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Abstract
Probabilistic logic programming extends logic programming to offer a rich specification language for statistical relational models and,
more recently, to neurosymbolic reasoners. The standard stable model semantics adopted by probabilistic logic programs collapses in the
presence of contradictions that can arise when knowledge is not carefully elicited. In this work, we study probabilistic disjunctive logic
programs under the least-undefined stable model semantics. We prove missing complexity results for logic inference with bounded-arity
predicates, and then derive the complexity of probabilistic inference with respect to both the credal and the maximum entropy semantics.
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1. Introduction
The construction of a knowledge base may produce contra-
dictions, for instance, when several experts are consulted,
or when rules are extracted automatically [1]. A contra-
diction may render a knowledge base completely useless,
depending on the adopted semantics. Take the following
well-known logic program example that describes John and
the barber as two male adults, and expresses that a barber
shaves every male adult who does not shave himself:

maleAdult(john). maleAdult(barber).

shaves(barber, 𝑋)← maleAdult(𝑋),not shaves(𝑋,𝑋).

There is no stable model here, for if the barber shaves
himself then shaves(barber, barber) is not enforced by
the rule; and if the barber does not shave himself, then
shaves(barber, barber) must be true. Yet the rule produces
the sensible inference shaves(barber, john).

We can handle such contradictions gracefully through a
three-valued semantics where facts may be left undefined [2].
The least-undefined (partial) stable model semantics (L-
stable, for short) is one such semantics [3, 4]. The semantics
considers that facts can be true, false or undefined; the latter
can be interpreted as denoting a local inconsistency of the
knowledge base, or simply some fact whose truthiness is
impossible to determine given the available state of knowl-
edge. For example, under the L-stable semantics, a mini-
mal model for the previous logic program considers that
shaves(barber, john) is true while shaves(barber, barber)
is undefined.

Probabilistic logic programming languages [5] extend
logic programming [6] to represent relational probabilistic
models. Most such languages adopt a semantics derived
from Sato’s distribution semantics [7], where a basic distri-
bution over logic programs is extended into a distribution
over the intended models, from which probabilistic queries
of interest can be answered. The following program, written
in ProbLog’s syntax, gives a taste of one such a language:

0.01:: likes(anna, bob). likes(bob, carl).

likes(𝑋,𝑌 )← likes(𝑋,𝑍), likes(𝑍, 𝑌 ).
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The program states that Anna likes Bob with probability 0.01,
that Bob likes Carl, and that liking is transitive. The distri-
bution semantics assigns a probability distribution over two
logic programs: one containing the fact likes(anna, bob)
and the remaining facts and rules, with probability 0.01, and
another one that does not contain that fact, with probability
0.99. Thus, considering the minimal model semantics for
the logic programs, the probabilistic program infers that
likes(anna, carl) is true with probability 0.01.

The distribution semantics is appealing for its simplicity
and for separating the logic and probabilistic parts, which
enables different combinations of logic and probabilistic
semantics. And while such a combination can be made in a
number of different forms [8, 9, 10, 11, 12], most probabilistic
logic programming languages require that any induced logic
program admits at least one model, thus ruling out programs
containing contradictions.

Targeting the modeling of probabilistic argumentative
knowledge, which often contains contradictions, Totis, Kim-
mig and De Raedt [13] adopted the stable semantics (which
extends the minimal model semantics to handle recursive
definitions that go through negations) and suggested to
make all atoms undefined (inconsistent, in their terminol-
ogy) whenever a contradiction occurs. The approach, which
they named smProbLog, copes with the requirement of ex-
istence of an intended model at the expense of introducing
an extreme case of undefinedness in the semantics.

LPMLN [1] instead copes with inconsistency by renormal-
izing the probability mass over the induced logic programs
that admit a stable model. As noted in [13], doing so vio-
lates the essential assumption of Sato’s semantics that prob-
abilistic choices are independent. That leads to probabilistic
inconsistencies, as inferences draw from the program might
disagree with the specified marginal probabilities specified,
and creates difficulties for parametric learning from data.

Hadjichristodoulou and Warren [14] advocated using the
three-valued well-founded semantics [15] for the induced
logic programs, which always admit a single model. The
well-founded semantics does not distinguish between un-
definedness that arises from inconsistencies and those that
arise from multiple possible intended models. That is, an
atom might be assigned as undefined either because it is
involed in a contradiction (e.g. 𝑝← not 𝑝.), or because it is
defined differently in more than one model (e.g. 𝑝← not 𝑞.,
𝑞 ← not 𝑝.). The well-founded semantics is also more un-
defined: given a logic program, it assigns more undefined
atoms than the corresponding L-stable semantics.
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Another path has been followed by Rocha and Cozman
[16], where the L-stable semantics is applied to each in-
duced logic program. As they also focused on probabilistic
argumentation, the authors considered only normal logic
programs without integrity constraints, which always admit
at least one L-stable model. While the L-stable semantics
is not widely adopted, it is an interesting choice in that it
differentiates between situations that admit more than one
stable model from situations that have no stable model (and
are then identified with contradictions).

To summarize: the L-stable semantics handles inconsis-
tencies so as to minimize the number of undefined atoms, in
a way that is consistent with the distribution semantics, coin-
cides with the widely adopted stable model semantics in the
lack of contradictions, and as such is able to also represent
non-determinism (i.e., multiple intended models/solutions).
In addition, the L-stable semantics is also akin to typical se-
mantics of abstract argumentation frameworks [13, 17, 16].

To make the probabilistic language applicable, one needs
to derive inference algorithms that take a probabilistic logic
program and a target atom and produce the probabilities
of that atom being true according to the given semantics.
When designing such algorithms, is useful to classify such
inference tasks with respect to their computational com-
plexity class.

In this work, we study the computational complexity of
probabilistic logic programming under the L-stable seman-
tics. We first prove some missing results about the complex-
ity of (non-probabilistic) logic programs with bounded-arity
predicates. More precisely, we show that marginal infer-
ence under the L-stable semantics is Σ𝑝

3-hard for normal
programs and Σ𝑝

4-hard for disjunctive programs, thus climb-
ing one step of the polynomial hierarchy with respect to
the stable model semantics [18]. We then prove complexity
of probabilistic logic programs under two common choices
of probabilistic semantics.

The credal semantics [19, 20] considers all probability dis-
tributions that are consistent with the distribution semantics
requirements and the respective L-stable models, thus pro-
viding interval-valued inferences. Using our results on the
complexity of logic programs, e show that computing such
inferences for normal/disjunctive probabilistic programs
with bounded-arity predicates is PPΣ

𝑝
3 /PPΣ

𝑝
4 -complete, a

result that again let us climb one level of the counting hi-
erarchy relative to the stable model semantics complexity
[21].

The maximum entropy semantics averages all probability
models and produces a sharp probability value [8, 22, 13].
Despite being relatively more common than the credal se-
mantics, its complexity is largely unexplored. In fact, this
work provides the first complexity results under that seman-
tics that we are aware of. We show that the complexity of
inference under the maximum entropy semantics is upper
bounded by PPPP, an extremely powerful class, and lower
bounded by PPNP, even for propositional normal programs
with no undefined atoms (i.e., under the stable model se-
mantics), and for propositional disjunctive programs with
no undefined atoms and no negation. While those results
still leave us with quite a large gap in the characterization
of the complexity class, it shows that the maximum entropy
semantics can be least as hard as the credal semantics, if not
harder. That might encourage the development of inference
algorithms that use the credal semantics to approximate the
maximum entropy semantics.

We also address a more practical aspect of inference un-
der the L-stable semantics. We use a known relation [23]
between models under the L-stable and stable semantics to
devise an algorithm that reduces inference under the for-
mer to inference under the latter. Using the algorithm, we
provide empirical evidence that L-stable semantics is more
informative than smProbLog semantics.

The rest of this paper is organized as follows. We start
by reviewing some basic facts about logic programming
and probabilistic logic programming (Section 2). We then
prove complexity results first for logic programs (Section
3) and then for probabilistic logic programs (Section 4). In
Section 5, we discuss the practical inference algorithm for
probabilistic programs and the empirical results comparing
definedness of L-stable semantics and smProbLog. Final
remarks conclude this paper (Section 6).

2. Preliminaries
We assume the reader is familiar with logic programming
and refer to [24] for a gentle introduction to the topic. Thus,
here we only review the basic elements that help us fix some
notation and terminology.

2.1. Logic Programming
A rule 𝑟 is an expression of the form

𝐻1 ∨ · · · ∨𝐻𝑘 ← 𝐵1, . . . , 𝐵𝑚,not 𝐵𝑚+1, . . . ,not 𝐵𝑛 ,

where 𝐻𝑖 and 𝐵𝑗 are atoms, 𝑘 > 0 (note: this disallows
integrity constraints) and 𝑚,𝑛 ≥ 0. We define head(𝑟) =
{𝐻1, . . . , 𝐻𝑘}, body+(𝑟) = {𝐵1, . . . , 𝐵𝑚}, body−(𝑟) =
{𝐵𝑚+1, . . . , 𝐵𝑛}, and body(𝑟) = body+(𝑟) ∪ body−(𝑟).
A rule is normal if 𝑘 = 1. It is a fact if in addition 𝑚 =
𝑛 = 0. In general, facts provide input data and rules derive
new data or verify properties of the input data. A disjunctive
logic program, or simply a program, is a finite set of rules.
We denote the set of facts of a program 𝑃 by facts(𝑃 ). The
program is normal if and only if all rules are normal.

The semantics of a program with variables is given by
the semantics of its grounding, so for the rest of this section
we consider only propositional programs.

The Herbrand base of a program is the set formed by
all ground atoms that can be built using predicate names
and constants in the program. The grounding of a program
is the propositional program obtained by grounding each
rule, that is, replacing variables with constants from the
Herbrand base in every consistent way. Let t, f and u de-
note ground atoms which do not occur in a program 𝑃 . A
three-valued interpretation 𝐼 is a function from the atoms
in the Herbrand base to f < u < t. We extend 𝐼 so that
𝐼(𝑥) = 𝑥 for 𝑥 = t, u, f , 𝐼(¬𝐴) = t if 𝐼(𝐴) = f , 𝐼(𝐴) = f
if 𝐼(𝐴) = t and 𝐼(¬𝐴) = u if 𝐼(𝐴) = u. We say that 𝐴 is
defined if 𝐼(𝐴) ̸= u. We write 𝐼𝑥 = {𝐴 | 𝐼(𝐴) = 𝑥} for
𝑥 = t, f, u. An interpretation 𝐼 is total if 𝐼u = ∅. We define
𝐼(head(𝑟)) = max{𝐼(𝐴) | 𝐴 ∈ head(𝑟)} and 𝐼(body(𝑟))
as the minimum of min{𝐼(𝐴) | 𝐴 ∈ body+(𝑟)} and
min{𝐼(¬𝐴) | 𝐴 ∈ body−(𝑟)}. An interpretation 𝐼 sat-
isfies a rule 𝑟 iff 𝐼(head(𝑟)) ≥ 𝐼(body(𝑟)). Equivalently,
the rule is satisfied by 𝐼 if and only if:

(S1) The rule body contains a false literal, that is, if either
body+(𝑟) ∩ 𝐼 f ̸= ∅ or body−(𝑟) ∩ 𝐼 t ̸= ∅; or



Table 1
Interpretations, program reducts and minimal (stable) models for
the program in Example 2.

id 𝐼 𝑃/𝐼 − {𝑎 ∨ 𝑏} MinModels(𝑃/𝐼)
1 (f, f) 𝑎← t. 𝑏← t (t, t)
2 (f, u) 𝑎← t. 𝑏← u (t, u)
3 (f, t) 𝑎← t. 𝑏← f (t, f)
4 (u, f) 𝑎← u. 𝑏← t. (u, t)
5 (u, u) 𝑎← u. 𝑏← u. (t, u), (u, t)
6 (u, t) 𝑎← u. 𝑏← f. (t, f), (u, t)

7 (t, f) 𝑎← f. 𝑏← t. (f, t)
8 (t, u) 𝑎← f. 𝑏← u. (t, u), (f, t)

9 (t, t) 𝑎← f. 𝑏← f (t, f), (f, t)

(S2) The literals in the body are all satisfied (i.e., true if
positive, false if negative), and the head has at least
one atom which is true; or

(S3) Each literal in the body is either satisfied or undefined,
some literal is the body is undefined, and some atom
in the head is either satisfied or undefined.

The last rule is what differentiates three-valued semantics,
such as the L-stable semantics, from two-valued semantics,
such as the stable semantics, as it allows local inconsistency
introduced by a rule to be resolved by an undefined atom in
the body and/or an undefined atom in the head. Note that,
by definition, a fact can only be satisfied by (S2).

Example 1. The interpretation 𝐼(𝑎) = t and 𝐼(𝑏) = 𝐼(𝑐) =
f satisfies the rule 𝑎∨𝑐← 𝑏,not 𝑎. by (S1); the interpretation
𝐼(𝑎) = f and 𝐼(𝑏) = 𝐼(𝑐) = t satisfies that same rule by
(S2); last, the valuation 𝐼(𝑎) = u, 𝐼(𝑏) = t and 𝐼(𝑐) = f
satisfies that rule by (S3).

An interpretation is a model of a program if it satisfies all
of its rules. We define a partial order ≤ (reflexive, antisym-
metric and transitive) of interpretations as: 𝐼0 ≤ 𝐼1 if and
only if 𝐼0(𝐴) ≤ 𝐼1(𝐴) for all 𝐴. A model 𝐼1 is minimal if
there is no model 𝐼0 ≤ 𝐼1 such that 𝐼0 ̸= 𝐼1. If 𝐼 is total
then it is minimal if and only if 𝐼 t is ⊆-minimal. Note that
by (S3) if 𝐼 t = 𝐼 f = ∅, then 𝐼 is a model as it satisfies all
rules (and we disallow integrity constraints). Thus, since
≤ is a partial order and the Herbrand base is finite, every
normal program admits one or more minimal models [25].
This is contrast to complete (i.e., 2-valued) semantics, for
which a normal program might have none, one or multiple
minimal models.

The stability of a model 𝐼 is connected to the notion
of the program’s reduct w.r.t. 𝐼 , written 𝑃/𝐼 , obtained by
the so-called the modified Gelfond–Lifschitz (mGL) trans-
formation [25]. The transformation operates on each atom
𝐴 ∈ body−(𝑟) in the negative body of a rule 𝑟 ∈ 𝑃 and re-
places it by the atom t, f or u corresponding to its semantics
in 𝐼 . Formally, it replaces 𝐴 with: (i) t if 𝐴 ∈ 𝐼 f ; or (ii) f if
𝐴 ∈ 𝐼 t; or (iii) u if 𝐴 ∈ 𝐼u. We say that 𝐼 is a stable model of
𝑃 if 𝐼 is a minimal model of 𝑃/𝐼 . This is the partial stable
model semantics (P-stable) for logic programs [25]. A stable
model 𝐼1 is least undefined (L-stable, for short) if there is
no other stable model 𝐼0 with 𝐼u0 ⊂ 𝐼u1 . That is, 𝐼 is least
undefined if there is no other stable model that defines (as
true or false) more atoms than it. This is the L-stable model
semantics [4]. We denote the L-stable models of program 𝑃
by models(𝑃 ).

Example 2. Table 1 lists the interpretations 𝐼 =
(𝐼(𝑎), 𝐼(𝑏)), the respective program reduct and minimal mod-
els for the program

𝑎 ∨ 𝑏. 𝑎← not 𝑎. 𝑏← not 𝑏.

We see that 𝐼6 and 𝐼8 are the only partial stable models of the
program; as they define different atoms, they are also the only
L-stable models.

A normal program has 1 or more L-stable models. This is
because such a program always has a well-founded model,
which is also a partial stable model [4].1 The same is not
true when disjunctive heads are present, as the next example
shows.

Example 3. The following disjunctive program has no L-
stable model [26]:

𝑎 ∨ 𝑏 ∨ 𝑐. 𝑏← not 𝑎. 𝑐← not 𝑏. 𝑎← not 𝑐.

To see why the program does not have stable models, note that
the three normal rules induce a contradiction on the truth-
value of each atom (this can be seen as a 2-coloring of an order
3 complete graph whose nodes are the atoms). Additionally,
interpreting any of 𝑎, 𝑏 or 𝑐 as undefined leads the others to
also be interpreted as undefined (due to the cycle). But this
violates the disjunction.

While joint use of disjunction and negation can create
inconsistent programs, disjunction can also be used to avoid
the need of contradictions to discard interpretations:

Example 4. To see another important feature of the stable
semantics, consider the following program, which describes
the property of 3-colorability of a given undirected graph.

edge(a, b). edge(a, c). edge(b, d). edge(c, d).
eq(r, r). eq(g, g). eq(b, b).
edge(𝑋,𝑌 )← edge(𝑌,𝑋).

color(𝑋, r) ∨ color(𝑋, g) ∨ color(𝑋, b).
fail← color(𝑋,𝐶), color(𝑋,𝐷),not eq(𝐶,𝐷).

fail← edge(𝑋,𝑌 ), color(𝑋,𝐶), color(𝑌,𝐶).

color(𝑋,𝐶)← fail.

colorable← not fail.

As the underlying graph is 3-colorable, the program admits
a total stable model where fail is false. Now consider a modi-
fication of the facts so that the graph is not 3-colorable (e.g.,
by adding the fact edge(b, c)). Then any (stable) model must
assign fail to true and therefore must also assign color(𝑥, 𝑐) to
true for any node 𝑥 and color 𝑐. But such a model is maximal
(it assigns the maximum number of true atoms); hence it is
only stable, if there is not other stable model. It follows that
there is a stable model defining colorable as true if and only
if the graph is 3-colorable.

This type of modeling feature is called saturation, and
is important to achieve more computation power in the
representation [26]. The combination of saturation and
contradictions increases the computational power of the
logic programming language [27].

1Taken as the set of true-value atoms, the well-founded model is the
intersection of all P-stable models.



2.2. Probabilistic Logic Programming
A probabilistic logic program is a (disjunctive) logic pro-
gram 𝑃 equipped with a function 𝜌 : facts(𝑃 ) → [0, 1]
that assigns a probability value to each (ground) fact of the
program. We follow ProbLog’s syntax and write 𝑝 ::𝐹 to
denote that 𝜌(𝐹 ) = 𝑝. We adopt the common requirement
that no two atoms in probabilistic facts unify with each an-
other nor with the the head of any rule. Such a requirement
is not necessary for the complexity results we prove here,
but it simplifies some definitions and seems reasonable in
realistic use cases.

Example 5. We can specify a random graph of order 3 as:

0.5::arc(a, b). 0.5::arc(a, c). 0.5::arc(b, c).
edge(𝑋,𝑌 )← arc(𝑌,𝑋).

edge(𝑋,𝑌 )← arc(𝑋,𝑌 ).

The semantics of a probabilistic program is given by its
grounding. Thus, we consider only grounded programs
in the rest of this section. A total choice is any subset
of the facts. Given a total choice 𝐶 ⊆ facts(𝑃 ), we
denote the subsequent (deterministic) logic program by
𝑃𝐶 = (𝑃 ∖ facts(𝑃 )) ∪ 𝐶 . A probabilistic program in-
duces a distribution over logic programs by

Pr(𝑃𝐶) =
∏︁
𝐹∈𝐶

𝜌(𝐹 )
∏︁

𝐹∈facts(𝑃 )∖𝐶

(1− 𝜌(𝐹 )) .

That is, the logic program assumes that each fact 𝐹 ∈
facts(𝑃 ) is selected independently with probability 𝜌(𝐹 )
in the resulting random logic programs. Note that because
we assumed that probabilistic facts do not unify with rule
heads, and because under minimal model semantics an atom
is true only if it appears as a fact or in the head of rule, then
an atom in a probabilistic fact is true iff it is selected by a
total choice. That is, a total choice is equivalent to fixing
the interpretation of a probabilistic atom.

Let 𝐼 ∼ 𝐶 denote an interpretation 𝐼 that agrees with 𝐶 ,
i.e., 𝐼 t ∩ facts(𝑃 ) = 𝐶 and 𝐼 f ∩ facts(𝑃 ) = facts(𝑃 ) ∖ 𝐶 .
The probabilistic semantics can be extended to interpre-
tations of the remaining atoms of the Herbrand base by
probabilistic models. A probabilistic model is a probability
measure over the interpretations such that

(PM1) Pr(𝐼) > 0 only if 𝐼 ∈ models(𝑃𝐶) for 𝐶 ∼ 𝐼 , and

(PM2) Pr({𝐼 ∼ 𝐶}) = Pr(𝑃𝐶).

Thus, if for some total choice 𝐶 the induced logic program
has no L-stable model, then by (PM1) Pr(𝐼) = 0 for any
𝐼 ∼ 𝐶 , which contradicts (PM2). We call such a program
inconsistent.

The probabilistic model semantics is only defined for con-
sistent programs, and a consistent probabilistic program
admits one or more probabilistic models. When there are
many probabilistic models, there are generally two ways of
attributing a semantics. The credal semantics [12] takes the
entire set of probability models, and derives tight bounds on
inferences with respect to that set. It is therefore a conser-
vative approach to probabilistic reasoning. Another choice,
adopted e.g. by P-log [8], NeurASP [22] and SMProblog [13],
is selecting the (single) maximum entropy (MaxEnt) distri-
bution, which amounts to: Pr(𝐼) = Pr(𝑃𝐶)/𝑁𝐶 , where
𝑁𝐶 = |models(𝑃𝐶)| and 𝐶 ∼ 𝐼 . That is, to uniformly

Table 2
Total choices and L-stable models for the program in Example 6.

𝐶 Pr(𝑃𝐶) models(𝑃𝐶)

1 ∅ 0.63 (f, f, u, t), (f, f, t, u)
2 𝑎 0.07 (t, f, t, u)
3 𝑏 0.27 (f, t, u, t)
4 𝑎, 𝑏 0.03 (t, t, t, t)

select a model in models(𝑃𝐶). That is the MaxEnt (for
Maximum Entropy) semantics.

Given a probabilistic model, a target atom 𝐴 and a list of
evidence literals 𝐸 = {𝐸1, . . . , 𝐸𝑛}, all in the Herbrand
base of the program, we define a probabilistic inference as
the computation of the conditional probability Pr(𝐴|𝐸),
where Pr(𝐿1, . . . , 𝐿𝑛) =

∑︀
𝐼|=𝐿1,...,𝐿𝑛

Pr(𝐼) for any list
of literals 𝐿𝑖. For semantics that admit more than one prob-
abilistic model, we are interested in obtaining tight upper
and lower bounds on such probabilities:

Pr(𝐴|𝐸) = min
Pr

Pr(𝐴|𝐸), Pr(𝐴|𝐸) = max
Pr

Pr(𝐴|𝐸).

For semantics which produce a single probability value, a
conditional probability can be obtained as the ratio of two
joint probability events, Pr(𝐴,𝐸) and Pr(𝐸), so that there
is no loss in focusing on the computation of the marginal
probability of an atom. This is not the case for multivalued
semantics such as the credal semantics. However, due to its
structure, the credal semantics do admit a similar decompo-
sition [20]:

Pr(𝐴|𝐸) =
Pr(𝐴,𝐸)

Pr(𝐴,𝐸) + Pr(¬𝐴,𝐸)
.

A similar expression can be obtained for Pr(𝐴|𝐸), noting
that Pr(𝐴|𝐸) = 1−Pr(¬𝐴|𝐸). Additionally, the marginal
lower and upper probabilities according to the credal seman-
tics satisfy:

Pr(𝐴) =
∑︁

𝐶:∀𝐼∼𝐶,𝐼|=𝐴

Pr(𝑃𝐶),

Pr(𝐴) =
∑︁

𝐶:∃𝐼∼𝐶,𝐼|=𝐴

Pr(𝑃𝐶).

That is, the lower probability collects the probabilities of
total choices that induce a logic program of which 𝐴 is a
cautious consequence, while the upper probability collects
the probabilities of logic programs of which 𝐴 is a brave con-
sequence. Credal semantics thus extends the cautious/brave
reasoning strategies of answer set programming [24].

Example 6. Consider the probabilistic program:

0.1 :: 𝑎. 0.3 :: 𝑏.

𝑐← 𝑎. 𝑑← 𝑏.

𝑐 ∨ 𝑑. 𝑐← not 𝑐. 𝑑← not 𝑑.

The total choices, their distribution, and the L-stable
models of the induced programs (denoted as tuples
(𝐼(𝑎), 𝐼(𝑏), 𝐼(𝑐), 𝐼(𝑑)) are listed in Table 2. The credal se-
mantics yields Pr(𝑐) ∈ [0.1, 0.73] and the MaxEnt semantics
yields Pr(𝑐) = 0.415. Also, we have that Pr(¬𝑐) = 0, which
implies that credal and MaxEnt semantics coincide for that
inference, and also that the probability that 𝑐 is undefined is
1− 0.415 = 0.585, under the MaxEnt semantics. This value
can be taken as a measure of inconsistency of the program
w.r.t. atom 𝑐.



2.3. Computational Complexity
Computational complexity classifies computational prob-
lems according to the type of resources and machines needed
to solve them. This section collects basic definitions of con-
cepts related to computational complexity theory. We point
the reader to [28] and [29] for gentle introductions of the
topic.

A language is a set of strings, and a complexity class is
a set of languages. For some complexity class 𝒞, a decision
problem 𝒟 accepts or rejects strings and can be viewed as a
language. Then𝒟 is 𝒞-hard if every problem𝒟′ in the com-
plexity class 𝒞 can be (many-one) reduced in polynomial
time to 𝒟 (that is, there is an algorithm that takes the input
to 𝒟′, modifies it with polynomial effort, calls 𝒟 with the
modified input, and then accepts or rejects 𝒟). If 𝒟 is in 𝒞
and is 𝒞-hard, then 𝒟 is 𝒞-complete. An oracle Turing ma-
chine Mℒ is a Turing machine with additional tapes, such
that it can write a string 𝑙 to a tape and obtain from the oracle,
in another tape and in unit time, the decision as to whether
𝑙 ∈ ℒ or not. If a class of languages 𝒞 is defined by a set of
Turing machines M (that is, the languages are decided by
these machines), then define 𝒞ℒ to consist of the languages
defined by oracle machines in {Mℒ : M ∈ℳ}. If 𝒞 and 𝒞′

are sets of languages, 𝒞𝒞
′
= ∪ℒ∈𝒞′𝒞ℒ. We use well-known

complexity classes P, NP, coNP. The Polynomial Hierar-
chy [30] includes classes such as Σp

k = NPΣ
p
k−1 = NPΠ

p
k−1 ,

Πp
k = coNPΣ

p
k−1 = coNPΠ

p
k−1 and Δp

k = PΣ
p
k−1 = PΠ

p
k−1 ,

We also use the complexity class PP: a language ℒ is in
PP when there is a nondeterministic Turing machine M
such that 𝑙 ∈ ℒ iff more than half of computation paths of
M accept 𝑙. The Polynomial Counting Hierarchy [31, 32]
is the collection of complexity classes that includes P and
such that if 𝒞 is in the hierarchy then so are the classes of
decision problems computed by oracle machines PP𝒞 , NP𝒞

and coNP𝒞 . The Polynomial Counting Hierarchy therefore
contains the Polynomial Hierarchy, which includes classes
such as Σ𝑝

𝑘 = NPΣ
𝑝
𝑘−1 and Π𝑝

𝑘 = coNPΣ
𝑝
𝑘−1 for 𝑘 > 0,

with Σ𝑝
0 = Π𝑝

0 = P, and also counting classes with oracles
in the polynomial hierarchy, such as PPΣ

𝑝
𝑘 .

When discussing complexity results in the following, we
consider always the decision versions of the inference prob-
lems, e.g. deciding whether min /maxPr(𝐴) ≥ 𝛾 for some
rational 𝛾 and atom 𝐴.

3. Complexity of Logic Programs
The first contribution of this work is to provide some missing
results about the computational complexity of inference in
(deterministic) logic programs under the L-stable semantics.

The complexity of logic programs under the total stable
model semantics has been thoroughly analyzed in the liter-
ature, both in terms of the expressivity of the language (i.e.,
the presence of negation, disjunction, aggregation, etc) and
the program structure (i.e., its dependency graph) [6, 26, 18].
In short, the only island of tractability is for propositional
and stratified programs. The inclusion of negation makes
inference coNP-hard, and allowing disjunction climbs one
level in the polynomial hierarchy to Σ𝑝

2-hard (even if nega-
tion is disallowed). Allowing variables (but bounding predi-
cate arity) climbs another step in the hierarchy (to Σ𝑝

2-hard
in normal programs to Σ𝑝

3 hard in disjunctive programs).
And allowing variables and no bound in predicates takes the
problem to EXPTIME. There are also results regarding the

complexity of partial stable models. Eiter and Gottlob [26]
showed that deciding if there is a partial stable model for
a disjunctive logic program is Σ𝑝

2-complete. In fact, it was
shown that one can, in polynomial-time, map stable models
of a program to partial stable models of an equivalent pro-
gram [26] and vice-versa [23]. Thus, the ability to model
undefinedness of truth-values does not seem important for
computation complexity. That result does not extend to the
L-stable model semantics, as partial stable models might not
be least undefined.

Eiter, Leone and Saccà [27] proved that deciding if a propo-
sitional normal program has an L-stable model satisfying a
given atom is Σ𝑝

2-complete, which is the same complexity of
propositional disjunctive programs under the stable model
semantics [26]. Note that inference in propositional normal
programs under the P-stable model semantics is coNP-hard
(i.e., Σ𝑝

1-hard). Hence, the L-stable semantics adds another
layer of computational power. Combining negation, dis-
junction and minimal undefinedness increases computation
power: inference in such programs is Σ𝑝

3-complete [27].
The complexity of non-propositional logic programs un-

der the L-stable semantics has been open. The next results
fill that gap. We start with the complexity of normal logic
programs with bounded-arity predicates.

Theorem 1. Deciding if there is an L-stable model satisfy-
ing a given atom for a normal program with bounded-arity
predicates is Σ𝑝

3-hard.

Proof. Hardness is shown by a many-one reduction from
the canonical Σ3

𝑝-complete problem of deciding satisfiability
of a 3-Quantified Boolean Formula (3-QBF) [31]:

∃𝑋1, . . . , 𝑋𝑚 ∀𝑌1, . . . , 𝑌𝑛 ∃𝑍1, . . . , 𝑍𝑜 𝜑 ,

where 𝜑 is in 3-CNF with clauses 𝐶1, . . . , 𝐶𝑝.
We encode each literal over 𝑋𝑖 and 𝑌𝑗 by a predicate

lit(𝑆,𝑁, 𝑃 ), where 𝑆 ∈ {𝑥, 𝑦}, 𝑁 is the corresponding
variable subindex and 𝑃 is 0 if the literal is negated (i.e.,
¬𝑋1) and 1 otherwise. For any such variable, insert the
rules

lit(𝑆,𝑁, 𝑃 )← not lit(𝑆,𝑁,𝑄), 𝑃 ̸= 𝑄.

That rule creates a bijection between L-stable models and
configurations 𝑥, 𝑦 of the variables 𝑋𝑖 and 𝑌𝑗 . Insert also:

fail(𝑁,𝑃 )← not fail(𝑁,𝑃 ), lit(𝑥,𝑁, 𝑃 ).

The effect of that rule is to make any two L-stable mod-
els that correspond to different configurations of the vari-
ables 𝑋𝑖 incomparable w.r.t. undefinedness. Then encode
each clause 𝐶𝑖 = 𝐿𝑖1 ∨ 𝐿𝑖2 ∨ 𝐿𝑖3 by a set of rules
cl(𝑉𝑖1, 𝑉𝑖2, 𝑉𝑖3)← lit(𝑆,𝑁, 𝑃 ) and facts cl(𝑉𝑖1, 𝑉𝑖2, 𝑉𝑖3),
as follows. If 𝐿𝑖𝑗 is a literal over a variable 𝑋𝑘 or 𝑌𝑘 , then
add the corresponding atom lit(𝑆,𝑁, 𝑃 ) in the body and
instantiate the logical variable 𝑉𝑖𝑗 to the respective con-
stant x or y. If instead 𝐿𝑖𝑗 is over a 𝑍𝑘 variable, then select
the respective logic variable 𝑉𝑖𝑗 to the constant 1 or 0, de-
pendening of the assignment that satisfies the clause. For
example, the clause ¬𝑋1 ∨ 𝑍1 ∨ ¬𝑍2 is encoded as

cl(𝑥, 𝑍1, 𝑍2)← lit(𝑥, 1, 0). cl(𝑥, 1, 𝑍2). cl(𝑋1, 𝑍1, 0).

The formula 𝜑 is represented as the rule

phi← cl1(𝑉11, 𝑉12, 𝑉13), . . . , cl𝑝(𝑉𝑝1, 𝑉𝑝2, 𝑉𝑝3),



where the variables 𝑉𝑖𝑘 are selected to reflect the variables
in literal 𝐿𝑖𝑘 mentioned in clause 𝐶𝑖 (if it is an 𝑋𝑖/𝑌𝑗 vari-
able with use the constant 𝑥/𝑦). Consider a configuration
𝑥, 𝑦 to the variables 𝑋𝑖 and 𝑌𝑗 , and a corresponding t/f-
interpretation 𝐼𝑥,𝑦 of the groundings of lit(𝑆,𝑁, 𝑃 ). Then
∃𝑍 𝜑(𝑥, 𝑦) is true if an only if phi is satisfied by the exten-
sion of 𝐼𝑥,𝑦 . Finally, insert the rule 𝑓 ← not 𝑓, phi. The
effect of that rule is to encode the universal quantification
of variables 𝑌𝑗 . To see this, fix a configuration 𝑥 of the
𝑋𝑖 variables. Suppose there is a configuration 𝑦 such that
∃𝑍 𝜑(𝑥, 𝑦) is false. Then there is an L-stable model 𝐼𝑦 that
defines phi (as false), defines values for all groundings of
lit(𝑆,𝑁, 𝑃 ), and defines 𝑓 as false. Suppose instead that
there is no such 𝑦. Then for any model 𝐼𝑦 satisfying phi the
atom 𝑓 must be undefined. Hence, there is an L-stable model
satisfying phi only ifΦ is true. To observe the converse, note
that changing the interpretation of any atom either violates
some clause or breaks minimality. Thus, checking if an
L-stable model satisfies phi solves the 3-QBF problem.

We now handle the case with disjunctive rules.

Theorem 2. Deciding if there is an L-stable model satisfying
a given atom for a disjunctive program with bounded-arity
predicates is Σ𝑝

4-hard.

Proof. Hardness follows from a reduction from 4-QBF:

∃𝑋1, . . . , 𝑋𝑚 ∀𝑌1, . . . , 𝑌𝑛 ∃𝑊1, . . . ,𝑊𝑝 ∀𝑍1, . . . , 𝑍𝑜 𝜑 .

We repeat the same encoding in the proof of Theorem 1,
with the following differences. First, we encode ¬𝜑 as

negphi← cl𝑖(𝑍𝑖1, 𝑍𝑖2, 𝑍𝑖3),

where cl𝑖(𝑍𝑖1, 𝑍𝑖2, 𝑍𝑖3) is the negation of the the 𝑖-th
clause. We also add phi ← not negphi, for convenience.
We represent the literals relative to the 𝑊𝑘 variables as
lit(𝑤,𝑁, 𝑃 ), and use the saturation technique to quantify
over them:

lit(𝑤,𝑁, 1) ∨ lit(𝑤,𝑁, 0). lit(𝑤,𝑁, 𝑃 )← negphi.

The existence of a configuration 𝑤 for which 𝜑(𝑥, 𝑦, 𝑤, 𝑧) is
false for some 𝑧 is represented by an interpretation defining
both lit(𝑤,𝑁, 1) and lit(𝑤,𝑁, 0) as true, for 𝑁 = 1, . . . , 𝑝.
Since such an interpretation is ⊆-dominated by any in-
terpretation that assigns true to only one of the literals
lit(𝑤,𝑁, 𝑃 ) (and false to the other), it is a model only if
∀𝑊∃𝑍 ¬𝜑(𝑥, 𝑦). The remainder of the proof is as in Theo-
rem 1.

4. Complexity of Probabilistic Logic
Programs

If logical inference in some logic programming language
belongs to complexity class 𝐶 , then probabilistic inference
under the credal semantics in the corresponding probabilis-
tic logic programming language belongs to PPC [21]. We
thus have:

Corollary 1. Probabilistic inference in propositional normal
programs under the credal L-stable semantics predicates is
PPΣ

𝑝
2 -complete.

Corollary 2. Probabilistic inference in propositional disjunc-
tive programs under the credal L-stable semantics predicates
is PPΣ

𝑝
3 -complete.

Corollary 3. Probabilistic inference in normal probabilistic
programs with bounded-arity predicates under the credal L-
stable semantics is PPΣ

𝑝
3 -complete.

Corollary 4. Probabilistic inference in disjunctive probabilis-
tic programs with bounded-arity predicates under the credal
L-stable semantics is PPΣ

𝑝
4 -complete.

The argument however does not apply for the MaxEnt
semantics. Intuitively, this is because that semantics has
no inner decision problem, hence it is not clear how to
relate the complexity of logical inference to the respective
probabilistic inference complexity. In the rest of this section,
we provide a few results regarding the complexity of MaxEnt
semantics. As will become clear, such a semantics demands
more sophisticated strategies.

We start by proving complexity of the restricted case
where the L-stable models in models(𝑃𝐶) for any total
choice 𝐶 can be efficiently enumerated. This is the case, for
example, when the number of negated atoms, the number
of rules with non-empty bodies is limited or yet the size
of the strongly connected components of the dependency
graph are bounded [33]. Note that if we can enumerate
stable models of a program, then we can also enumerate
L-stable models in the same complexity [23].

Theorem 3. Deciding whether the probability of an atom
exceeds a given threshold under the MaxEnt semantics for
propositional disjunctive programs is PP-complete when the
L-stable models of any induced logic program are efficiently
enumerated.

Proof. Hardness follows from the complexity of stratified
programs (where the number of induced stable models is 1).

Membership: We want to decide if Pr(𝐴) ≥ 𝛾 for some
program 𝑃 , atom 𝐴 and rational threshold 𝛾. For simplicity
we first assume that each total choice has uniform proba-
bility and that 𝛾 = 0.5. We later discuss how to generalize
those assumptions.

Guess a total choice 𝐶 and let 𝐾 be an upper bound on
|models(𝑃𝐶)|. To be able to efficiently enumerate models,
𝐾 needs to be polynomial on the input size. And since
we can efficiently enumerate, we can also efficiently count
both 𝑁𝐶 = |models(𝑃𝐶)| and the number 𝑁𝐶

𝐴 of such
models that satisfy 𝐴. Thus guess a model in models(𝑃𝐶)
and branch the respective computation path into 𝐾! paths;
for (𝐾!/𝑁𝐶) · 𝑁𝐶

𝐴 of them accept the computation and
for the (𝐾!/𝑁𝐶) ·𝑁𝐶

¬𝐴 remaining, reject it. Let 𝑁 denote
the number of total choices. The machine accepts with
probability∑︀

𝐶⊆facts(𝑃 )(𝐾!/𝑁𝐶) ·𝑁𝐶
𝐴∑︀

𝐶⊆facts(𝑃 ) 𝐾!
=

∑︁
𝐶⊆facts(𝑃 )

Pr(𝑃𝐶)
𝑁𝐶

𝐴

𝑁𝐶
,

which equals Pr(𝐴). To lift the assumption of 𝛾 = 0.5,
branch any accepting path such that it accepts with proba-
bility 0.5+ (1− 𝛾) and branch any rejecting path such that
it accepts with probability 0.5 − 𝛾. Then we accept with
probability Pr(𝐴)·[0.5+(1−𝛾)]+[1−Pr(𝐴)](0.5−𝛾) =
0.5 + Pr(𝐴)− 𝛾, which is greater than 0.5 iff Pr(𝐴) > 𝛾.
To remove the assumption of uniform total choice proba-
bilities, proceed as follows. For each atom 𝐴 ∈ 𝐶 with
rational probability 𝜌(𝐴) = 𝑝/𝑞, branch into 𝑞 paths: for
𝑝 of them insert 𝐴 into the logic program then proceed as
before; for the remaining 𝑞 − 𝑝 do not insert 𝐴 and also
proceed as before. Then a total choice 𝐶 is selected with



probability Pr(𝑃𝐶), and the machine accepts with proba-
bility

∑︀
𝐶∈facts(𝑃 ) Pr(𝑃

𝐶)𝑁𝐶
𝐴 /𝑁𝐶 = Pr(𝐴).

We now consider the more general case, that is, when
model enumeration is not tractable.

Theorem 4. Deciding if the probability of an atom exceeds
a given threshold under the MaxEnt semantics for disjunctive
programs with bounded-arity predicates is in PPPP.

Proof. Denote by𝑛 = |atoms(𝑃 )| the number of probabilis-
tic facts and take 𝑚 = |atoms(𝑃 )| − 𝑛 (for the grounded
program). Assume w.l.o.g. that the threshold 𝛾 is 0.5, and
that Pr(𝑃𝐶) = 1/2𝑛 for all 𝐶 . Guess a total choice 𝐶 and
use the PP oracle to obtain the counts𝑁𝐶 and 𝑁𝐶

𝐴 ; note that
PPΣ

𝑝
𝑘 ⊆ PPP for any 𝑘 > 0 [34]. Now, let �̃�

𝐶
𝐴/2

𝑝 be an ap-
proximation from above of𝑁𝐶

𝐴 /𝑁𝐶 with 𝑝-bits of precision,
where 𝑝 does not depend on 𝐶 . Branch the computation
into 2𝑝 of paths and accept �̃�

𝐶
𝐴 of them, while rejecting the

rest. The machine hence accepts with probability∑︀
𝐶 �̃�

𝐶
𝐴∑︀

𝐶 2𝑝
=
∑︁
𝐶

Pr(𝑃𝐶)
�̃�

𝐶
𝐴

2𝑝
≥

∑︁
𝐶

Pr(𝑃𝐶)

[︂
𝑁𝐶

𝐴

𝑁𝐶
− 1

2𝑝

]︂
which is Pr(𝐴)− 2−𝑝. If Pr(𝐴) < 0.5, then because 𝑁𝐶

𝐴

and 𝑁𝐶 are integers, we have that Pr(𝐴) ≤ 0.5− 2−𝑛−𝑚.
Thus, if we choose 𝑝 = 𝑛+𝑚+1, then the machine accepts
iff Pr(𝐴) ≥ 0.5.

While we conjecture that inference under the MaxEnt se-
mantics is PPPP-complete, we have not yet been able to prove
so. We can however show evidence that MaxEnt inference
is at least as hard as inference under the credal semantics.
Recall that, under the credal semantics, inference for propo-
sitional probabilistic normal logic programs whose stable
models are all total (i.e., no atom is assigned undefined) is
PPNP-complete. The following theorem shows that for those
programs, MaxEnt inference is at least as hard.

Theorem 5. Deciding if the probability of an atom exceeds a
given threshold under the MaxEnt semantics for propositional
normal programs is PPNP-hard, even if all atoms are defined.

Proof. We reduce from PPNP-complete problem MAJ-E-SAT,
which consists of deciding if for the majority of config-
urations of a set of Boolean variables 𝑋1, . . . , 𝑋𝑛 there
is a configuration of Boolean variables 𝑌1, . . . , 𝑌𝑚 that
satisfy a given CNF formula 𝜑(𝑋1, . . . , 𝑌𝑚). More for-
mally, for each configuration 𝑥 = 𝑥1, . . . , 𝑥𝑛 let 𝑁(𝑥) de-
note the number of configurations of 𝑦1, . . . , 𝑦𝑚 such that
𝜑(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) is true. The MAJ-E-SAT prob-
lem is to determine if

𝑡 =
⃒⃒
{𝑥 ∈ {0, 1}𝑛 : 𝑁(𝑥) ̸= 0}

⃒⃒
> 2𝑛−1.

Let 𝑝 be the number of clauses in 𝜑, and 𝑝𝑖 be the number
of literals in the 𝑖-th clause. We represent each literal in 𝜑
by an atom lit(𝑣, 𝑖, 𝑠), where 𝑣 ∈ {x, y} indicates the set
of variables to which the literal belongs, 𝑖 is the respective
variable index in that set and 𝑠 ∈ {0, 1} indicates the signal
(if negated or not). We define an operator 𝜉(𝑖, 𝑗) that returns
the atom lit(𝑣, 𝑖, 𝑠) corresponding to the 𝑗th literal in the 𝑖th
clause of 𝜑. For example, if 𝜑 is (𝑋1 ∨¬𝑋2 ∨𝑌1)∧ (¬𝑋1),
then 𝜉(1, 3) = lit(y, 1, 1) and 𝜉(2, 1) = lit(x, 1, 0). Thus
assemble the program:

0.5:: lit(x, 𝑖, 1). [𝑖 = 1, . . . , 𝑛]

lit(x, 𝑖, 0)← not lit(x, 𝑖, 1). [𝑖 = 1, . . . , 𝑛]

lit(y, 𝑖, 1)← not lit(y, 𝑖, 0). [𝑖 = 1, . . . ,𝑚]

lit(y, 𝑖, 0)← not lit(y, 𝑖, 1). [𝑖 = 1, . . . ,𝑚]

clause(i)← 𝜉(𝑖, 𝑗). [𝑖 = 1, . . . , 𝑝]

[𝑗 = 1, . . . , 𝑝𝑖]

phi← clause(1), . . . , clause(𝑝).

For example, if 𝜑 is (𝑋1 ∨ ¬𝑋2 ∨ 𝑌1) ∧ (¬𝑋1), then the
assembled program is

0.5:: lit(x, 1, 1). 0.5:: lit(x, 2, 1).

lit(x, 1, 0)← not lit(x, 1, 1).

lit(x, 2, 0)← not lit(x, 2, 1).

lit(y, 1, 1)← not lit(y, 1, 0).

lit(y, 1, 0)← not lit(y, 1, 1).

clause(1)← lit(x, 1, 1). clause(1)← lit(x, 2, 0).

clause(1)← lit(y, 1, 1). clause(2)← lit(x, 1, 0).

phi← clause(1), clause(2).

Fix a total choice 𝐶 , hence a semantics for lit(x, 1, 0), . . . ,
lit(x, 𝑛, 1). The mutual negative dependency of lit(y, 𝑖, 1)
on lit(y, 𝑖, 0) and vice-versa, makes so that we potentially
have one stable model for each of the 2𝑚 configurations of
𝑦1, . . . , 𝑦𝑚. The atom phi is true in any such stable model
iff 𝜑 is satisfied by the corresponding configuration of 𝑋𝑖

and 𝑌𝑖. Now let 𝑘 be some integer that we will soon define
and extend that program with the following rules:

aux(𝑖, 1)← phi,not aux(𝑖, 0). [𝑖 = 1, . . . , 𝑘]

aux(𝑖, 0)← phi,not aux(𝑖, 1). [𝑖 = 1, . . . , 𝑘]

The new program has 2𝑘 stable models for each stable model
of the previous program that satisfies phi, and it has one
stable model for each stable model of the previous program
that does not satisfy phi. Thus, each 𝑥 corresponds to a total
choice𝐶 , and we have that𝑁𝐶 = 2𝑘 ·𝑁(𝑥)+(2𝑚−𝑁(𝑥)).
It follows that

Pr(phi) =
1

2𝑛

∑︁
𝑥∈0,1𝑛

2𝑘 ·𝑁(𝑥)

2𝑘 ·𝑁(𝑥) +
(︀
2𝑚 −𝑁(𝑥)

)︀ .
Recall that our intention is to use Pr(phi) to decide if 𝑡, the
number of configurations 𝑥 for which 𝑁(𝑥) is nonzero, is
greater than 2𝑛−1. To this end, let 𝜖 = 𝑡− 2𝑛 Pr(𝜑) be the
error introduced by our reduction. Note that since 𝑡 is an
integer then either 𝑡 ≥ 2𝑛−1 + 1 or 𝑡 ≤ 2𝑛−1. Hence, if
𝜖 < 1, we can use the value of Pr(phi) to decide the MAJ-
E-SAT problem. That error is maximized when 𝑁(𝑥) = 1
for each of the 2𝑛 configurations 𝑥, hence:

𝜖 ≤ 2𝑛− 2𝑘+𝑛

2𝑘 + (2𝑚 − 1)
< 1⇔ 2𝑘 > (2𝑛− 1)(2𝑚− 1).

Thus, selecting 𝑘 = 𝑚+𝑛 ensures that 𝜖 < 1. To conclude,
ifPr(𝜑) > 1/2we decide that MAJ-E-SAT is true, otherwise
we decide that it is false.

Inference under the credal semantics is also PPNP-hard
for propositional probabilistic disjunctive programs with
no negation (which always admit a total stabel model). The
next result shows that the same lower complexity is obtained
for the MaxEnt semantics.



Theorem 6. Deciding if the probability of an atom exceeds a
given threshold under the MaxEnt semantics for propositional
disjunctive programs without negation is PPNP-hard.

Proof. Again, we reduce from MAJ-E-SAT with a CNF for-
mula 𝜑. Assemble the program:

0.5:: lit(x, 𝑖, 1). [𝑖 = 1, . . . , 𝑛]

lit(x, 𝑖, 0) ∨ lit(x, 𝑖, 1). [𝑖 = 1, . . . , 𝑛]

lit(y, 𝑖, 0) ∨ lit(y, 𝑖, 1). [𝑖 = 1, . . . ,𝑚]

clause(i)← 𝜉′(𝑖, 1), . . . , 𝜉′(𝑖, 𝑝𝑖). [𝑖 = 1, . . . , 𝑝]

negphi← clause(𝑖). [𝑖 = 1, . . . , 𝑝]

lit(y, i, 0)← negphi. [𝑖 = 1, . . . , 𝑛]

lit(y, i, 1)← negphi. [𝑖 = 1, . . . , 𝑛]

phi ∨ negphi.

The operator 𝜉′(𝑖, 𝑗) above returns the atom lit(𝑣, 𝑖, 𝑠) cor-
responding to the negation of the 𝑗th literal in the 𝑖th
clause of 𝜑. For example, if 𝜑 is 𝑋1 ∨ ¬𝑋2 ∨ 𝑌1, then
𝜉′(1, 1) = lit(x, 1, 0).

Compared to the program in the proof of Theorem 5, the
program above replaces negative cycles by disjunctions, and
represents the negation of 𝜑 by the atom negphi. It also adds
rules to employ the saturation technique. The effect is as
follows. For a fixed total choice 𝐶 , that fixes the semantics
of lit(x, 𝑖, 1) for 𝑖 = 1, . . . , 𝑛, there is not a configuration
𝑦1, . . . , 𝑦𝑚 that satisfies 𝜑(𝑥, 𝑦) iff the (single) stable model
satisfies negphi. This is because such a model is saturated:
flipping the interpretation of any atom from true to false
must cease being a model, else the model would not be
minimal (as it assigns all atoms lit(y, 𝑖, 0/1) to true). Hence,
2𝑛 Pr(phi) counts the number 𝑡 of assignments 𝑥 for which
𝑁(𝑥) > 0.

5. Computing Inferences
To benefit from state-of-the-art ASP solvers that adopt (total)
stable model semantics, we revisit a translation developed in
[23] to obtain partial stable models as (total) stable models
of a translated program. Given a disjunctive logic program
𝑃 , we first specify a set of atoms 𝑎 for each atom 𝑎 in
the Herbrand base of 𝑃 . The translation produces a new
program 𝑃 ′ = 𝑇𝑟(𝑃 ) such that:

𝑃 ′ = {𝑎← 𝑏,not 𝑐; 𝑎← 𝑏,not 𝑐 | 𝑎← 𝑏,not 𝑐 ∈ 𝑃}
∪ {𝑎← 𝑎 | 𝑎 ∈ Hb(𝑃 )},

where Hb(𝑃 ) denotes the Herbrand Base of program 𝑃 .
That is, the translation splits each rule into two rules whose
negative body and head belong to different sets of atoms
(original or duplicated atoms). The rationale is that the three
possible assignments of an atom 𝑎 in the source program
are represented by the possible joint assignments of a pair
of atoms (𝑎, 𝑎), with one joint assignment being ruled out
in any stable model.

Example 7. Take the program in Example 2. Its translation
is then the program

𝑎 ∨ 𝑏. 𝑎 ∨ 𝑏.

𝑎← not 𝑎. 𝑎← not 𝑎. 𝑎← 𝑎.

𝑏← not 𝑏. 𝑏← not 𝑏. 𝑏← 𝑏.

Table 3 shows interpretation (𝑎, 𝑎, 𝑏, 𝑏) and the respective
program reducts their minimal models. To save space, we only
list interpretations that satisfy rules 𝑃 ′ = {𝑎∨ 𝑏. 𝑎∨ 𝑏. 𝑎←
𝑎. 𝑏← 𝑏}, as these are always in the reduct (and thus must
be satisfied by any model). The interpretations in bold show
the (total) stable models (which are also L-stable). The partial
stable models of the original program are obtained by verifying
whether atoms 𝐴 and 𝐴 disagree on the model.

Example 8. Consider the following program

𝑎← not 𝑐. 𝑐← not 𝑎. 𝑏← 𝑎,not 𝑏.

The first two rules enforce that in any stable model we either
have both 𝑎 and 𝑐 undefined or both defined as different values.
The third rule causes 𝑏 to be undefined if 𝑎 is true, and false
when 𝑎 is false (so 𝑎 can be seen as the “enabler” of the rule).
Thus, the only L-stable model is 𝐼(𝑎) = 𝐼(𝑏) = 0 and 𝐼(𝑐) =
1. The translation of the program is

𝑎← not 𝑐. 𝑎← not 𝑐.

𝑐← not 𝑎. 𝑐← not 𝑎.

𝑏← 𝑎,not 𝑏. 𝑏← 𝑎,not 𝑏.

𝑎← 𝑎. 𝑏← 𝑏. 𝑐← 𝑏.

The translated program admits the following stable models
𝐼 = (𝐼(𝑎), 𝐼(𝑎), 𝐼(𝑏), 𝐼(𝑏), 𝐼(𝑐), 𝐼(𝑐)):

(t, t, f, f, f, t), (f, f, t, t, f, f), (f, t, f, t, f, t) .

The second stable model corresponds to the single total stable
model of the original program.

As a proof of concept, we have implemented an inference
algorithm based on the described translation in the dPASP
system, available at http://github.com/kamel-usp/dpasp.
Our implementation work as follows. Given a probabilistic
logic program and a target atom, we obtain a new program
with the inclusion of the auxiliary variables. Then we enu-
merate the total choices. For each total choice, we call clingo
[35] to enumerate the stable models, from which we obtain
the L-stable models by the mapping described. We then
collect all L-stable models that satisfy the target atom and
compute the desired probabilistic semantics (i.e., we average
the respective probabilities, if MaxEnt is used, otherwise,
we compute lower and upper bounds w.r.t. to the set of L-
stable models for the credal semantics). The procedure is
thus inefficient in the number of probabilistic atoms and the
number of stable models of the translated program.

Example 9. We compare inference under the L-stable seman-
tics with inference under the smProbLog semantics, proposed
in [13]. Recall that smProbLog adopts a modified stable model
semantics, where all atoms are considered undefined whenever
the program has no stable model. We use a reduced variant
of the asthma example provided in [13]. According to the
example, people that smoke develop asthma, and those that
have asthma do not smoke. Additionally, people can decide
to smoke for some unknown cause or be influenced to smoke
by some other smoker; the presence of an asthmatic, smoking
person thus leads to a contradiction. To represent a negative
consequence ¬a (e.g., people that have asthma do not smoke),
we include auxiliary atoms a_pos and a_neg that represent,
respectively, positive and negative variants of a. a_pos re-
places each occurrence of a in a rule’s head; similarly, a_neg
replaces occurrences of ¬a in a rule’s head. We also add a

http://github.com/kamel-usp/dpasp


Table 3
Interpretations in the format 𝐼 = (𝑎, 𝑎, 𝑏, 𝑏), program reducts and minimal (stable) models for the program in Example 7.

id 𝐼 𝑃/𝐼 − 𝑃 ′ MinModels(𝑃/𝐼)
3 (f, f, t, t) 𝑎← t. 𝑎← t. 𝑏← f. 𝑏← f. (t, t, f, f)
6 (f, t, t, t) 𝑎← f. 𝑎← t. 𝑏← f. 𝑏← f. (t, t, f, f), (f, t, t, t)
7 (t, t, f, f) 𝑎← f. 𝑎← f. 𝑏← t. 𝑏← t. (f, f, t, t)
8 (t, t, f, t) 𝑎← f. 𝑎← f. 𝑏← f. 𝑏← t. (t, t, f, t), (f, f, t, t)
9 (t, t, t, t) 𝑎← f. 𝑎← f. 𝑏← f. 𝑏← f. (t, t, f, f), (f, f, t, t)

rule so that a is true iff a_pos is true and a_neg is false. The
complete program is described as follows:

person(1). person(2). person(3). person(4).

0.1::asthma(𝑋). 0.3::stress(𝑋).

0.3:: influences(1, 2). 0.6:: influences(2, 1).

0.2:: influences(2, 3). 0.7:: influences(3, 4).

0.9:: influences(4, 1).

0.6:: inh_stress(𝑋). 0.6:: inh_smokes(𝑋).

smokes_pos(𝑋)← stress(𝑋),not inh_stress(𝑋).

asthma(𝑋)← smokes(𝑋),not inh_smokes(𝑋).

smokes_pos(𝑋)← influences(𝑌,𝑋), smokes(𝑌 ).

smokes_neg(𝑋)← asthma(𝑋).

smokes(𝑋)← smokes_pos(𝑋),not smokes_neg(𝑋).

As the program has only one L-stable model for each total
choice, the credal and MaxEnt semantics coincide. The fol-
lowing table compares the probability of smokes(X) being
undefined for each person, under the L-stable and smProblog
semantics.

Semantics Pr(smokes(𝑋) = u)
1 2 3 4

smProbLog 0.2223 0.2223 0.2223 0.2223
L-stable 0.1548 0.0828 0.0599 0.0909

One notes that the smProblog semantics assigns a lower
probability mass to undefined states due to the allowing only
one model with undefined atoms per total choice when faced
with inconsistencies, while the L-stable semantics admits sev-
eral and thus sums over all possible undefined models. In
contrast, the L-stable semantics differentiates the different
degrees to which atoms are involved in inconsistencies.

Much more can be said about algorithms for inference
under the L-stable semantics. For example, to make the
procedure less inefficient, we can employ any of the many
approximate strategies from the probabilistic answer set
solving literature, such as searching for stable models ac-
cording to the their relative probability [36], or resorting to
sampling strategies [37, 38]. We leave the development and
analysis of more efficient inexact methods as future work.

6. Conclusion
The L-stable semantics provides a very convenient treatment
for expressing knowledge with default negation (hence non-
monotonic reasoning), nondeterminism (multiple models),
and local inconsistency. The last property is particular im-
portant for probabilistic extensions of logic programming,
since an inconsistent program has typically no semantics.

In this work, we have examined the complexity of prob-
abilistic disjunctive logic programs under the L-stable se-
mantics, thus filling a number of gaps in the literature (both

for programs without and with probabilities). We showed
complexity results for programs without variables and with
variables and bounded-arity predicates under the credal se-
mantics (which provides set-valued probabilistic inferences).
And we partially characterized the complexity of inference
under the maximum entropy semantics. Despite most lit-
erature in probabilistic logic programming with multiple
models being focused on the latter, there has been virtu-
ally no complexity analysis thus far, even in the absence of
contradictions.

A few extensions to those results should be relatively
easy to build based on the techniques presented here. For
instance, inferences that concern the search for maximum
probability models or probabilistic inferences when the pro-
gram is fixed (i.e., data complexity) are likely to be obtained
with much similar results. We leave that as future work.

This work leaves open a seemingly much harder question,
namely, how to close the gap between lower and upper com-
plexity for inference under the maximum entropy semantics.
Interestingly, the maximum entropy semantics might seem
at first to lead to counting problems with obvious counting
oracles; however, the “inner” counting of models does not
contain itself a decision problem — hence the need for the
more sophisticated proofs we had to build. We presented
her an upper bound that shows that inference in that se-
mantics is at most PPPP. That complexity reduces to PP, for
programs whose intended models are efficiently enumer-
able. And we showed that the inference is already PPNP-hard
in propositional programs with no contradictions and that
have either no negation or no disjunction, thus matching
the complexity of credal semantics [21]. We expect those
results to foster future research to close the gap and fully
characterize the complexity of credal semantics.
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