
Linear Algebraic Partial Evaluation of Logic Programs⋆

Tuan Nguyen1,*, Katsumi Inoue1 and Chiaki Sakama2

1National Institute of Informatics (NII), 2-1-2 Hitotsubashi, Chiyoda City, Tokyo, Japan
2Wakayama University, 930 Sakaedani, Wakayama, Japan

Abstract
In logic programming, partial evaluation performs unfolding rules of a program in advance to reduce the cost of inferencing steps.
Recently, partial evaluation of logic programs has been implemented in vector spaces by computing the powers of matrix representations.
It has been reported that linear algebraic partial evaluation substantially enhances the practical performance of linear algebraic methods
for logic programming. However, most recent research has focused exclusively on 𝐴𝑛𝑑-rules, assuming that their dependency graph is
acyclic. In this paper, we introduce cycle-resolving techniques to ensure that linear algebraic partial evaluation works effectively even
with cycles in the program. Additionally, we demonstrate that linear algebraic partial evaluation can also be extended to accommodate
𝑂𝑟-rules. Moreover, we propose using eigendecomposition and Jordan normal form to conduct the partial evaluation in vector spaces.
We compare the proposed techniques on a set of acyclic and cyclic logic programs to evaluate their effectiveness. It is shown that
the iteration method for partial evaluation, especially with sparse format, is the most efficient one in general cases. However, the
decomposition method has the potential for future research to leverage eigenvalues and eigenvectors of program matrices for reasoning
with logic programming.

Keywords
Logic programming, Partial evaluation, Linear algebra

1. Introduction
Recent research has explored using linear algebraic meth-
ods as a compelling alternative to symbolic methods for
logical inference [1, 2, 3, 4]. In 2017, Sakama et al. pro-
posed linearizing logic program characteristics using matrix
multiplication for deductive reasoning [1]. This involves
converting a logic program into a matrix and using matrix-
vector multiplication to realize the immediate consequence
operator [5]. Extensions to disjunctive and normal logic
programs were also discussed [6]. Another approach by
Sato et al. investigates computing 2-valued and 3-valued
completion semantics of finite propositional normal logic
programs in vector spaces [7]. Similarly, Aspis et al. con-
sidered model computation in continuous vector spaces as
a root-finding problem, using Newton’s method to solve it
[3]. Later, Takemura and Inoue proposed a differentiable
approach by designing a continuous loss function where
supported models are optimal values [4]. Additionally, us-
ing matrices and tensors to represent logical formulas and
constraints is seen as a promising way to connect symbolic
reasoning and machine learning [8]. Matrix representation
allows constructing 𝐴𝑛𝑑/𝑂𝑟 Boolean networks from state
transitions on an unprecedented scale [9]. Program matri-
ces can also be learned using machine learning methods,
as demonstrated in [10], where a differentiable inductive
logic programming framework learns logic programs from
relational datasets. This idea has been extended to a differ-
entiable first-order rule learner, shown to be robust to noisy
data and scalable to large datasets [11].

Linear algebraic approaches have also been extended to
Partial Evaluation (PE) in Logic Programming (LP) [12].
Nguyen et al. reported significant runtime reductions on

22nd International Workshop on Nonmonotonic Reasoning, November 2-4,
2024, Hanoi, Vietnam
*Corresponding author.
$ tuannq@nii.ac.jp (T. Nguyen); inoue@nii.ac.jp (K. Inoue);
sakama@wakayama-u.ac.jp (C. Sakama)
� https://profile.nqtuan0192.me/ (T. Nguyen);
https://research.nii.ac.jp/il/ (K. Inoue);
https://web.wakayama-u.ac.jp/~sakama/ (C. Sakama)
� 0000-0002-1754-9329 (T. Nguyen); 0000-0002-2717-9122 (K. Inoue);
0000-0002-9966-3722 (C. Sakama)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribu-
tion 4.0 International (CC BY 4.0).

both synthetic and real data, especially for transitive clo-
sures of large network datasets [12]. A similar linear alge-
braic PE concept has been applied to Propositional Horn
Clause Abduction Problem (PHCAP), showing remarkable
performance gains [13]. Although these methods are ap-
plied to different reasoning tasks, the main idea behind
linear algebraic PE in both [12] and [13] is to compute the
powers of matrix representations of logic programs ([13]
employs abductive matrix, but it is actually the transposed
version of the program matrix in [12]). Both papers use a
unified representation of a logic program in its standardized
form to perform PE in an iterative manner. However, their
methods only focus on the 𝐴𝑛𝑑-rules in the program. More
importantly, they assume that the dependency graph of the
program is acyclic and do not consider the cyclic case.

In this work, we focus on extending the capability of
linear algebraic PE. First, we propose to separate the matrix
representation of a logic program into two parts: one for
𝐴𝑛𝑑-rules and the other for 𝑂𝑟-rules. In short, an 𝐴𝑛𝑑-rule
is a rule that has a conjunction of literals in its body, the
head is True only if all its body literals are True. On the
other hand, an 𝑂𝑟-rule has a disjunction of literals in its
body, the head is True if at least one of its body literals is
True. Each part (𝐴𝑛𝑑-rules or 𝑂𝑟-rules) of a logic program
has different logical meanings but can be treated equally
in terms of PE computation which is basically computing
powers of a square matrix. We also propose a solution to
resolve cycles in the dependency graph of the program to
extend the capability of linear algebraic PE to the cyclic case.
Moreover, we introduce a novel way to realize PE in vector
spaces by leveraging the eigenvalues and eigenvectors.

The rest of this paper is organized as follows: Section 2 re-
views background knowledge of LP and dependency graphs;
Section 4 presents the iteration method for PE and cycle-
resolving techniques; Section 5 demonstrates linear alge-
braic PE using eigendecomposition and Jordan normal form;
Section 6 illustrates comparison of the proposed PE meth-
ods; finally Section 7 concludes the paper.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:tuannq@nii.ac.jp
mailto:inoue@nii.ac.jp
mailto:sakama@wakayama-u.ac.jp
https://profile.nqtuan0192.me/
https://research.nii.ac.jp/il/
https://web.wakayama-u.ac.jp/~sakama/
https://orcid.org/0000-0002-1754-9329
https://orcid.org/0000-0002-2717-9122
https://orcid.org/0000-0002-9966-3722
https://creativecommons.org/licenses/by/4.0

2. Background
In this paper, we focus on propositional logic programs over
a finite (nonempty) set of atoms 𝒜. A program P is called a
normal logic program if every rule 𝑟 ∈ P follows the form:

ℎ← 𝑏1 ∧ 𝑏2 ∧ ... ∧ 𝑏𝑙 ∧ ¬𝑏𝑙+1 ∧ ... ∧ ¬𝑏𝑘 (1)

(𝑘 ≥ 𝑙 ≥ 0)

where ℎ and 𝑏𝑖 are atoms in 𝒜.
For short, we write ℎ𝑒𝑎𝑑(𝑟) and 𝑏𝑜𝑑𝑦(𝑟) to denote
the set of literals in the head and body of a rule 𝑟,
respectively. Additionally, 𝑏𝑜𝑑𝑦(𝑟) can be partitioned
into 𝑏𝑜𝑑𝑦+(𝑟) = {𝑏1, 𝑏2, ..., 𝑏𝑙} and 𝑏𝑜𝑑𝑦−(𝑟) =
{¬𝑏𝑙+1, ¬𝑏𝑙+2, ..., ¬𝑏𝑘} which refers to the 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 and
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 literals in 𝑏𝑜𝑑𝑦(𝑟).
A normal rule 𝑟 is called a fact if 𝑏𝑜𝑑𝑦(𝑟) = ∅, a constraint
if ℎ𝑒𝑎𝑑(𝑟) = ∅. A fact or a constraint can also be written
respectively as ℎ𝑒𝑎𝑑(𝑟)← ⊤ and ⊥ ← 𝑏𝑜𝑑𝑦(𝑟), where ⊤
and ⊥ are special symbols representing True and False. In
case 𝑏𝑜𝑑𝑦−(𝑟) = ∅, the rule 𝑟 is called a definite rule. A
normal program P is a definite program if 𝑏𝑜𝑑𝑦−(𝑟) = ∅ for
every rule 𝑟 ∈ P.

A normal logic program can be transformed into a definite
program as mentioned in [14]. Accordingly, one can obtain a
definite program from a normal program P by replacing the
negative literals in every rule (1) and rewriting as follows:

ℎ← 𝑏1 ∧ 𝑏2 ∧ ... ∧ 𝑏𝑙 ∧ 𝑏𝑙+1 ∧ ... ∧ 𝑏𝑘 (2)

(𝑘 ≥ 𝑙 ≥ 0)

where each 𝑏𝑖 is the positive form of the negation ¬𝑏𝑖.
The resulting program is called the positive form of P, de-
noted as P+. P+ then can be transformed into a standardized
program which is a definite program that satisfies there are
no two rules with the same head - Singly-Defined (SD) con-
dition [6]. A logic program P is called a SD program if
ℎ𝑒𝑎𝑑(𝑟1) ̸= ℎ𝑒𝑎𝑑(𝑟2) for any two different rules 𝑟1, 𝑟2 in
P. When P contains more than one rule 𝑟1, 𝑟2, . . . , 𝑟𝑛
(𝑛 > 1) with the same head ℎ such that ℎ𝑒𝑎𝑑(𝑟1) =
ℎ𝑒𝑎𝑑(𝑟2), · · · = ℎ𝑒𝑎𝑑(𝑟𝑛) = {ℎ}, replace those rules
with a set of new rules: {ℎ ← 𝑏1 ∨ 𝑏2 ∨ . . . ∨ 𝑏𝑛, 𝑏1 ←
𝑏𝑜𝑑𝑦(𝑟1), 𝑏2 ← 𝑏𝑜𝑑𝑦(𝑟2), . . . , 𝑏𝑛 ← 𝑏𝑜𝑑𝑦(𝑟𝑛)}
(𝑛 > 1), where 𝑏1, 𝑏2, . . . , 𝑏𝑛 are newly introduced atoms.
The resulting program Π is called a standardized program.

Accordingly, Π can be seen as a finite set of rules of the
form 𝐴𝑛𝑑-rules (3) and 𝑂𝑟-rules (4), and there are no two
rules with the same head (SD condition):

ℎ← 𝑏1 ∧ 𝑏2 ∧ ... ∧ 𝑏𝑙 (𝑙 ≥ 0) (3)

ℎ← 𝑏1 ∨ 𝑏2 ∨ ... ∨ 𝑏𝑙 (𝑙 ≥ 2) (4)

For simplicity, we still use the notation ¬𝑝 in a standardized
program Π but, without ambiguity, imply that ¬𝑝 and 𝑝 are
two “distinct” variables with a “special” relation.

Example 1. Given a logic program P1 = {𝑎← 𝑏∧ 𝑐, 𝑎←
𝑓, 𝑎← ¬ℎ, 𝑏← 𝑐 ∧ 𝑑, 𝑐← 𝑎, 𝑐← ¬𝑔, 𝑐← ¬𝑑, 𝑑←
𝑒, 𝑒 ← 𝑑, 𝑓 ← 𝑎, 𝑓 ← 𝑔, 𝑔 ← 𝑎, 𝑔 ← ¬𝑐, ℎ ←
¬𝑎, ← 𝑐 ∧ ℎ, ← 𝑏 ∧ 𝑎}.
Standardized logic program: Π1 = {𝑎← 𝑥1 ∨ 𝑓 ∨¬ℎ, 𝑏←
𝑐∧𝑑, 𝑐← 𝑎∨¬𝑔∨¬𝑑, 𝑑← 𝑒, 𝑒← 𝑑, 𝑓 ← 𝑎∨𝑔, 𝑔 ←
𝑎 ∨ ¬𝑐, ℎ← ¬𝑎, 𝑥1 ← 𝑏 ∧ 𝑐, ← 𝑐 ∧ ℎ, ← 𝑏 ∧ 𝑎}.

Here in Example 1, note that we do not need to introduce
new variables for each body atom in 𝑓 ← 𝑎, 𝑓 ← 𝑔 and

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1/2 1/2

1
1

1
1/2 1/2

(a) MΠ∧
1

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1/3 1/3 1/3

1/3 1/3 1/3

1/2 1/2
1/2 1/2

(b) MΠ∨
1

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h
1 1 1 1 1

(c) v⊤
neg(Π1)

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

(d) v⊤
Π𝐹
1

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

⊥
⊥

1/2 1/2
1/2 1/2

(e) MΠ𝐶
1

Figure 1: Matrix/vector representations of Π1.

𝑔 ← 𝑎, 𝑔 ← ¬𝑐, because these rules have single-literal
bodies. In case the rule body has more than one atom, we
need to introduce a new variable for each body atom and
rewrite the rule as a disjunction of these new variables.
Further details about the standardization method can be
found in [15].

3. Logic Programs - Program
Matrices - Dependency Graphs

3.1. Matrix representation of logic programs
We follow a similar program matrix definition as [6]. Our
new observation is that a standardized program Π can be
seen as a quadruple Π = ⟨Π∧,Π∨,Π𝐹 ,Π𝐶⟩ where Π∧ is
the set of non-factual 𝐴𝑛𝑑-rules ((3) but strictly 𝑙 > 0), Π∨

is the set of 𝑂𝑟-rules (4), Π𝐹 is the set of facts ((3) where
𝑙 = 0) and Π𝐶 is the set of constraints ((3) where ℎ = ⊥).
For convenience, we assume there is a way to index all
literals in a logic program incrementally without ambiguity
so that we can easily map sets of literals to vectors. We shall
define the matrix representation of Π as a set of matrices
and vectors as follows.

Definition 1 (Matrix of And-rules/Or-rules). Let Π =
⟨Π∧,Π∨,Π𝐹 ,Π𝐶⟩ be a standardized program. Then the
matrix of And-rules MΠ∧ (Or-rules MΠ∨), where MΠ∧ ∈
R𝑛Π×𝑛Π (MΠ∨ ∈ R𝑛Π×𝑛Π , 𝑛Π is the number of atoms in
Π), are defined as follows:

∙MΠ{_} [𝑖, 𝑗] =
1

𝑙
if there is a rule 𝑟𝑖 in Π{_} (𝑟𝑖 either in

the form of (3) or (4) respectively if Π{_} is Π∧ or Π∨) where
𝑙 = |𝑏𝑜𝑑𝑦(𝑟𝑖)| ≠ 0,
∙MΠ{_} [𝑖, 𝑗] = 0 otherwise.

We define vector of negations as a column vector v such that
v[𝑖] = 1 if the corresponding atom at index 𝑖 is a negation.
Similarly, vector of facts is defined as a column vector v such
that v[𝑖] = 1 if the corresponding atom at index 𝑖 is a fact.
Figure 1 demonstrates the visualization of matrix/vector rep-
resentations of Π1 in Example 1. By definitions, non-zero
elements of MΠ∧ , MΠ∨ , and MΠ𝐶 are normalized by the
number of atoms in the body of the corresponding rule. It
is possible to define the matrix without normalization as
long as being consistent. In the context of logic inferenc-
ing, we follow the normalized representation as it is more
convenient to define True as 1 and False as 0.

We shall show the connection between this matrix repre-
sentation and the one defined in [6] that has been adopted
in [12] and [13] to define linear algebraic PE. Before that,
we need to define two thresholding functions:

Definition 2 (Thresholding functions).

𝜃⇓(𝑥) =

{︃
1 if 𝑥 ≥ 1

0 otherwise
, and 𝜃⇑(𝑥) =

{︃
1 if 𝑥 > 0

0 otherwise
where 𝑥 is a scalar and can be extended to a vector, or a matrix
in an element-wise way.

The program matrix MΠ can be constructed as follows:

MΠ = MΠ∧ + 𝜃⇑
(︀
MΠ∨

)︀
+ diag(vΠ𝐹 ⊕𝜃⇓ vneg(Π)) (5)

where ⊕𝜃⇓ is vector add with 𝜃⇓-thresholding, diag turns
an input vector into a diagonal matrix. The reason for ⊕𝜃⇓

is that there might be a chance where atoms (known to be
False are included as facts) and negations are overlapping.
Program matrix MΠ in (5) is equivalent to the one defined
in [6] that can be used either for fixpoint computation in
stable model computation [16] or for 1-step abduction in
Horn abduction (with restrictions to Horn clauses) [13]. The
reason for the redefinition is to make the matrix represen-
tation more intuitive so that we can develop a general PE
approach and cycle-resolving techniques to both 𝐴𝑛𝑑-rules
and 𝑂𝑟-rules.

3.2. Dependency graphs
In order to illustrate the relationship between program com-
pletion [17] and stable models [18], the concept of “depen-
dency graph” was employed in several studies i.e. [19].
In this section, we will extend the concept of dependency
graphs to the case of standardized programs.

Definition 3 (Dependency graph). Given a normal logic
program P. The dependency graph of P is a directed graph
GP = (VP,EP) where VP is the set of atoms in P and EP is
determined as follows:

• There is a positive edge (𝑢, 𝑣) in EP if there is a rule
𝑟 ∈ P such that 𝑢 = ℎ𝑒𝑎𝑑(𝑟) and 𝑣 ∈ 𝑏𝑜𝑑𝑦+(𝑟).

• There is a negative edge (𝑢, 𝑣) in EP if there is a rule
𝑟 ∈ P such that 𝑢 = ℎ𝑒𝑎𝑑(𝑟) and 𝑣 ∈ 𝑏𝑜𝑑𝑦−(𝑟).

Note that the direction of an edge (𝑢, 𝑣) does not matter
unless we are consistent. However, in our paper, we persist
in the direction of edges toward the head atom of a rule. In
many studies, the definition of positive dependency graph is
usually preferred over the general dependency graph [20].
Given a normal logic program P. The positive dependency
graph of P is a directed graph G+

P = (VP,E
+
P) such that

G+
P ⊆ GP where GP is the dependency graph of P such

that E+
P includes only positive edges of EP. P is called a

tight program if G+
P is acyclic [21], in other words, there is

no positive loop in G+
P . For tight programs, the completion

semantics and the answer set semantics are equivalent to
each other [21].

Dependency graphs are sufficient to illustrate the relation-
ship between literals in a normal logic program. However,
it is difficult to capture how to “interpret” a rule in a depen-
dency graph. For example, in Figure 2a, we can see that 𝑎
depends on 𝑏, 𝑐, 𝑓 , and ¬ℎ, however, it is not clear to see
that all of them are required to deduce 𝑎 or which combina-
tion is sufficient. A similar argument holds for the case of
the positive dependency graph in Figure 2b.

To capture the “actual meaning” of a rule, we intro-
duce the concept of 𝐴𝑛𝑑-𝑂𝑟 dependency graph which is
defined over a standardized program Π. As mentioned,
Π = ⟨Π∧,Π∨,Π𝐹 ,Π𝐶⟩. We consider to define the de-
pendency graph of Π only over Π∧ (𝐴𝑛𝑑-rules) and Π∨

(𝑂𝑟-rules). Regardless of a rule in Π∧ or Π∨ may differ as a
conjunction or disjunction, we can always define the depen-
dency graph of Π∧ and Π∨ separately using Definition 3,
denoted as GΠ∧ and GΠ∨ respectively. Note that Π∧ and
Π∨ do not contain any negation by definition, therefore,
GΠ∧ and GΠ∨ are also positive dependency graphs. To
distinguish edges of GΠ∧ and GΠ∨ from each other, we
use solid and dash lines respectively.

Definition 4 (𝐴𝑛𝑑-𝑂𝑟 dependency graph). Given a nor-
mal logic program P, its standardized program is Π. The
𝐴𝑛𝑑-𝑂𝑟 dependency graph of Π is a directed graph GΠ such
that GΠ = GΠ∧ ∪GΠ∨ .

As can be seen in Figure 2d and Figure 2e, each graph
GΠ∧ or GΠ∨ only contains edges of the same type, either
solid or dash lines. However, in the 𝐴𝑛𝑑-𝑂𝑟 dependency
graph GΠ in Figure 2c, both types of edges are presented. It
is easy to constructGΠ fromGΠ∧ andGΠ∨ by merging the
two graphs without any conflict. The following important
properties of GΠ can be observed:

• A node in GΠ is called an 𝐴𝑛𝑑-node if it has only
incoming solid edges. Similarly, a node in GΠ is an
𝑂𝑟-node if it has only incoming dash edges.

• A node cannot have both types of incoming edges (it
is not the case for outgoing edges). In other words,
a node can only be either an 𝐴𝑛𝑑-node or an 𝑂𝑟-
node.

• From GΠ, we can interpret that an 𝐴𝑛𝑑-node is
True iff all original nodes of its incoming edges are
True. Similarly, an 𝑂𝑟-node is True iff at least one
of the original nodes of its incoming edges is True.

By definition, the 𝐴𝑛𝑑-𝑂𝑟 dependency graph can capture
the semantical meaning of the original Π∧ and Π∨. More
importantly, a program Π∧ and its dependency graph GΠ∧

(similar to the case of Π∨ and GΠ∨) are related directly
because the program matrix and the adjacency matrix of
the dependency graph are equivalent. Note that if all non-
zero elements are 1, the program matrix MΠ∧ is exactly the
adjacency matrix of the dependency graph GΠ∧ . However,
to be consistent with the choice of normalizing rule body
to define truth values in the previous section, we denote
the adjacency matrix of GΠ∧ by 𝜃⇑(MΠ∧). Similarly, we
denote 𝜃⇑(MΠ∨) as the adjacency matrix of GΠ∨ .

4. Linear Algebraic Partial
Evaluation

4.1. Partial evaluation with iteration
method

Sakama et al. first proposed the idea of PE for computing
least models of logic programs using linear algebra [22].
Later, a refined version of the method was published in [12].
Extending from this idea, Nguyen et al. have developed PE
with reduct abductive matrix (Definition 5 in [13]) for Horn
abduction [13]. The reduct abductive matrix is obtained by
taking the abductive matrix (simply a transposed matrix of

+

−

+

+

+

−

+

−

+

−

+

+

−

+

+

+

𝑎 𝑐

ℎ

𝑓

𝑔

𝑏

𝑑 𝑒

(a) GP1

𝑎

𝑐

𝑓

𝑔

𝑏𝑑𝑒

ℎ

(b) G+
P1

𝑎

𝑐

𝑓

𝑔

𝑏

𝑥1

𝑑

𝑒

ℎ

¬𝑎

¬𝑐¬𝑑 ¬𝑔

¬ℎ

(c) GΠ1

𝑎

𝑏

𝑥1

𝑐 𝑑

𝑒

𝑓 𝑔

ℎ

¬𝑎 ¬𝑐 ¬𝑑 ¬𝑔 ¬ℎ

(d) GΠ∧
1

𝑎

𝑐

𝑓

𝑔

𝑏 𝑑 𝑒 ℎ𝑥1 ¬𝑎

¬𝑐¬𝑑 ¬𝑔

¬ℎ

(e) GΠ∨
1

Figure 2: Illustrations of dependency graphs of the normal logic program P1 and its standardized program Π1 in Example 1.

MΠ - Definition 4 in [23]) then removing all columns w.r.t.
𝑂𝑟-rules (4) and setting 1 at the diagonal corresponding
to all atoms which are heads of these 𝑂𝑟-rules. The basic
idea can be simplified as we take MΠ∧ then append to
the diagonal of MΠ∧ all atoms we want to preserve (𝑂𝑟-
rule heads, facts, negations, ...) in the partially evaluated
program. Then we take the resulting matrix to multiply with
itself iteratively until a fixed point is reached. We formalize
this idea in the following definitions.

Definition 5 (Partial evaluation of And-rules). Given a
normal logic program P, its standardized program is Π. The
partial evaluated matrix of Π w.r.t. 𝐴𝑛𝑑-rules, denoted as
peval(Π∧), is defined as follows:

̂︁MΠ∧ = MΠ∧ + diag(vΠ𝐹 ⊕𝜃⇓ vneg(Π) ⊕𝜃⇓ vhead(Π∨))

M0 = ̂︁MΠ∧

M𝑖 = M𝑖−1 ·M𝑖−1 (𝑖 ≥ 1) (6)

where vhead(Π∨) is a column vector such that vhead(Π∨)[𝑖] =
1 if the corresponding atom at index 𝑖 is a head of an 𝑂𝑟-
rule.

Definition 6 (Partial evaluation of Or-rules). Given a
normal logic program P, its standardized program is Π. The
partial evaluated matrix of Π w.r.t. 𝑂𝑟-rules, denoted as
peval(Π∨), is defined as follows:

̂︁MΠ∨ = MΠ∨ + diag(vΠ𝐹 ⊕𝜃⇓ vneg(Π) ⊕𝜃⇓ vhead(Π∧))

M0 = ̂︁MΠ∨

M𝑖 = M𝑖−1 ·M𝑖−1 (𝑖 ≥ 1) (7)

where vhead(Π∧) is a column vector such that vhead(Π∧)[𝑖] =
1 if the corresponding atom at index 𝑖 is a head of an 𝐴𝑛𝑑-
rule.

Both Definition 5 and Definition 6 are almost identical
except for the starting point with different matrices MΠ∧

andMΠ∨ respectively. We say (6) and (7) reach a fixed point
at a step 𝑘 (𝑘 ≥ 1) if M𝑘 = M𝑘−1. Because the matrix
multiplication performs unfolding rules [12], intuitively, the
fixed point is reached when the program is fully unfolded.

For the case of acyclic programs, it is guaranteed that the
fixed point is reached after a finite step of iterations [23].
Proposition 1 shows the minimum number of PE steps to
reach a fixed point for acyclic case.

Proposition 1. For any program P with MΠ∧ (and MΠ∨)
of the size 𝑛 × 𝑛 such that the corresponding dependency
graph GΠ∧ (and GΠ∧) is acyclic, the sufficient number of
PE steps to reach a fixed point is 𝑘 = ⌈𝑙𝑜𝑔2(𝑛)⌉.

Proof. Consider the case with a program P2 = {𝑎1 ←
𝑎2, 𝑎2 ← 𝑎3, . . . , 𝑎𝑛−1 ← 𝑎𝑛, }. Obviously, this program
has the longest dependency chain we can create from 𝑛
atoms. Indeed, unfolding P2 at the first step we have {𝑎1 ←
𝑎3, 𝑎2 ← 𝑎4, 𝑎3 ← 𝑎5, . . . , 𝑎𝑛−1 ← 𝑎𝑛}, at the second
step we have {𝑎1 ← 𝑎5, 𝑎2 ← 𝑎6, 𝑎3 ← 𝑎7 . . . , 𝑎𝑛−1 ←
𝑎𝑛}, and so on. According to the pattern, if we perform
the PE for 𝑘 steps, then the condition of the fixed point is
reached when 2𝑘 ≥ 𝑛⇔ 𝑘 ≥ 𝑙𝑜𝑔2(𝑛). 𝑘 is an integer, so
we have 𝑘 = ⌈𝑙𝑜𝑔2(𝑛)⌉. The proof is identical for the case
of Π∨.

At a fixed point, we can also computeM𝑘 = (̂︁MΠ∧)2
𝑘

(𝑘 ≥
1) (or M𝑘 = (̂︁MΠ∨)2

𝑘

(𝑘 ≥ 1) for the case of 𝑂𝑟-rules)
that is basically computing powers of a matrix. Then, we
define peval(Π∧) = unpack((̂︁MΠ∧)2

𝑘

) is the partially

evaluated program of Π∧, where unpack((̂︁MΠ∧)2
𝑘

) is a
series of actions including: (s1) reversing the effect of
appending vΠ𝐹 ⊕𝜃⇓ vneg(Π) ⊕𝜃⇓ vhead(Π∨) to the diago-
nal, (s2) removing all row 𝑟 if the sum of non-zero ele-
ments on that row in (̂︁MΠ∧)2

𝑘

is less than 1, and (s3)
normalizing non-zero elements of (̂︁MΠ∧)2

𝑘

to satisfy Def-
inition 1. Step (s2) is important as an 𝐴𝑛𝑑-node is True
only if all its body atoms are True. Similarly, we define
peval(Π∨) = unpack((̂︁MΠ∨)2

𝑘

) is the partially evalu-

ated program of Π∨, where unpack((̂︁MΠ∨)2
𝑘

) is a series
of actions including: (s1) reversing the effect of append-
ing vΠ𝐹 ⊕𝜃⇓ vneg(Π) ⊕𝜃⇓ vhead(Π∧) to the diagonal, and

(s2) normalizing non-zero elements of (̂︁MΠ∨)2
𝑘

to satisfy

Definition 1. peval(Π∧) and peval(Π∨) are introduced to
simplify the notation in the following sections.

We have presented the basic idea of linear algebraic PE
of logic programs through iteratively compute powers of
matrix (̂︁MΠ∧ and ̂︁MΠ∨) until a fixed point is reached. How-
ever, a fixed point is not guaranteed in case there is a cycle
in the corresponding dependency graph (GΠ∧ or GΠ∨ re-
spectively). For example, consider the visualization of P1

in Figure 2 where GΠ∧
1

has a cycle {𝑑, 𝑒} while GΠ∨
1

has
two cycles {𝑎, 𝑓} and {𝑎, 𝑓, 𝑔}. In this example, (6) and (7)
cannot reach a fixed point, consequently peval(Π∧

1) and
peval(Π∨

1) cannot be computed. In the next section, we
will introduce cycle-resolving techniques to ensure that this
method also works even with cycles in GΠ∧ and GΠ∨ .

4.2. Cycle resolving
First, we define the local cycle in GΠ∧ and GΠ∨ .

Definition 7 (Local cycle in GΠ∧ and GΠ∨). Given a
normal logic program P, its standardized program is Π. A set
𝐿 of atoms is called a local cycle in GΠ∧ (or GΠ∨) if 𝐿 is
strongly connected in GΠ∧ (or GΠ∨).

The term local cycle is used to distinguish from the general
concept of a cycle in GΠ. For example in Figure 2, there
are cycles mixing both solid and dash edges at the same time
such as {𝑎, 𝑐, 𝑥1}. These are not (yet) the target of our
cycle-resolving techniques in this paper. Our main focus
is to resolve the local cycles in GΠ∧ and GΠ∨ such as
{𝑑, 𝑒} in GΠ∧

1
; and {𝑎, 𝑓}, {𝑎, 𝑓, 𝑔} in GΠ∨

1
. We can easily

identify the local cycles in GΠ∧ and GΠ∨ by identifying
every Strongly Connected Component (SCC) in GΠ∧ and
GΠ∨ respectively. This can be done in polynomial time by
applying the Tarjan’s algorithm [24] or using the algorithm
in [25] which can be implemented in linear algebraic way
using GraphBLAS1 [26].

After identifying the local cycles, let us consider how to
resolve them. The main idea is to translate a cycle into a set
of rules preserving the same logical meaning but does not
create cyclic computation in Definition 5 and Definition 6.
This should be done differently for 𝐴𝑛𝑑-rules and 𝑂𝑟-rules.
For a cycle 𝐿 in GΠ∧ , obviously, there is no way to make
an 𝐴𝑛𝑑-node in 𝐿 become True other than the cycle 𝐿
itself. On the other hand, for a cycle 𝐿 in GΠ∨ , we can
make an 𝑂𝑟-node in 𝐿 become True if there is any body
literal (outside from the cycle 𝐿) of that rule which is True.
Accordingly, we propose the following cycle-resolving tech-
niques for 𝐴𝑛𝑑-rules and 𝑂𝑟-rules respectively.

Algorithm 1: Cycle-resolving for 𝐴𝑛𝑑-rules

1: Identify all SCCs in GΠ∧ .
2: for each SCC 𝐿 in GΠ∧ do
3: for each rule 𝑟 ∈ Π∧ such that ℎ𝑒𝑎𝑑(𝑟) ∈ 𝐿 do
4: Remove 𝑟 (by setting the corresponding entries

of 𝑟 in MΠ∧ to 0).

1GraphBLAS is an open-source API specification which defines standard
building blocks for graph algorithms in the language of linear algebra.

Algorithm 2: Cycle-resolving for 𝑂𝑟-rules

1: Identify all SCCs in GΠ∨ .
2: for each SCC 𝐿 in GΠ∨ do
3: Let 𝐸 = ∅
4: for each rule 𝑟 ∈ Π∨ such that ℎ𝑒𝑎𝑑(𝑟) ∈ 𝐿 do
5: 𝐸 = 𝐸 ∪ (𝑏𝑜𝑑𝑦(𝑟) ∖ 𝐿)
6: for each rule 𝑟 ∈ Π∨ such that ℎ𝑒𝑎𝑑(𝑟) ∈ 𝐿 do
7: Replace 𝑟 by ℎ𝑒𝑎𝑑(𝑟)←

⋁︁
𝑞∈𝐸

𝑞.

After resolving the cycles, we can apply the linear algebraic
PE of 𝐴𝑛𝑑-rules and 𝑂𝑟-rules as described in Definition 5
and Definition 6 respectively. Now we can prove that the
computation has a fixed point.

Proposition 2. Given a resolved matrix resolve(MΠ∧) (or
resolve(MΠ∨)) as input for the linear algebraic PE of 𝐴𝑛𝑑-
rules (or 𝑂𝑟-rules), the fixed point is guaranteed to be reached
after a finite number of iterations.

Proof. There are two cases:
For the case of 𝐴𝑛𝑑-rules, all cycles in GΠ∧ are removed.
Hence, this case is identical to the case of acyclic programs
in that the computation in Definition 5 reaches a fixed point
after a finite number of iterations.
For the case of 𝑂𝑟-rules, cycles still exist in GΠ∨ but all
𝑂𝑟-rules such that their head nodes are in the cycle are
updated in a way that they have incoming edges from all
body literals related to a cycle but excluding the cycle itself.
This ensures that all possible ways to make an 𝑂𝑟-node
in a cycle become True are considered, so no new cases
are created during the computation in Definition 6. Thus, a
fixed point is guaranteed.

Figure 3 demonstrates the linear algebraic PE of Π∧
1 and Π∨

1

after resolving the cycles. We denote resolve(MΠ∧
1
) and

resolve(MΠ∨
1
) as the matrix representation of Π∧

1 and Π∨
1

after applying Algorithm 1 and Algorithm 2 respectively.
For the case of 𝐴𝑛𝑑-rules, there is a cycle {𝑑, 𝑒} corre-
sponding to two 𝐴𝑛𝑑-rules 𝑑 ← 𝑒 and 𝑒 ← 𝑑. To resolve
the cycle, we simply remove it as illustrated in Figure 3a
following Algorithm 1. After all cycles are resolved, it is
guaranteed that the iteration method can reach a fixed point
when computing (resolve(̂︁MΠ∧

1
))2

𝑘

to obtain peval(Π∧
1).

Figure 4a visualizes the dependency graph of peval(Π∧
1).

For the case of 𝑂𝑟-rules, there are 2 cycles {𝑎, 𝑓} and
{𝑎, 𝑓, 𝑔}. They all belong to a single SCC. Hence, we only
need to resolve {𝑎, 𝑓, 𝑔} corresponding to three 𝑂𝑟-rules:
𝑎 ← 𝑥1 ∨ 𝑓 ∨ ¬ℎ, 𝑓 ← 𝑎 ∨ 𝑔, 𝑔 ← 𝑎 ∨ ¬𝑐. Following
Algorithm 2, we find 𝐸 = {¬𝑐,¬ℎ, 𝑥1}. Next, we reset all
𝑂𝑟-rules corresponding to 𝑎, 𝑓 , and 𝑔 with the new body
{¬𝑐,¬ℎ, 𝑥1}. The resulting matrix resolve(MΠ∨

1
) is illus-

trated in Figure 3e. Unlike the case of 𝐴𝑛𝑑-rules where we
remove the cycle, here we find all possibilities to make the
cycle become True then update the rules accordingly. After
all cycles are resolved, we can apply the iteration method
described in Definition 6 to compute peval(Π∨

1). Figure 4b
visualizes the dependency graph of peval(Π∨

1).

Combining peval(MΠ∧) and peval(MΠ∨) To sum
up, we have presented the basic idea of linear algebraic PE.
We have also introduced cycle-resolving techniques to en-
sure that this method also works effectively even with cycles
in GΠ∧ and GΠ∨ . Finally, we can construct the partially

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1/2 1/2

1
1/2 1/2

(a) resolve(MΠ∧
1
)

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1
1/2 1/2
1

1
1

1
1/2 1/2

1
1

1
1

1

(b) resolve(̂︁MΠ∧
1
).

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1
1/2
1

1
1

1
3/4

1
1

1
1

1

(c) (resolve(̂︁MΠ∧
1
))2

𝑘

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1

(d) peval(MΠ∧
1
)

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3
1/3 1/3 1/3

(e) resolve(MΠ∨
1
)

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1/3 1/3 1/3
1

1/3 1/3 1/3
1

1
1/3 1/3 1/3
1/3 1/3 1/3

1
1

1
1

1
1

1

(f) resolve(̂︁MΠ∨
1
).

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1/3 1/3 1/3
1

1/5 1/5 1/5 1/5 1/5
1

1
1/3 1/3 1/3
1/3 1/3 1/3

1
1

1
1

1
1

1

(g) (resolve(̂︁MΠ∨
1
))2

𝑘

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1/3 1/3 1/3

1/5 1/5 1/5 1/5 1/5

1/3 1/3 1/3
1/3 1/3 1/3

(h) peval(MΠ∨
1
)

Figure 3: Visualization of the linear algebraic PE of Π∧
1 (upper) and Π∨

1 (lower).

evaluated program matrix for logic inferencing in vector
spaces by combining peval(MΠ∧) and peval(MΠ∨):

peval(MΠ) = peval(Π∧) + 𝜃⇑
(︀
peval(Π∨)

)︀
+diag(vΠ𝐹 ⊕𝜃⇓ vneg(Π)) (8)

peval(MΠ) can be used for the fixpoint computation in
the same way as MΠ. A few modifications may be needed
to apply the idea to Horn abduction in [13], however, the
main idea remains the same. peval(MΠ) is expected to
be more efficient than MΠ in case it helps to reduce the
number of deduction steps to reach a fixpoint. Figure 4
illustrates the visualization of peval(MΠ1) after combining
peval(MΠ∧

1
) and peval(MΠ∨

1
) with dependency graphs

and matrix representations.

5. Partial evaluation using matrix
decomposition

5.1. Eigendecomposition
As we have seen in the previous sections, the main idea of
PE is to compute the powers of a program matrix. While
in linear algebra, it is known that powers of a matrix M
can be computed efficiently using its eigendecomposition
M = Q ·A ·Q−1, where A is a diagonal matrix of eigen-
values and Q is a matrix of eigenvectors [27]. Then we can
compute M𝑛 = Q ·A𝑛 ·Q−1 that is computationally more
efficient than computing M𝑛 directly, because A𝑛 is just
the element-wise power of the diagonal matrix A.

In this section, we will show how to apply eigendecom-
position to realize PE in LP. Let us consider an example:

Example 2. Given a logic program P3 = {𝑝← 𝑝∧ 𝑞, 𝑞 ←
𝑞 ∧ 𝑟, 𝑟 ← 𝑞}. Standardized logic program (no change):
Π3 = P3.

There is no 𝑂𝑟-rule in Π3, so we only need to consider

MΠ∧
3
=

⎛⎝
𝑝 𝑞 𝑟

𝑝 1/2 1/2
𝑞 1/2 1/2
𝑟 1

⎞⎠. For computing the eigen-

values, it is more numerically stable to use the adjacency ma-

trix 𝜃⇑(MΠ∧
3
) =

⎛⎝
𝑝 𝑞 𝑟

𝑝 1 1
𝑞 1 1
𝑟 1

⎞⎠ instead of MΠ∧
3

. Next,

we append needed information to the diagonal to obtain
𝜃⇑(̂︁MΠ∧

3
), here they are identical. Let us compute the eigen-

values of 𝜃⇑(̂︁MΠ∧
3
).

𝑑𝑒𝑡(𝜃⇑(̂︁MΠ∧
3
)− 𝜆I) = 0

⇔

⎛⎜⎝
𝑝 𝑞 𝑟

𝑝 1− 𝜆 1

𝑞 1− 𝜆 1

𝑟 1

⎞⎟⎠ = 0

⇔ − 𝜆3 + 2𝜆2 − 1 = 0

⇔ (𝜆− 1)(𝜆2 − 𝜆− 1) = 0

Eigenvalues:
𝜆1 = 1

𝜆2 =
1

2
(1 +

√
5)

𝜆3 =
1

2
(1−

√
5)

Eigenvectors:

𝑣1 = (
1

2
(3 +

√
5),

1

2
(1 +

√
5), 1)

𝑣2 = (1, 0, 0)

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

ℎ

𝑥1¬𝑎 ¬𝑐 ¬𝑑 ¬𝑔 ¬ℎ

(a) Dependency graph of peval(Π∧
1).

𝑎

𝑏

𝑐

𝑑 𝑒

𝑓 𝑔

ℎ𝑥1 ¬𝑎¬𝑐 ¬𝑑 ¬𝑔¬ℎ

(b) Dependency graph of peval(Π∨
1).

𝑎

𝑏

𝑐

𝑑 𝑒

𝑓 𝑔 ℎ

𝑥1 ¬𝑎¬𝑐 ¬𝑑 ¬𝑔¬ℎ

(c) 𝐴𝑛𝑑-𝑂𝑟-dependency graph of peval(Π1).

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1 1 1
1/21/2

1 1 1
1

1
1 1
1 1

1
1/21/2

1
1

1
1

1

(d) MΠ1

a b c d e f g h x 1 ¬a ¬c ¬d ¬g ¬h

a
b
c
d
e
f
g
h
x1
¬a
¬c
¬d
¬g
¬h

1 1 1

1 1 1 1 1

1 1 1
1 1 1

1

1
1

1
1

1

(e) peval(MΠ1
)

Figure 4: Visualization of partial evaluated dependency graphs of Π1, the program matrix MΠ1 and the partially evaluated program
matrix peval(MΠ1).

𝑣3 = (
1

2
(3−

√
5),

1

2
(1−

√
5), 1)

Eigendecomposition:

𝜃⇑(̂︁MΠ∧
3
) =

⎛⎝
𝑝 𝑞 𝑟

𝑝 1 1
𝑞 1 1
𝑟 1

⎞⎠ = Q ·A ·Q−1

where:

A =

⎛⎝
𝑝 𝑞 𝑟

𝑝 1
𝑞 1

2
(1 +

√
5)

𝑟 1
2
(1−

√
5)

⎞⎠

Q =

⎛⎝
𝑝 𝑞 𝑟

𝑝 1
2
(3 +

√
5) 1

2
(1 +

√
5) 1

𝑞 1 0 0
𝑟 1

2
(3−

√
5) 1

2
(1−

√
5) 1

⎞⎠
When we obtain the eigendecomposition of 𝜃⇑(̂︁MΠ∧

3
), we

can compute powers of 𝜃⇑(̂︁MΠ∧
3
) efficiently. However,

unlike the iteration method in which we let the method
determine a fixpoint condition, here we need to determine
the power 𝑛 in advance. Fortunately, we can set a suffi-
ciently large 𝑛 to ensure that the fixpoint is reached fol-
lowing Proposition 1. In this example, as 𝑛 = 3, we
have a sufficient number of iterations to reach the fixpoint
𝑘 = ⌈𝑙𝑜𝑔2(3)− 1⌉ = 1, then we just need to raise A to
the power of 𝑘 + 1 = 2. Accordingly, the partial evaluated
matrix is:

Q ·A2 ·Q−1 =

⎛⎝
𝑝 𝑞 𝑟

𝑝 1 2 1
𝑞 0 2 1
𝑟 0 1 1

⎞⎠
This matrix can be translated into a logic program:
peval(MΠ∧

3
) = {𝑝← 𝑝 ∧ 𝑞 ∧ 𝑟, 𝑞 ← 𝑞 ∧ 𝑟, 𝑟 ← 𝑞 ∧ 𝑟}

which is the partial evaluated program of Π∧
3 . Because there

is no 𝑂𝑟-rule in this case, so peval(MΠ∧
3
) is also the par-

tially evaluated program of Π3.
Using eigendecomposition for partial evaluation is com-

putationally more efficient than the iteration method, espe-
cially when the number of iterations is large. However, the
eigendecomposition method requires the matrix to be diag-
onalizable [27], which is not always the case. Unfortunately
for the case of program matrices, we usually see that the
determinant of the matrix is 0, which means that the matrix
is not diagonalizable. In such cases, we can use the Jordan
Normal Form (JNF) to compute the powers of a matrix that
we will discuss in the next section.

5.2. Jordan normal form
In linear algebra, the JNF, also known as the Jordan canoni-
cal form, is a specific type of upper triangular matrix called
a Jordan matrix.

Definition 8 (Jordan normal form [28]). Let 𝐽𝑖 be a

square 𝑘 × 𝑘 matrix

⎛⎜⎜⎜⎜⎜⎝
𝜆𝑖 1

𝜆𝑖 1
. . .

. . .
𝜆𝑖 1

𝜆𝑖

⎞⎟⎟⎟⎟⎟⎠ such that

𝜆𝑖 is identical on the diagonal and there are 1s just above
the diagonal. We call each such matrix a Jordan 𝜆𝑖-block. A
matrix M is in JNF if

M =

⎛⎜⎜⎜⎝
𝐽1

𝐽2

. . .
𝐽𝑝

⎞⎟⎟⎟⎠
It is proved that every square matrix in R𝑛×𝑛 can
be decomposed into a matrix in JNF [29] accord-
ing to Jordan’s theorem. Additionally, computing
powers of a Jordan matrix M is straightforward:

M𝑛 =

⎛⎜⎜⎜⎝
𝐽1

𝐽2

. . .
𝐽𝑝

⎞⎟⎟⎟⎠
𝑛

=

⎛⎜⎜⎜⎝
(𝐽1)

𝑛

(𝐽2)
𝑛

. . .
(𝐽𝑝)

𝑛

⎞⎟⎟⎟⎠
that can be simplified by computing powers
of each Jordan block. The power of a Jordan
block 𝐽𝑖 of the size 𝑘 × 𝑘 can be computed by:

(𝐽𝑖)
𝑛 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆𝑛
𝑖

(︀
𝑛
1

)︀
𝜆𝑛−1
𝑖

(︀
𝑛
2

)︀
𝜆𝑛−2
𝑖

(︀
𝑛

𝑘−1

)︀
𝜆𝑛−𝑘+1
𝑖

𝜆𝑛
𝑖

(︀
𝑛
1

)︀
𝜆𝑛−1
𝑖

(︀
𝑛

𝑘−2

)︀
𝜆𝑛−𝑘+2
𝑖

.
...

.
...

𝜆𝑛
𝑖

(︀
𝑛
1

)︀
𝜆𝑛−1
𝑖

𝜆𝑛
𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

(︀
𝑛
𝑏

)︀
is the binomial coefficient describing the alge-

braic expansion of powers of a binomial.
Now let us consider an example to illustrate the idea of

using JNF for partial evaluation.

Example 3. Given a normal logic program: P4 = {𝑝 ←
𝑞, 𝑝 ← 𝑟, 𝑞 ← 𝑠, 𝑞 ← 𝑡, 𝑟 ← ¬𝑡, 𝑟 ← ¬𝑠, 𝑠 ←
¬𝑡, 𝑠← ¬𝑟, 𝑡← ¬𝑟, 𝑡← ¬𝑠}.
Standardized logic program: Π4 = {𝑝 ← 𝑞 ∨ 𝑟, 𝑞 ←
𝑠 ∨ 𝑡, 𝑟 ← ¬𝑡 ∨ ¬𝑠, 𝑠← ¬𝑡 ∨ ¬𝑟, 𝑡← ¬𝑠 ∨ ¬𝑟}.

There is no 𝐴𝑛𝑑-rules, so we only need to consider ̂︁MΠ∨
4

.

The matrix is not diagonalizable as 𝑑𝑒𝑡(̂︁MΠ∨
4
) = 0, so we

will use the JNF to compute powers of ̂︁MΠ∨
4

. First, let us

compute the eigenvalues of 𝜃⇑(̂︁MΠ∨
4
):

𝜃⇑(̂︁MΠ∨
4
) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝 𝑞 𝑟 𝑠 𝑡 ¬𝑟 ¬𝑠 ¬𝑡
𝑝 1 1
𝑞 1 1
𝑟 1 1
𝑠 1 1
𝑡 1 1
¬𝑟 1
¬𝑠 1
¬𝑡 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑑𝑒𝑡(𝜃⇑(̂︁MΠ∨
4
)− 𝜆I) = 0

⇔ 𝜆8 − 3𝜆7 + 3𝜆6 − 𝜆5 = 0

⇔ 𝜆5(𝜆− 1)3 = 0

1. 𝜆1 = 0, algebraic multiplicity2 5, eigenvectors:

𝑣1 = (1 , 0, 0, 0, 0, 0, 0, 0)⊤

𝑣2 = (0, -1 , 1 , 0, 0, 0, 0, 0)⊤

𝑣3 = (0, 0, 0, -1 , 1 , 0, 0, 0)⊤

For 𝑣1, solve (𝜃⇑(̂︁MΠ∨
4
)− 𝜆1I)

𝑟 · 𝑣1 = 0:
2. 𝜆2 = 1, algebraic multiplicity 3, eigenvectors:

𝑣4 = (2 , 2 , 0, 1 , 1 , 1 , 0, 0)⊤

𝑣5 = (2 , 1 , 1 , 0, 1 , 0, 1 , 0)⊤

𝑣6 = (2 , 1 , 1 , 1 , 0, 0, 0, 1)⊤

Following the algorithm described in [30], one can find the
JNF of 𝜃⇑(̂︁MΠ∨

4
) = P · J ·P−1 where:

2The algebraic multiplicity of an eigenvalue is the number of times it
appears as a root of the characteristic polynomial.

J =

𝑝 𝑞 𝑟 𝑠 𝑡 ¬𝑟 ¬𝑠 ¬𝑡

𝑝 0 1

𝑞 0 1

𝑟 0

𝑠 0

𝑡 0

¬𝑟 1

¬𝑠 1

¬𝑡 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P =

𝑝 𝑞 𝑟 𝑠 𝑡 ¬𝑟 ¬𝑠 ¬𝑡

𝑝 1 2 2 2

𝑞 1 −1 2 1 1

𝑟 1 1 1

𝑠 1 −1 1 1

𝑡 1 1 1

¬𝑟 1

¬𝑠 1

¬𝑡 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
For visualization purpose, we highlight total 6 Jordan blocks
of J in different colors corresponding their eigenvectors
𝑣1 , 𝑣2 , 𝑣3 , 𝑣4 , 𝑣5 , 𝑣6 .
Similar to the eigendecomposition, we can compute the

partial evaluated matrix peval(MΠ∨
4
) by computing P ·

J𝑘 ·P−1. For this example, 𝑘 = 4 is sufficient to reach the
fixpoint according to Proposition 1.

P · J4 ·P−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝 𝑞 𝑟 𝑠 𝑡 ¬𝑟 ¬𝑠 ¬𝑡
𝑝 2 2 2
𝑞 2 1 1
𝑟 1 1
𝑠 1 1
𝑡 1 1
¬𝑟 1
¬𝑠 1
¬𝑡 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
This matrix can be translated to: peval(MΠ∨

4
) = {𝑝 ←

¬𝑟 ∨ ¬𝑠 ∨ ¬𝑡, 𝑞 ← ¬𝑟 ∨ ¬𝑠 ∨ ¬𝑡, 𝑟 ← ¬𝑠 ∨ ¬𝑡, 𝑠 ←
¬𝑟∨¬𝑡, 𝑡← ¬𝑟∨¬𝑠} is the partial evaluated program of
Π∨

4 . peval(MΠ∨
4
) is also identical to the partial evaluated

program of Π4 as there is no 𝐴𝑛𝑑-rule in this case.

General approach using matrix decomposition To
summarize this section, we have shown how to use eigende-
composition and JNF to compute the powers of a matrix in
the context of PE of logic programs. A baseline step-by-step
is as follows:

Table 1
Statistical data of the datasets and detailed comparison of execution time (in ms) of the linear algebraic PE methods on the
datasets. (green - best, red - worst)

Artificial samples I (166 instances) Artificial samples II (118 instances) FMEA samples (213 instances)
Parameters mean / std [min, max] mean / std [min, max] mean / std [min, max]
Matrix size 2088.32 / 1584.48 [11, 6601] 321.86 / 252.64 [18, 1110] 27.58 / 19.32 [6, 84]
No. 𝐴𝑛𝑑-rules 1188.63 / 1349.59 [8, 6375] 201.86 / 186.64 [9, 1007] 16.10 / 9.23 [1, 43]
No. 𝑂𝑟-rules 899.69 / 839.58 [3, 3345] 119.99 / 107.40 [4, 437] 11.48 / 11.01 [1, 41]
Sparsity (of MΠ) 0.99 / 0.02 [0.90, 1.00] 0.99 / 0.01 [0.90, 1.00] 0.95 / 0.04 [0.73, 0.99]
Longest path 4.63 / 5.36 [2, 65] 6.56 / 8.56 [2, 58] 1.94 / 0.24 [1, 2]
peval steps 3.78 / 0.95 [2, 5] 3.71 / 0.81 [2, 6] 2.00 / 0.00 [2, 2]

Algorithms mean / std Timeout? mean / std Timeout? mean / std Timeout?
(I) Iteration + dense 799 965 / 58 500 0 / 166 4483 / 688 0 / 118 103 / 10 0 / 213
(II) Decomposition + dense 9 292 159 / 34 274 152 / 166 6 041 323 / 28 710 96 / 118 1 607 397 / 19 170 18 / 213
(I) Iteration + sparse 545 / 15 0 / 166 138 / 4 0 / 118 157 / 5 0 / 213

Algorithm 3: Partial evaluation using matrix decomposition

1: Find the standardized program and its matrix
representation MΠ∧ and MΠ∨ .

2: Resolve cycles in these matrices.
3: For each matrix ̂︁MΠ∧ and ̂︁MΠ∨ , compute the

eigenvalues and eigenvectors.
4: if the matrix is diagonalizable then
5: find the eigendecomposition of the matrix.
6: else
7: find the Jordan normal form of the matrix.
8: Compute the power using the decomposition.
9: Translate resulting matrices back to a logic program.

6. Experimental Results
We focus on evaluating the performance of the proposed
linear algebraic PE with iteration method (I) and the ma-
trix decomposition method (II) using the logic programs
in Failure Modes and Effects Analysis (FMEA) benchmarks
[31] that also has been reported in [13]. Note that we only
measure the time for partial evaluation computation (peval
for short) not including the time for solving the abduction
problem. The dataset consists of three problem sets: Ar-
tificial samples I (166 instances), Artificial samples II
(118 instances), and FMEA samples (213 instances). All
programs in the dataset are acyclic. We also augment the
FMEA benchmarks with cycles to evaluate the performance
in the cyclic case. The augmented benchmarks are gener-
ated by adding randomly 1-5 cycles of the length 2-5 to each
GΠ∧ and GΠ∨ of a program P. Algorithms to be compared
are: (I) in dense matrix format, (I) in sparse (Compressed
Sparse Row (CSR)) matrix format, and (II) in dense matrix
format. Our code is implemented in Python 3.7 using numpy,
scipy, and sympy for matrices representation and compu-
tation. We set a time out of 20s for PE computation, if a
method takes longer than that, we report it as a timeout and
its execution is set to 60s for comparison. System environ-
ment: Intel(R) Xeon(R) Bronze 3106 @1.70GHz; 64GB DDR3
@1333MHz; Ubuntu 22.04 LTS 64bit.

Table 1 reports the statistical data of the datasets and a
detailed comparison of the execution time of the proposed
algorithms. It can be seen that (I) is the fastest on all datasets
while (II) is significantly slower. Table 2 reports the com-
parison for the cyclic case. In this case, we also report the
execution time for the cycle-resolving step (resolve for
short). peval + resolve is the total run time for this case.

Augmented cycles do not change much the structure of the
dataset, so the comparison is similar to the acyclic case.

The reason for (II) being slow in our benchmark is that all
program matrices in the benchmarks are not diagonalizable,
and Algorithm 3 must call sympy for JNF decomposition.
As sympy is meant for symbolic computation, it can only
handle matrices of up to 100 atoms in a reasonable time. For
program matrices of this size, according to Proposition 1,
(I) can reach a fixed point in a few iterations, and then it
dominates (II). JNF is also known to be numerically unstable
that is a small perturbation in the input matrix can lead to a
large change in the Jordan form [32]. This leads to the low
adoption of JNF in API libraries for numerical computation
that we cannot find an available one in sparse format.

In general, (I) is the best choice for linear algebraic PE in
practice because it is simple, fast, and stable.

7. Conclusion
To wrap things up, we have proposed several techniques to
extend the linear algebraic PE to accommodate𝑂𝑟-rules and
cycles in logic programs. First, the matrix representation
of a standardized program Π is separated into MΠ∧ and
MΠ∨ , then PE for 𝐴𝑛𝑑-rules and 𝑂𝑟-rules can be handled
similarly. Next, we introduced cycle-resolving techniques
to ensure that linear algebraic PE works effectively even
with local cycles in the Π∧ or Π∨. Moreover, by seeing the
PE as computing the power of the matrix representation
of the program, we can further leverage eigenvalues and
eigenvectors or program matrices to perform PE in vector
spaces. To the best of our knowledge, this is the first attempt
to incorporate matrix decomposition techniques into linear
algebraic PE for LP. Although the decomposition method
does not perform really well in practice, it opens up a new
direction for future research where we focus on leveraging
eigenvalues and eigenvectors of program matrices for rea-
soning with LP. It is also important to connect LP to spectral
graph theory [33] in which researchers have also studied the
connection between the eigenvalues of the adjacency matrix
of a graph and its properties. Future work also includes in-
vestigating to extend linear algebraic PE to globally handle
both 𝐴𝑛𝑑-rules and 𝑂𝑟-rules in a logic program even with
global cycles.

Table 2
Detailed comparison of execution time (in ms) of the linear algebraic PE methods on the augmented datasets with cycles.
(green - best, red - worst)

Artificial samples I (166 instances) Artificial samples II (118 instances) FMEA samples (213 instances)
Parameters mean / std [min, max] mean / std [min, max] mean / std [min, max]
No. cycles 𝐴𝑛𝑑-rules 3.72 / 0.25 [1, 5] 3.68 / 0.30 [1, 5] 1.00 / 0.00 [1, 1]
No. cycles 𝑂𝑟-rules 3.89 / 0.37 [1, 5] 3.75 / 0.42 [1, 5] 1.00 / 0.00 [1, 1]

Algorithms peval (mean / std) resolve (mean / std) peval (mean / std) resolve (mean / std) peval (mean / std) resolve (mean / std)
(I) Iteration + dense 821 780 / 62 340 573 / 27 4501 / 793 407 / 19 90 / 7 52 / 6
(II) Decomposition + dense 9 251 534 / 33 491 554 / 24 5 970 126 / 27 104 398 / 18 1 271 842 / 18 510 56 / 6
(I) Iteration + sparse 579 / 17 76 / 14 151 / 4 68 / 12 112 / 4 17 / 3

Acknowledgments
This work has been supported by JSPS KAKENHI Grant
Number JP21H04905 and JST CREST Grant Number JP-
MJCR22D3.

References
[1] C. Sakama, K. Inoue, T. Sato, Linear algebraic char-

acterization of logic programs, in: International Con-
ference on Knowledge Science, Engineering and Man-
agement, Springer, 2017, pp. 520–533.

[2] T. Sato, K. Inoue, C. Sakama, Abducing relations in
continuous spaces., in: IJCAI, 2018, pp. 1956–1962.

[3] Y. Aspis, K. Broda, A. Russo, J. Lobo, Stable and sup-
ported semantics in continuous vector spaces, in: Pro-
ceedings of the 17th International Conference on Prin-
ciples of Knowledge Representation and Reasoning,
KR 2020, Rhodes, Greece, 2020, pp. 59–68.

[4] A. Takemura, K. Inoue, Gradient-based supported
model computation in vector spaces, in: Logic Pro-
gramming and Nonmonotonic Reasoning, Springer
International Publishing, LNAI, volume 13416, 2022,
pp. 336–349.

[5] M. H. van Emden, R. A. Kowalski, The semantics of
predicate logic as a programming language, J. ACM
23 (1976) 733–742.

[6] C. Sakama, K. Inoue, T. Sato, Logic programming in
tensor spaces, Annals of Mathematics and Artificial
Intelligence 89 (2021) 1133–1153.

[7] T. Sato, C. Sakama, K. Inoue, From 3-valued semantics
to supported model computation for logic programs
in vector spaces., in: ICAART (2), 2020, pp. 758–765.

[8] K. Inoue, Algebraic connection between logic pro-
gramming and machine learning, in: Proceedings of
the 17th International Symposium on Functional and
Logic Programming (FLOPS 2024), volume 14659 of
Lecture Notes in Computer Science, Springer, 2024.

[9] T. Sato, R. Kojima, Boolean network learning in vector
spaces for genome-wide network analysis., in: KR,
2021, pp. 560–569.

[10] K. Gao, H. Wang, Y. Cao, K. Inoue, Learning from
interpretation transition using differentiable logic pro-
gramming semantics, Machine Learning 111 (2022)
123–145.

[11] K. Gao, K. Inoue, Y. Cao, H. Wang, A differentiable first-
order rule learner for inductive logic programming,
Artificial Intelligence 331 (2024) 104108.

[12] H. D. Nguyen, C. Sakama, T. Sato, K. Inoue, An effi-
cient reasoning method on logic programming using
partial evaluation in vector spaces, Journal of Logic
and Computation 31 (2021) 1298–1316.

[13] T. Q. Nguyen, K. Inoue, C. Sakama, Linear algebraic ab-
duction with partial evaluation, in: Practical Aspects
of Declarative Languages: 25th International Sympo-
sium, PADL 2023, Boston, MA, USA, January 16–17,
2023, Proceedings, Springer, 2023, pp. 197–215.

[14] J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusin-
ska, T. C. Przymusinski, Dynamic updates of non-
monotonic knowledge bases, The journal of logic
programming 45 (2000) 43–70.

[15] T. Q. Nguyen, K. Inoue, On converting logic programs
into matrices., in: ICAART (2), 2023, pp. 405–415.

[16] T. Q. Nguyen, K. Inoue, C. Sakama, Enhancing linear
algebraic computation of logic programs using sparse
representation, New Generation Computing 40 (2022)
225–254.

[17] K. L. Clark, Negation as failure, Logic and data bases
(1978) 293–322.

[18] M. Gelfond, V. Lifschitz, The stable model semantics
for logic programming., in: ICLP/SLP, volume 88, 1988,
pp. 1070–1080.

[19] F. Fages, Consistency of clark’s completion and exis-
tence of stable models, Methods Log. Comput. Sci. 1
(1994) 51–60.

[20] P. Ferraris, J. Lee, V. Lifschitz, A generalization of the
lin-zhao theorem, Ann. Math. Artif. Intell. 47 (2006)
79–101.

[21] E. Erdem, V. Lifschitz, Tight logic programs, Theory
Pract. Log. Program. 3 (2003) 499–518.

[22] C. Sakama, H. D. Nguyen, T. Sato, K. Inoue, Partial
evaluation of logic programs in vector spaces, in: Inter-
national Workshop on Answer Set Programming and
Other Computing Paradigms (ASPOCP 2018), Oxford
UK, 2018.

[23] T. Q. Nguyen, K. Inoue, C. Sakama, Linear algebraic
computation of propositional horn abduction, in: 2021
IEEE 33rd International Conference on Tools with Ar-
tificial Intelligence (ICTAI), IEEE, 2021, pp. 240–247.

[24] R. Tarjan, Depth-first search and linear graph algo-
rithms, SIAM journal on computing 1 (1972) 146–160.

[25] Y. S. U. Vishkin, Y. Shiloach, An O(log n) parallel
connectivity algorithm, J. algorithms 3 (1982) 57–67.

[26] Y. Zhang, A. Azad, A. Buluç, Parallel algorithms for
finding connected components using linear algebra,
Journal of Parallel and Distributed Computing 144
(2020) 14–27.

[27] G. Strang, Introduction to linear algebra 4th edition,
SIAM, 2009.

[28] G. Sewell, Computational methods of linear algebra
2nd edition, World Scientific Publishing Company,
2014.

[29] R. Piziak, P. L. Odell, Matrix theory: from generalized
inverses to Jordan form, Chapman and Hall/CRC, 2007.

[30] S. H. Weintraub, Jordan canonical form: theory and
practice, Springer Nature, 2009.

[31] R. Koitz-Hristov, F. Wotawa, Faster horn diagnosis-a
performance comparison of abductive reasoning algo-
rithms, Applied Intelligence 50 (2020) 1558–1572.

[32] C. Moler, C. Van Loan, Nineteen dubious ways to
compute the exponential of a matrix, twenty-five years
later, SIAM review 45 (2003) 3–49.

[33] R. A. Brualdi, Spectra of digraphs, Linear Algebra and
its Applications 432 (2010) 2181–2213.

	1 Introduction
	2 Background
	3 Logic Programs - Program Matrices - Dependency Graphs
	3.1 Matrix representation of logic programs
	3.2 Dependency graphs

	4 Linear Algebraic Partial Evaluation
	4.1 Partial evaluation with iteration method
	4.2 Cycle resolving

	5 Partial evaluation using matrix decomposition
	5.1 Eigendecomposition
	5.2 Jordan normal form

	6 Experimental Results
	7 Conclusion

