𝑐1, 𝑐2, . . . , 𝑐𝑛u “ 𝐵̄ :“ Σp𝑃 qz𝐵, s.t. 0 ă 𝑛, then:

g𝐶Wp𝑃,Hq :“ 𝑃

g𝐶Wp𝑃,𝐵q :“ gb𝑛
W pg𝐶

z𝑐𝑛

W p𝑃 z𝑅, 𝐵̄zt𝑐𝑛uq, 𝑐𝑛q Y𝑅

where:

gb𝑛
W :“

#

g`
W, if 𝑐𝑛 P 𝐶

g´
W, otherwise

𝑅 :“ t𝑟 P 𝑃 | Σp𝑟q Ď 𝐵u

The fact that the properties of g`
W and g´

W extend to g𝐶W
can be checked rather straight-forwardly by induction.

Proposition 4.6. Given a program 𝑃 over Σ, sets of atoms
𝐵 Ď Σ, 𝐶 Ď Σp𝑃 qz𝐵, and sets 𝑋 and 𝑌 , s.t. 𝑋 Ă 𝑌 Ď Σ,
then:

x𝑋,𝑌 y ­|ù g𝐶Wp𝑃,𝐵q

ô 𝑌 |ù 𝑃 ^ 𝑌 z𝐵 “ 𝐶

^ E𝑌 1
Ă 𝑌, s.t. 𝑌 1

|ù 𝑃𝑌 and 𝑌 1
X𝐵 “ 𝑌 X𝐵

^ x𝑋,𝑌 y ­|ù 𝑃

To construct gW, f𝐴W and g𝐶W are compounded for each
𝐴 Ď 𝑉 and 𝐶 Ď Σp𝑃 qz𝐵, i.e. g𝐴,𝐶

W p𝑃, 𝑉,𝐵q :“
g𝐶Wpf

𝐴
Wp𝑃, 𝑉 q, 𝐵q. The resulting rules of each of these com-

pounds are then united.

Definition 4.7 (gW). Given a program 𝑃 in normal form
over Σ and 𝑉 Ď Σ. Then:

gWp𝑃, 𝑉,𝐵q :“ 𝑁𝐹 p
ď

𝐴Ď𝑉
𝐶Ď𝐵̄

g𝐴,𝐶
W p𝑃, 𝑉,𝐵qq

where:

g𝐴,𝐶
W p𝑃, 𝑉,𝐵q :“ g𝐶Wpf

𝐴
Wp𝑃, 𝑉 q, 𝐵q

We would like to remark here that, while this construction
may appear rather costly computationally, some factors that
may dampen the blow-up that have been discussed in non-
relativized forgetting [19], also apply here.

Most importantly, the operator g𝐴,𝐶
W is such that its re-

sult is the empty program, if the combination 𝐴, 𝐶 is ‘non-
relevant’. If this ‘non-relevancy’ is detected within a recur-
sive step of g𝐴,𝐶

W possibly exponentially many calculations
can be disregarded.

More concretely, assume for example a program 𝑃 over
t𝑎, . . . , 𝑧u, 𝑉 “ t𝑝, . . . , 𝑧u and 𝐵 “ t𝑎, . . . , ℎu. If
f`
Wp𝑃, 𝑝q “ H, then g𝐴,𝐶

W p𝑃, 𝑉,𝐵q will be the empty pro-
gram for any 𝐴 Ě t𝑝u and any 𝐶 , which lets us disregard a
large part of the recursive calculation-tree.

Definition 4.8 (frSP). Let 𝑃 be a program over Σ in normal
form and 𝑉 Ď Σ.

frSPp𝑃, 𝑉 q :“ 𝑁𝐹 pgWp𝑃, 𝑉 q Y gRp𝑃, 𝑉 qq



Theorem 4.9. frSP P FrSS

Corollary 4.10. Let𝑃 be𝐵-relativized𝐴-simplifiable, then
frSPp𝑃||𝐴X𝐵 , 𝐴z𝐵,𝐵q is a 𝐵-relativized 𝐴-simplification of
𝑃 .



5. Let’s not Forget about Predicates
It remains an open question, as to how forgetting proposi-
tional atoms from a program translates to the more general
case of forgetting from a program with variables. As has
been done for classical formulas [4] one may consider for-
getting about terms, ground atoms, or predicate symbols,
where the latter probably comes closest to the propositional
case. When forgetting about predicate symbols, two obsta-
cles come to mind. (i) A predicate may be recursive, making
it impossible to find a (finite) forgetting result. E.g.: consider
forgetting 𝑡 from the following program:

𝑡p𝑋,𝑌 q Ð 𝑒p𝑋,𝑌 q. 𝑎p𝑋,𝑌 q Ð 𝑡p𝑋,𝑌 q, 𝑏p𝑋,𝑌 q.

𝑡p𝑋,𝑍q Ð 𝑡p𝑋,𝑌 q, 𝑒p𝑌,𝑍q.

One may consider finite forgetting results that have desir-
able properties up to some bound, as has been similarly done
for classical logic [32]. (ii) Even if a non-recursive predicate
symbol is forgotten we may have to leave the class of logic
programs to represent a result of forgetting. E.g. consider
forgetting about about 𝑏 from the following program where
𝑏 marks all pairs which are connected through two edges:

𝑏p𝑋,𝑍q Ð 𝑒p𝑋,𝑌 q, 𝑒p𝑌,𝑍q. 𝑛p𝑋q Ð 𝑒p𝑋,𝑌 q.

𝑎p𝑋,𝑌 q Ð 𝑛𝑜𝑡 𝑏p𝑋,𝑌 q, 𝑛p𝑋q, 𝑛p𝑌 q. 𝑛p𝑌 q Ð 𝑒p𝑋,𝑌 q.

A possible forgetting result in full first order syntax is 𝜓:

@𝑋,𝑍 : p␣D𝑌 : p𝑒p𝑋,𝑌 q ^ 𝑒p𝑌,𝑍qq ^ 𝑛p𝑋q ^ 𝑛p𝑌 q

Ñ 𝑎p𝑋,𝑍q

^ 𝑒p𝑋,𝑍q Ñ p𝑛p𝑋q ^ 𝑛p𝑍qqq

where the impossiblility of 𝜓 to be put into a prenex-
normalform, is inherited from intuitionism. It may be worth-
while to consider subclasses of the full first-order syntax
that are well behaved w.r.t. forgetting. Related to this ques-
tion there are two extensions of logic programs that are able
to capture the full polynomial hierarchy, stable-unstable
programs [33] and logic programs with quantifiers [34]. A
relaxed version of forgetting from logic programs, so-called
interpolation has recently been successfully reduced to the
classical case [35].

6. Conclusion
The question on how a logic program may be simplified, has
become a rather large one, sparking several subtopics that
cover different particular aims: forgetting, abstraction, sim-
plification. These ideas have recently been captured under
an umbrella-term of (strong) 𝐴-simplifications of 𝑃 rela-
tivized to𝐵 [25]. The existence of this more abstract version
of forgetting tore open a hole between the semantics and
syntax that that was just recently closed [19]. In this paper
we were able to close it again by intricately modifying fSP,
to be able to take into account a relativization set. Given that
most of the recent results are limited to the propositional
case, we believe that it would be interesting to explore how
they translate to forgetting about predicate-symbols next.

𝑃

x𝑎𝑏𝑐ℎ𝑞, 𝑎𝑏𝑐ℎ𝑞y

x𝑎𝑏ℎ, 𝑎𝑏𝑐ℎ𝑞y

x𝑎𝑏𝑐𝑞, 𝑎𝑏𝑐𝑞y

x𝑎𝑏𝑐, 𝑎𝑏𝑐𝑞y

x𝑎, 𝑎𝑏𝑐𝑞y

x𝑎𝑏𝑐ℎ, 𝑎𝑏𝑐ℎy

x𝑎𝑏𝑐, 𝑎𝑏𝑐ℎy

x𝑎ℎ, 𝑎𝑏𝑐ℎy

x𝑎𝑏𝑐, 𝑎𝑏𝑐y

x𝑎, 𝑎𝑏𝑐y

f
t𝑞u

R p𝑃, 𝑉 q

fH

R p𝑃, 𝑉 q

x𝑎𝑏𝑐ℎ, 𝑎𝑏𝑐ℎy

x𝑎𝑏ℎ, 𝑎𝑏𝑐ℎy

x𝑎𝑏𝑐ℎ, 𝑎𝑏𝑐ℎy

x𝑎𝑏𝑐, 𝑎𝑏𝑐ℎy

x𝑎ℎ, 𝑎𝑏𝑐ℎy

x𝑎𝑏𝑐, 𝑎𝑏𝑐y

x𝑎, 𝑎𝑏𝑐y

g
tℎu

R pf
t𝑞u

R p𝑃, 𝑉 q, 𝐵q gH

R pf
t𝑞u

R p𝑃, 𝑉 q, 𝐵q

g
tℎu

R pfH

R p𝑃, 𝑉 q, 𝐵q gH

R pfH

R p𝑃, 𝑉 q, 𝐵q

x𝑎𝑏𝑐ℎ, 𝑎𝑏𝑐ℎy

x𝑎𝑏ℎ, 𝑎𝑏𝑐ℎy

x𝑎𝑏, 𝑎𝑏𝑐ℎy

H

H

x𝑎𝑏𝑐, 𝑎𝑏𝑐y

x𝑎, 𝑎𝑏𝑐y

gRp𝑃, 𝑉,𝐵q

x𝑎𝑏𝑐ℎ, 𝑎𝑏𝑐ℎy

x𝑎𝑏ℎ, 𝑎𝑏𝑐ℎy

x𝑎𝑏, 𝑎𝑏𝑐ℎy

x𝑎𝑏𝑐, 𝑎𝑏𝑐y

x𝑎, 𝑎𝑏𝑐y

Figure 1: This figure illustrates how gR takes a divide and con-
quer approach to be able to encode the semantics of FrR. Here
we abstract away from the specific syntax of each auxiliary pro-
gram and only look at their models. For each set of models in
a box such a representative exists [13]. The models of an initial
program 𝑃 are on the top most box, the models of the auxiliary
results of forgetting 𝑉 “ t𝑞u relativized to 𝐵 “ t𝑎, 𝑏, 𝑐u are
listed from there on downward. The workings of frSP follow a
similar pattern, but are hard to put into an illustration, since the
auxiliary operators g𝑉,𝐵

W satisfy a lot more models.
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