
Defining an Adaptable Framework for Behaviour Support
Agents in Default Logic
Johanna Wolff1,∗, Victor de Boer2, Dirk Heylen1 and M. Birna van Riemsdijk1

1University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
2Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Abstract
In order to provide personalised advice, behaviour support agents need to consider the user’s needs and preferences. This
user model should be easily adaptable as the user’s requirements will change during the long-term use of the agent. We
propose a formal framework for such an agent in which the knowledge and the beliefs of the agent are represented explicitly
and can be updated directly. Our framework is based on ordered default logic as defeasible reasoning allows the agent to infer
additional information based on possibly incomplete knowledge about the world and the user. We also define updates on each
component of the agent’s framework and demonstrate how these updates can be used to resolve potential misalignments
between the agent and the user. Throughout the paper we illustrate our work using a simplified example of a behaviour
support agent intended to assist the user in finding a suitable form of exercise.

Keywords
Default Logic, Belief Revision, Behaviour Support Agent

1. Introduction
The rise of artificial assistants has lead to an increased
interest in behaviour change support agents [1], which
can support the user in establishing new routines and
finding ways to achieve their goals consistently. In order
for these agents to support each user as effectively as pos-
sible, the agents need to model the user’s desires, needs
and preferences as accurately as possible [2]. Since the
agent should offer support over longer periods of time, it
is likely that both the user and the surrounding context
will go through changes throughout the agent’s use [3].
Based on the emerging design principles of hybrid intelli-
gence [4],we propose that the agent and the user should
be able to collaborate in order to identify and implement
the updates that are necessary to adapt the agent over
time. This means that the user is in control of the agent’s
knowledge and beliefs [5], but the agent should be able
to assist the user in determining how each change can
be realised and explaining the effects that this will have.

While data-driven approaches such as machine learn-
ing, can be used to create a detailed and accurate user
model [6], these models can be hard to adapt when the
user’s needs change [7]. The concepts captured in these

22nd International Workshop on Nonmonotonic Reasoning, November
2-4, 2024, Hanoi, Vietnam
∗Corresponding author.
Envelope-Open j.d.wolff@utwente.nl (J. Wolff); v.de.boer@vu.nl (V. d. Boer);
d.k.j.heylen@utwente.nl (D. Heylen);
m.b.vanriemsdijk@utwente.nl (M. B. v. Riemsdijk)
Orcid 0009-0005-0178-9570 (J. Wolff); 0000-0001-9079-039X
(V. d. Boer); 0000-0003-4288-3334 (D. Heylen); 0000-0001-9089-5271
(M. B. v. Riemsdijk)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

user models are often not explicitly represented, which
in turn means that they cannot be updated directly. This
also makes it difficult for the user to understand ex-
actly how their changes will affect the agent’s output
[8]. By using knowledge-driven methods, we can for-
malise changes to the user model within the framework,
similarly for example to the work in [7]. In particular, we
use default logic to model an agent with both dynamic
knowledge and beliefs.

In this paper, we introduce a formal framework for a
behaviour support agent which includes a model of the
world and the user (Section 3.1). We use this framework
to represent the agent’s knowledge and beliefs explic-
itly within a default theory (Section 3.2). We use the
defeasible nature of default logic to express beliefs about
both the user and the world, which allows the agent to
reason with incomplete knowledge and provide advice
based on this. In order to make changes to the agent’s
knowledge and beliefs possible, we define updates to our
formal framework (Section 4). These updates are based
on existing work on belief revision updates for default
logic [9]. We then compare this to previous work on
user-agent misalignment [10, 11] and showcase how the
formal updates can be used to resolve potential misalign-
ment scenarios (Section 5) . Throughout the paper we
will illustrate the framework using a simple running ex-
ample of a support agent intended to assist the user in
finding a suitable exercise based on their needs.

2. Preliminaries
We begin by introducing some preliminaries about the
ordered default logic that we will be using for our agent

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:j.d.wolff@utwente.nl
mailto:v.de.boer@vu.nl
mailto:d.k.j.heylen@utwente.nl
mailto:m.b.vanriemsdijk@utwente.nl
https://orcid.org/0009-0005-0178-9570
https://orcid.org/0000-0001-9079-039X
https://orcid.org/0000-0003-4288-3334
https://orcid.org/0000-0001-9089-5271
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

framework in Section 3.2. We also present the belief
revision operators that we will be using in Section 4.

2.1. Ordered Default Logic
Default logic was first introduced in [12] to formalise
inference rules which are usually true but allow for ex-
ceptions. This is done using default rules of the form

Prerequisite ∶ Justification
Consequent 𝛿.

This rule states that if the prerequisite is proven and it
is consistent to assume the justification, then the conse-
quent is inferred.

In the work of [13] there is additionally a strict partial
ordering 𝛿1 < 𝛿2 on these default rules which expresses
that 𝛿1 should only be applied if 𝛿2 has already been ap-
plied or is inapplicable. This results in an ordered default
theory of the form (𝐾, 𝐷, <) in which 𝐾 is a set of sen-
tences, 𝐷 is a set of default rules and < is an ordering
on the default rules in 𝐷. Intuitively, we understand
the sentences in 𝐾 to describe our, possibly incomplete,
knowledge of the world while the default rules in 𝐷 allow
us to derive additional information based on our beliefs.
The ordering <may be used to express either preferences
or priorities between these beliefs. A theory of this or-
dered default logic can be translated into standard default
logic, allowing for an implementation in theorem provers
for standard default logic [13].

When working with default theories, we are interested
in the complete views of the world that are consistent
with the initial theory, which we refer to as extensions.
For an ordered default theory 𝑇 = (𝐾, 𝐷, <) and any
set of sentences 𝑆, we define Γ(𝑆) to be the smallest set
satisfying the following properties:

1. 𝐾 ⊆ Γ(𝑆)
2. 𝑇ℎ(Γ(𝑆)) = Γ(𝑆)
3. for all default rules 𝛼 ∶ 𝛽

𝛾 ∈ 𝐷,
if 𝛼 ∈ Γ(𝑆) and ¬𝛽 ∉ 𝑆 then 𝛾 ∈ Γ(𝑆)

Here 𝑇ℎ(Γ(𝑆)) stands for the deductive closure of Γ(𝑆).
We call a set of sentences 𝐸 an extension of the theory
𝑇 if 𝐸 = Γ(𝐸). In the following, we will discuss only the
consistent extensions of a theory. If we restrict ourselves
to normal default rules where the justification and the
consequent are the same, [12] has shown that this ensures
the existence of a consistent extension. In the following,
we will only consider default rules of this form.

Definition 1. We defineℰ(𝑇) to be the set of all consistent
extensions of the default theory 𝑇 = (𝐾, 𝐷, <).

The consistent extensions we have defined above do
not yet take the ordering < into account. To include this
we use the notion of <-preserving extensions from [13].

Definition 2. We define 𝑃𝑟𝑒𝑟𝑒𝑞(Δ),𝐽𝑢𝑠𝑡𝑖𝑓 (Δ) and
𝐶𝑜𝑛𝑠𝑒𝑞(Δ) to be the set of prerequisites, justifications and
consequents of the default rules 𝛿 in Δ. We take 𝐺𝐷(𝐷, 𝐸)
to be the set of default rules which generate the extension
𝐸 and a grounded enumeration (𝛿𝑖)𝑖∈𝐼 of 𝐺𝐷(𝐷, 𝐸) to be an
order in which these rules can be applied.
For a theory 𝑇 = (𝐾, 𝐷, <), an extension 𝐸 ∈ ℰ(𝑇) is

<-preserving if there is a grounded enumeration (𝛿𝑖)𝑖∈𝐼 of
𝐺𝐷(𝐷, 𝐸) so that for all 𝑖, 𝑗 ∈ 𝐼 and 𝛿 ∈ 𝐷 ∖ 𝐺𝐷(𝐷, 𝐸) it
holds that

1. if 𝛿𝑖 < 𝛿𝑗 then 𝑗 < 𝑖 and
2. if 𝛿𝑖 < 𝛿 then 𝑃𝑟𝑒𝑟𝑒𝑞(𝛿) ∉ 𝐸 or 𝐾 ∪

𝐶𝑜𝑛𝑠𝑒𝑞({𝛿0, … , 𝛿𝑖−1}) ⊢ ¬𝐽𝑢𝑠𝑡𝑖𝑓 (𝛿).

Even if we know that ℰ(𝑇) is not empty, this does not
ensure that a <-preserving extension of 𝑇 = (𝐾, 𝐷, <)
exists. Intuitively, this is because lower ranked default
rules may have a consequent which can be used to infer
the prerequisite of otherwise inapplicable, higher ranked
default rules. This means that a higher ranked rule may
be applied after the application of a lower ranked rule.
As a result, the grounded enumeration of 𝐺𝐷(𝐷, 𝐸) will
not satisfy the first condition from Definition 2.

In [14] these inference relationships between the de-
fault rules of a theory are formalised using the depen-
dency graph of the theory. The dependency graph
𝒢(𝐷, 𝐾) captures whether default rules influence the
applicability of other default rules, either positively by
inferring the prerequisite or negatively by inferring the
negation of the justification. We take 𝒢(𝐷, 𝐾) to be the
set of directed edges between the default rules in 𝐷.

In [13] this is used to specify conditions under which
an order default theory has a<-preserving extension. For
this, a default theory is considered even if all cycles of
the dependency graph have an even number of negative
relations. Intuitively this means that the application of
a default rules does not negatively influence its own ap-
plicability. The ordering < specifies that a lower ranked
rule is only applicable after all higher ranked rules have
been applied. This means that for each relation (𝛿 < 𝛿′),
we want to ensure that 𝛿 does not affect the applicability
of 𝛿′.

Proposition 1. As proven in [13], an ordered default
theory 𝑇 = (𝐾, 𝐷, <) is guaranteed to have a <-preserving
extension if the dependency graph 𝒢(𝐷, 𝐾)

1. is even and
2. including the ordering < does not create new cycles,

so for all cycles 𝒞 of 𝒢(𝐷, 𝐾) ∪ {(𝛿′, 𝛿) ∣ 𝛿 < 𝛿′},
𝒞 is a cycle of 𝒢(𝐷, 𝐾).

Since the ordering < is not necessarily total, it is pos-
sible that there are multiple <-preserving extensions.

2.2. Belief Revision
The field of belief revision is concerned with formalising
changes to knowledge and belief bases. Since the knowl-
edge and beliefs of a behaviour support agent are subject
to change over time, we want to use update operations
from belief revision to reflect this.

In general, belief revision is used to update a set of sen-
tences 𝑆. We will be working with theory base revision
operators [15], which do not require 𝑆 to be deductively
closed, as opposed to AGM operators [16]. Specifically
we will use the operator 𝑆 ∗ 𝜑 to add a sentence 𝜑 to 𝑆
while ensuring the resulting set remains consistent and
the operator 𝑆 ÷ 𝜑 to remove sentences from 𝑆 until 𝜑 can
no longer be inferred.

There is a range of work specifically concerned with
integrating belief revisionmethods into default logic such
as [17, 18, 19]. In our work we will use the operators
defined in [9], which includes updates to the knowledge
base and the default rules of a default theory.

If we use theory base revision operators, 𝐾∗𝜑 and𝐾÷𝜑
on the knowledge base 𝐾 of a default theory 𝑇, [9] shows
that this can be used to either add 𝜑 to all extensions of 𝑇
or remove 𝜑 from 𝑇ℎ(𝐾).

Additionally, [9] introduces updates on the set of de-
fault rules𝐷. We use𝐷÷𝛿 = 𝐷∖{𝛿} as an operator which
removes the default rule 𝛿 from 𝐷 and 𝐷 ∗ 𝛿 = 𝐷 ∪ {𝛿}
which adds a default rule 𝛿 to 𝐷.

3. Behaviour Support Agent
In the following section we introduce our framework that
can be used to formalise a behaviour support agent. The
agent will be able to select a suitable goal for the user to
pursue based on the context that the user is currently in.
The agent will then recommend actions which result in
this goal being achieved, based on the user’s preferences.

3.1. Syntax
We define a support agent for a set of possible actions
𝐴 that the agent can recommend, the set of goals 𝐺 the
user may have and a set of contexts 𝐶 that may affect the
user’s goals and actions.

Definition 3 (Atoms). We define the following sets of
propositional atoms:

• 𝐴 = {𝑎1, … , 𝑎𝑛} describing the possible actions,
• 𝐺 = {𝑔1, … , 𝑔𝑚} describing the goals,
• 𝐶 = {𝑐1, … , 𝑐𝑙} describing different contexts and
• 𝐴𝑡𝑜𝑚𝑠 = 𝐴 ∪ 𝐺 ∪ 𝐶.

Definition 4 (Language). Let 𝑂 = {⊤, ¬, ∧, ∨,→} be a
standard set of logical operators. We introduce the following
propositional languages, defined over the operators 𝑂 and
sets of atoms in the usual way:

• The action languageℒ𝐴 over 𝑂 and atoms 𝐴
• The goal languageℒ𝐺 over 𝑂 and atoms 𝐺
• The context languageℒ𝐶 over 𝑂 and atoms 𝐶
• The agent languageℒ over 𝑂 and atoms 𝐴𝑡𝑜𝑚𝑠

A plan for a goal 𝑔 ∈ 𝐺 is a tuple of the form (𝑔, 𝜑), in
which 𝜑 is a formula fromℒ𝐴 describing the actions that
must be taken or avoided to achieve the goal 𝑔.

Definition 5. The set of all possible plans 𝐿𝑃 is defined
as follows: 𝐿𝑃 = {(𝑔, 𝜑) ∣ 𝑔 ∈ 𝐺, 𝜑 ∈ ℒ𝐴, 𝜑 ≢ ⊥}.

We introduce several types of rules which allow the
agent to infer information based on its initial knowledge.
Each rule is represented as a tuple (𝜑, 𝜓) in which 𝜑 is
the prerequisite and 𝜓 is the consequent. These rules will
capture a form of defeasible reasoning in which we only
infer the consequent if it is consistent with all other infor-
mation. This means that if 𝜑 is true and nothing suggests
otherwise, then 𝜓 is inferred. For all types of rules 𝜑 may
be ⊤ to signify that the rule has no prerequisite.

Context assumption rules are of the form (𝜑, 𝜓) with
𝜑, 𝜓 ∈ ℒ𝐶 describing aspects of the context. We can
use these rules to make assumptions about the standard
context that the user is in or to represent the beliefs the
agent has about the relation between different contexts.

Definition 6. The set of all possible context assumption
rules is defined as ℛ𝐶 = {(𝜑, 𝜓) ∣ 𝜑, 𝜓 ∈ ℒ𝐶}.

Goal selection rules are of the form (𝜑, 𝑔) with 𝜑 ∈ ℒ𝐶
describing the context and 𝑔 ∈ 𝐺 describing the goal that
should be achieved in this context. These are used to
describe which goal the user should strive for in a certain
context, if possible.

Definition 7. The set of all possible goal selection rules is
defined as ℛ𝐺 = {(𝜑, 𝑔) ∣ 𝜑 ∈ ℒ𝑐, 𝑔 ∈ 𝐺}.

Action selection rules are of the form (𝜑, 𝜓)with 𝜑 ∈ ℒ
and 𝜓 ∈ ℒ𝐴. Here 𝜑 describes the circumstances in
which the actions described in 𝜓 may be taken, if they
are possible. These circumstances can include certain
context factors, the selected goals and other selected
actions depending on the application.

Definition 8. The set of action selection rules is defined
as ℛ𝐴 = {(𝜙, 𝜓) ∣ 𝜙 ∈ ℒ, 𝜓 ∈ ℒ𝐴}.

We use ℛ = ℛ𝐶 ∪ ℛ𝐺 ∪ ℛ𝐴 to refer to all rules col-
lectively. In order to be able to reason with these rules,
we assign each rule 𝑟 ∈ ℛ a unique name 𝑛(𝑟). For this,
we define an injective naming function 𝑛 from the set of
all rules ℛ to a set of names 𝑁. We use these names to
define an ordering on the rules. For simplicity of notation
we will use the name and the rule itself interchangeably.

We represent the current state of the agent through its
configuration, a tuple which specifies the formulas, rules
and orderings that the agent reasons with.

Definition 9. The configuration of an agent is a tuple
Conf = (𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) where 𝑊 ⊆ ℒ
is the world knowledge, 𝐶𝐶 ⊆ 𝐿𝐶 are literals describing the
current context, 𝑃 ⊆ 𝐿𝑃 is a set of plans, 𝐷𝐶 ⊆ ℛ𝐶 is a
set of context assumption rules, 𝐷𝐺 ⊆ ℛ𝐺 is a set of goal
selection rules, 𝐷𝐴 ⊆ ℛ𝐴 is a set of action selection rules
and <𝐶, <𝐺, <𝐴 are acyclic orderings on 𝐷𝐶, 𝐷𝐺 and 𝐷𝐴.

We also specify that for each goal 𝑔 ∈ 𝐺, there is only one
plan 𝑝 = (𝑔, 𝜑) ∈ 𝑃. If there are multiple ways to achieve
a goal this should be specified through disjunctions in 𝜑,
rather than separate plans.

To illustrate the use of each component of the agent’s
configuration we introduce a simplified example. We
consider an agent which can give the user advice on how
to lead a healthier lifestyle based on the user’s medical
data. For our purposes we assume that the agent should
recommend one exercise for the user each day, but if
the user’s blood pressure is elevated, this should be a
higher-intensity workout. The agent knows of two types
of low-intensity exercises, namely walking and yoga, and
two types of higher-intensity exercises, namely going for
a run and weight training.

Example 1. The agent is defined for the context factor
𝐶 = {𝐵𝑃} which indicates that the user’s blood pressure is
elevated, the set of goals 𝐺 = {𝐿𝐼 , 𝐻 𝐼 } which stand for low-
intensity or higher-intensity workouts and the set of actions
𝐴 = {Walk, Yoga, Run, Weights} which are available.
The world knowledge is given by 𝑊 = {𝜑1𝑔, 𝜑1𝑎}, in

which the formulas 𝜑1𝑔, 𝜑1𝑎 express that at most one goal
and one action proposition can be true at the same time
and therefore included in the agent’s advice. This is
needed to ensure that the agent only gives one recom-
mended action each day. The current context 𝐶𝐶 con-
tains the blood pressure information of the user. In this
example we will assume that the blood pressure is high,
so 𝐶𝐶 = {𝐵𝑃}. The plans corresponding to the goals are
𝑃 = {(𝐿𝐼 , 𝑊 𝑎𝑙𝑘 ∨ 𝑌 𝑜𝑔𝑎), (𝐻 𝐼 , 𝑅𝑢𝑛 ∨ 𝑊 𝑒𝑖𝑔ℎ𝑡𝑠)}.
We assume that if we have no information suggesting

otherwise, the user’s blood pressure is normal. Therefore
𝐷𝐶 = {(⊤, ¬𝐵𝑃)}. The goal of a higher intensity work-
out should only be selected if 𝐵𝑃 is true, but the goal of a
lower intensity workout can be selected in any situation
so 𝐷𝐺 = {(𝐵𝑃, 𝐻 𝐼), (⊤, 𝐿𝐼)}. For the sake of this exam-
ple we assume that all the considered actions can be done
in any context, which gives us the action selection rules
{(⊤,𝑊 𝑎𝑙𝑘), (⊤, 𝑌 𝑜𝑔𝑎), (⊤, 𝑅𝑢𝑛), (⊤,𝑊 𝑒𝑖𝑔ℎ𝑡𝑠)}.

Since we only have one context assumption rule, we
do not specify any ordering on this type of rule. The
goal of a higher intensity workout, if applicable, is more
important than the lower intensity workout so we have
(⊤, 𝐿𝐼) <𝐺 (𝐵𝑃, 𝐻 𝐼) The user has expressed that they prefer
Yoga over Walking and Running over Weights so we specify
(⊤,𝑊 𝑎𝑙𝑘) <𝐴 (⊤, 𝑌 𝑜𝑔𝑎) and (⊤,𝑊 𝑒𝑖𝑔ℎ𝑡𝑠) <𝐴 (⊤, 𝑅𝑢𝑛).

This results in an agent configuration 𝐸𝑥 =
(𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴)

3.2. Determining the Agent’s Advice
For a given configuration Conf of the agent, we de-
fine a corresponding theory of ordered default logic
𝑇 = (𝐾, 𝐷, <). We define the knowledge base 𝐾 based on
𝑊, 𝐶𝐶 and 𝑃, the set of default rules based on 𝐷𝐶, 𝐷𝐺 and
𝐷𝐴 and the ordering < based on <𝐶, <𝐺 and <𝐴. We take
the sentences in𝐾 to describe the agent’s, possibly incom-
plete, knowledge of the world while the default rules in
𝐷 allow the agent to derive additional information based
on its beliefs. The ordering < provides a way to prioritise
between these beliefs, either based on other beliefs about
the world or based on the the user’s preferences.

For this we translate every plan 𝑝 ∈ 𝑃 of the form
𝑝 = (𝑔, 𝜑) into a formula 𝑔 → 𝜑 ∈ ℒ. We write 𝑇 𝑟(𝑃) =
{𝑔 → 𝜑 ∣ (𝑔, 𝜑) ∈ 𝑃} for the set of all such translated plans.
We also translate each rule 𝑟 = (𝜑, 𝜓) ∈ 𝐷𝑖 for 𝑖 ∈ {𝐶, 𝐺, 𝐴}
in the agent’s configuration to a default rule of the form

𝜑 ∶ 𝜓
𝜓

𝑟
.

We take the transitive closures<+
𝐴, <

+
𝐺 , <

+
𝐶 of the order-

ings to obtain strict partial orderings and define < as the
series composition partial order of 𝐷𝐶, 𝐷𝐺 and 𝐷𝐴. This
means in addition to ordering given in Conf, we also con-
sider all rules regarding the context to be ranked higher
than goal and action selection rules and we rank all goal
selection rules higher than the action selection rules. We
do this to make sure that the agent first considers the
context it is in, then selects a goal for the user to pursue
and then selects actions based on this.

Definition 10. We define the ordered default theory
𝐷𝐿(Conf) corresponding to the agent whose configuration
is given by Conf = (𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) to
be 𝐷𝐿(Conf) = (𝐾, 𝐷, <) where 𝐾 = 𝑊 ∪𝐶𝐶 ∪𝑇 𝑟(𝑃) is the
knowledge base, 𝐷 = {𝜑 ∶ 𝜓/𝜓 ∣ (𝜑, 𝜓) ∈ 𝐷𝐶 ∪ 𝐷𝐺 ∪ 𝐷𝐴} is
the set of default rules that make up the belief base and <
is the series partial order of 𝐷𝐶, 𝐷𝐺 and 𝐷𝐴.

Based on our definition of a configuration, it is not
yet guaranteed that this ordered default theory has a
consistent extension. We define valid configurations to
be those which do.

Definition 11. A configuration Conf is valid if 𝑊 ∪ 𝐶𝐶 ∪
𝑇 𝑟(𝑃) is consistent.

Proposition 2. For an ordered default theory𝐷𝐿(Conf) =
(𝐾, 𝐷, <) based on a valid configuration Conf of an agent,
the unordered default theory (𝐾, 𝐷) has at least one con-
sistent extension.

This follows directly from [12] as, by definition, 𝐾 is
consistent and all default rules in 𝐷 are normal. However,
as discussed in Section 2, this does not yet guarantee the
existence of a <-preserving extension. For this we define
the notion of an effective configuration.

Definition 12. An agent configuration is effective if it is
valid and the ordered default theory 𝐷𝐿(Conf) fulfils the
requirements from Proposition 1.

We argue that an agent which is defined in an intu-
itively sensible way, will fulfil these conditions. If the
dependency graph of the theory 𝐷𝐿(Conf) is not even, or
goes against the ordering <, then this signifies an implicit
inconsistency in the reasoning formalised in the agent.
However, these conditions are difficult to formalise for
the configuration of the agent, as they require us to con-
sider the default theory. In future work we hope to deter-
mine clear requirements for agent configurations which
guarantee for the existence of a <-preserving extension.

We use the <-preserving extensions of the default the-
ory 𝐷𝐿(Conf) based on the agent’s configuration to de-
termine the advice that the agent should give the user. If
there are multiple suitable extensions of 𝐷𝐿(Conf) then
the agent requires a way to choose one of these exten-
sions. This requires a meta-logic above the default logic
that we have specified, so we will simply assume that
such a selection can be made.

Definition 13. For an agent with the effective configura-
tion Conf = (𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) which is
translated into the ordered default theory 𝐷𝐿(Conf) with
the <-preserving extension 𝐸, the agent’s advice consists of
the set of selected goals 𝒜𝐺 = 𝐺 ∩ 𝐸 and the set of recom-
mended actions 𝒜𝐴 = 𝐿(𝐴) ∩ 𝐸.

We showcase how the advice is obtained from the con-
figuration of an agent by going through the configuration
from Example 1.

Example 2. The configuration 𝐸𝑥 as defined in Example 1
is translated into the ordered default theory 𝑇 = (𝐾, 𝐷, <)
with

• 𝐾 = {𝜑1𝑔, 𝜑1𝑎, 𝐵𝑃, 𝐻 𝐼 → (𝑅𝑢𝑛 ∨ 𝑊 𝑒𝑖𝑔ℎ𝑡𝑠), 𝐿𝐼 →
(𝑊𝑎𝑙𝑘 ∨ 𝑌 𝑜𝑔𝑎)},

• 𝐷 = {⊤∶¬𝐵𝑃¬𝐵𝑃 𝛿1,
𝐵𝑃∶𝐻𝐼
𝐻𝐼 𝛿2,

⊤∶𝐿𝐼
𝐿𝐼 𝛿3,

⊤∶𝑊𝑎𝑙𝑘
𝑊𝑎𝑙𝑘 𝛿4,

⊤∶𝑌𝑜𝑔𝑎
𝑌 𝑜𝑔𝑎 𝛿5,

⊤∶𝑅𝑢𝑛
𝑅𝑢𝑛 𝛿6,

⊤∶𝑊𝑒𝑖𝑔ℎ𝑡𝑠
𝑊 𝑒𝑖𝑔ℎ𝑡𝑠 𝛿7} and

• < = 𝐷𝐶; 𝐷𝐺; 𝐷𝐴 = {(𝛿𝑖, 𝛿1) ∣ 𝑖 = 2, … , 7} ∪ {(𝛿𝑖, 𝛿𝑗) ∣
𝑖 = 4… , 7; 𝑗 = 2, 3} ∪ {(𝛿3, 𝛿2)} ∪ {(𝛿4, 𝛿5), (𝛿7, 𝛿6)}

The default theory (𝐾, 𝐷) has four possible extensions. We
write only the relevant parts of each extension. These are
𝐸1 = {𝐻𝐼 , 𝑅𝑢𝑛}, 𝐸2 = {𝐻𝐼 ,𝑊 𝑒𝑖𝑔ℎ𝑡𝑠}, 𝐸3 = {𝐿𝐼 , 𝑌 𝑜𝑔𝑎} and
𝐸4 = {𝐿𝐼 , 𝑊 𝑎𝑙𝑘}. However, only 𝐸1 is <-preserving. There-
fore the agent’s advice consists of the selected goal 𝐻𝐼 and
the recommended action 𝑅𝑢𝑛.

4. Agent Updates
In the previous section we have defined the configura-
tion of a behaviour support agent and detailed how this
determines the advice that the agent gives. In practice,
the knowledge and beliefs of the agent change over time,
so we need to be able to adapt the configuration of the
agent. In this section, we define update operations on
the agent’s configuration which will allow us to add or
remove information from each component individually.

For each of these components, we want the updates
to be defined in such a way that the knowledge base
𝑊 ∪ 𝐶𝐶 ∪ 𝑇 𝑟(𝑃) remains consistent. This is necessary to
ensure that we obtain a valid configuration as the result of
the update. Unfortunately, we cannot always guarantee
that the new configurationwill also be effective due to the
requirements from Definition 12. We will formally define
the updates and also highlight such possible problems.

4.1. Updates to Knowledge Base
The knowledge base of the agent is made up of the world
knowledge𝑊, the current context information 𝐶𝐶 and the
set of plans 𝑃. We want to be able to update these parts
individually, but as explained above we have to consider
them all to ensure the updates yield a valid configuration.

We can update the world knowledge 𝑊 of the agent
by adding a sentence 𝜑 ∈ ℒ using the following update.

Definition 14. For a configuration Conf =
(𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) and a formula 𝜑 ∈ ℒ
with {𝜑} ∪ 𝐶𝐶 ∪ 𝑇 𝑟(𝑃) consistent, we define the update op-
eration Conf ∗𝑊 𝜑 = (𝑊 ′, 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴)
with 𝑊 ′ = (𝑊 ∗ ({𝜑} ∪ 𝐶𝐶 ∪ 𝑇 𝑟(𝑃))) ∖ (𝐶𝐶 ∪ 𝑇 𝑟(𝑃)).

This means we use the theory base revision opera-
tor on 𝑊 and update it with 𝜑 but also with 𝑇 𝑟(𝑃) and
𝐶𝐶. While we remove 𝑇 𝑟(𝑃) and 𝐶𝐶 again afterwards,
this approach guarantees that 𝑊 ′ ∪ 𝐶𝐶 ∪ 𝑇 𝑟(𝑃) will be
consistent.

If we want to remove a formula from the world knowl-
edge 𝑊, this is unproblematic for the consistency of the
knowledge base.

Definition 15. For a configuration Conf =
(𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) and a for-
mula 𝜑 ∈ ℒ, we define the update operation
Conf ÷𝑊 𝜑 = ((𝑊 ÷ 𝜑), 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) to
remove 𝜑 from 𝑊 and its deductive closure 𝑇ℎ(𝑊).

We note that by defining the operator in this way, it
is possible that 𝜑 is still contained in an extension 𝐸 of
𝐷𝐿(Conf’) due to the information in 𝐶𝐶 ∪ 𝑇 𝑟(𝑃) and the
rules in 𝐷𝐶, 𝐷𝐺 and 𝐷𝐴.

In order to update the current context 𝐶𝐶 we use the
following operators, similarly to the ones for 𝑊.

Definition 16. For a configuration Conf =
(𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) and context in-
formation 𝜑 ∈ 𝐿(𝐶) so that {𝜑} ∪ 𝑊 ∪ 𝑇 𝑟(𝑃)
consistent, we define the update operation
Conf ∗𝐶𝐶 𝜑 = (𝑊 , 𝐶𝐶′, 𝑃 , 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴)
with 𝐶𝐶′ = (𝐶𝐶 ∗ (𝜑 ∪ 𝐶𝐶 ∪ 𝑇 𝑟(𝑃))) ∖ (𝑊 ∪ 𝑇 𝑟(𝑃))

Definition 17. For a configuration Conf =
(𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) and context in-
formation 𝜑 ∈ 𝐶 ∪ ¬𝐶, we define the update operations
Conf ÷𝐶𝐶 𝜑 = (𝑊 , (𝐶𝐶 ÷ 𝜑), 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) to
remove 𝜑 from 𝐶𝐶.

In order to update the plans 𝑃 by adding or remov-
ing a plan 𝜋 = (𝑔, 𝜑) we use similar updates as for the
knowledge base. When adding a new plan to 𝑃 we need
to ensure that the resulting set of plans only contains at
most one plan per goal. This means we have to remove
any previous plan (𝑔, 𝜓) for the goal 𝑔 before adding
(𝑔, 𝜑) to 𝑃. We also make sure that the new information
is consistent with the other components of the knowl-
edge base.

Definition 18. For a configuration Conf =
(𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) and a plan
𝜋 = (𝑔, 𝜑) ∈ 𝐿𝑃 so that {𝑇 𝑟(𝜋)} ∪ 𝑊 ∪ 𝐶𝐶
consistent, we define the update operation
Conf ∗𝑃 𝜋 = (𝑊 , 𝐶𝐶, 𝑃 ′, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴)
with 𝑃 ′ = (𝑃 ∖ {(𝑔, 𝜓)} ∪ {𝜋}) to add 𝜋 to 𝑃.

If we remove a plan 𝜋 = (𝑔, 𝜑) from 𝑃, this will result
in a valid configuration. However, it is possible that the
goal 𝑔 is still the result of a goal selection rule and may
be contained in an extension of 𝐷𝐿(Conf). This means
the agent may advise the user to pursue the goal, despite
there not being any action recommendation which corre-
sponds to this. For this reason, this update should usually
not be performed in isolation in practice.

Definition 19. For a configuration Conf =
(𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) and a plan
𝜋 = (𝑔, 𝜑) ∈ 𝐿𝑃, we define the update operations
Conf ÷𝑃 𝜋 = (𝑊 , 𝐶𝐶, 𝑃 ′, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) with
𝑃 ′ = 𝑃 ∖ 𝜋 to remove 𝜋 from 𝑃.

Lemma 1. The updates Conf ∗𝐾 𝜑,Conf ∗𝑊 𝜑, Conf ÷𝑊 𝜑,
Conf ∗𝐶𝐶 𝜑, Conf ÷𝐶𝐶 𝜑 Conf ∗𝑃 𝜋 and Conf ÷𝑃 𝜋, are well-
defined. Additionally, if the default theory 𝐷𝐿(Conf) has
a consistent extension, then the updated default theory
𝐷𝐿(Conf ′) will also have a consistent extension.

Proof. This follows directly from the definitions of ∗𝜑
and ÷𝜑 and Proposition 2.

Unfortunately we cannot make the same claim regard-
ing <-preserving consistent extensions. This is because
any update to the knowledge base of a theory will affect
the dependency graph 𝒢(𝐷, 𝐾) of the theory 𝐷𝐿(Conf).

4.2. Updates to the Beliefs
The beliefs of the agent are made up of the context as-
sumption rules 𝐷𝐶, the goal selection rules 𝐷𝐺 and the
action selection rules 𝐷𝐴. Since all types of rules and
their respective orderings are defined and translated in
the same way, we will only go through the updates of the
context assumption rules in detail, the rest are analogous.

When adding a new context assumption rule to the
agent’s belief base, it is likely that this belief should also
be integrated into the ordering <𝐶. However, this is not
mandatory and can be done separately with the update
operator on <𝐶 that we introduce below.

Definition 20. For a configuration Conf =
(𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) and a context as-
sumption rule 𝑟 = (𝜑, 𝜓) ∈ ℛ𝐶 we define the update
Conf ∗𝐷𝐶 𝑟 = (𝑊 , 𝐶𝐶, 𝑃, 𝐷′

𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) where
𝐷′
𝐶 = 𝐷𝐶 ∪ {𝑟}.

When an existing context assumption rule 𝑟 needs to
be removed from 𝐷𝐶, then we have to remove it from the
ordering <𝐶 as well. This follows from the requirement
that the ordering <𝐶 should be defined on the set 𝐷𝐶.

Definition 21. For a configuration Conf =
(𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) and a context as-
sumption rule 𝑟 = (𝜑, 𝜓) ∈ ℛ𝐶 we define the update
Conf ÷𝐷𝐶 𝑟 = (𝑊 , 𝐶𝐶, 𝑃, 𝐷′

𝐶, 𝐷𝐺, 𝐷𝐴, <′
𝐶, <𝐺, <𝐴) where

𝐷′
𝐶 = 𝐷𝐶 ∖ {𝑟} and <′

𝐶=<𝐶∣𝐷′
𝐶
.

Lemma 2. The update operators Conf∗𝐷𝐶 𝑟 and Conf÷𝐷𝐶 𝑟
are well-defined. If the default theory 𝐷𝐿(Conf) has a
consistent extension, then the updated theory will also have
a consistent extension.

Proof. This follows directly from the definition and
Proposition 2, since all default rules are still normal and
the knowledge base is still consistent.

Unfortunately, when adding a new rule we cannot
guarantee the existence of a <-preserving extension as
this rule could generate new cycles in the dependency
graph that might not be even. However, when removing
a rule this does result in a configuration Conf ′ for which
𝐷𝐿(Conf) has a <-preserving extension.

Proposition 3. For an effective configuration Conf =
(𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) where 𝐷𝐿(Conf) has a
<-preserving extension and a rule 𝑟 ∈ ℛ𝐶, the ordered
default theory 𝐷𝐿(Conf ′) with Conf ′ = Conf ÷𝐷𝐶 𝑟, also
has a <-preserving extension.

Proof. To see this we check the conditions of Proposition
1. Removing a rule from the configuration and thereby
removing a default rule from the default theory, cannot
create any new cycles in the dependency graph. Since

Conf is an effective configuration, we know that all exist-
ing cycles are even, which means that the dependency
graph of 𝐷𝐿(Conf ′) is even too. Additionally, any cy-
cles that are removed from the dependency graph by
removing 𝑟 are also removed from the ordering <, so the
ordering cannot introduce any new cycles.

4.3. Updates to the Ordering
The ordering of the agent is made up of the orderings
<𝐶, <𝐺 and <𝐴 on 𝐷𝐶, 𝐷𝐺 and 𝐷𝐴 respectively. We can
update each of these orderings individually and only need
to ensure that the resulting ordering is acyclic. Since
all three orderings of the agent are defined in the same
way, we will only go through the updates to the context
ordering in detail; the others are analogous.

We can add a relation to <𝐶 using the following update.

Definition 22. For a configuration Conf =
(𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) and a relation (𝑟1, 𝑟2)
with 𝑟1, 𝑟2 ∈ 𝐷𝐶 and (𝑟2, 𝑟1) ∉ <+

𝐶 we define the update
Conf ∗<𝐶 (𝑟1, 𝑟2) = (𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <′

𝐶, <𝐺, <𝐴)
where <′

𝐶=<𝐶 ∪{(𝑟1, 𝑟2)}.

When removing a relation (𝑟1, 𝑟2) from <𝐶, we ideally
want to remove the relation from <+

𝐶 to make sure it
does not appear in 𝐷𝐿(Conf). However, this may require
removingmultiple relations from<𝐶 in the process. Since
we have multiple choices for this, we will not include
this in the update. If necessary, the ordering will need to
be updated multiple times to fully remove the relation
from <+

𝐶 .

Definition 23. For a configuration Conf =
(𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <𝐶, <𝐺, <𝐴) and a relation
(𝑟1, 𝑟2) with 𝑟1, 𝑟2 ∈ 𝐷𝐶 we define the update
Conf ÷<𝐶 (𝑟1, 𝑟2) = (𝑊 , 𝐶𝐶, 𝑃, 𝐷𝐶, 𝐷𝐺, 𝐷𝐴, <′

𝐶, <𝐺, <𝐴)
where <′

𝐶=<𝐶 ∖{(𝑟1, 𝑟2)}.

Lemma 3. The update operators Conf ∗ <𝐶(𝑟1, 𝑟2) and
Conf ÷<𝐶 (𝑟1, 𝑟2) are well-defined. The resulting ordering
<′
𝐶 is acyclic. If the default theory 𝐷𝐿(Conf) has a consis-

tent extension, then the updated theory will also have a
consistent extension.

Proof. This follows directly from definition as the knowl-
edge base is still consistent and the default rules are still
normal.

When adding a new relation to the ordering <𝐶, this
may create new cycles when combined with the depen-
dency graph of 𝐷𝐿(Conf), which means we cannot guar-
antee that the resulting configuration will be effective.
On the other hand, it is obvious that removing a relation
does not have this issue, meaning that a useful configu-
ration will be updated to another useful configuration.

5. Resolving Misalignments
With the framework we introduced, the agent is able to
reason about a user model and a world model in order to
provide personalised support to the user. By representing
this explicitly, the user can interact with and adapt the
agent’s reasoning process directly using the updates that
we have defined in the previous section. We chose to use
default logic for this purpose because this allows the user
to interact with and adapt the agent’s reasoning process
directly using the updates that we have defined in the
previous section. A revision of the agent’s reasoning
process is necessary if the agent’s advice does not align
with the needs and wants of the user because the agent’s
advice contains either an action 𝑎 or a goal 𝑔 that the
user does not agree with. In the following, we refer
to these situations as misalignment scenarios, based on
[10, 11]. In this section we will discuss the causes of
misalignments that are identified in [10] and discuss how
these can be resolved using the update operators defined
in the previous section.

The three causes for these misalignments that are dif-
ferentiated in [10] are the reasoning process of the agent
being wrong, the agent’s user model being wrong or
something having changed in such a way that the agent
needs to adapt to the new situation. For our purposes, we
do not need to differentiate whether the misalignments
occur due to a change or because of a mistake in the
initialisation of the agent. Formally, these are handled
the same way in this framework. We will discuss how
each of the scenarios can be addressed by updating the
configuration of the agent. We will give examples of
potential misalignments with the advice provided by the
agent we introduced in Example 1 and showcase how the
realignment updates affect that configuration.

For the sake of this section we will assume that the
agent and the user are able to identify the exact cause
of the misalignment together. While this is not a trivial
assumption and still a topic of active research, this is not
something that can be achieved purely within the logical
framework of an agent, making it out of the scope of this
paper. For simplicity, we also assume that there is only
one misalignment at a time.

5.1. Incorrect Reasoning
The reasoning process of the agent is based on logical
inference, which cannot be incorrect by itself. However,
if the world model of the agent is incorrect, then the
agent may draw the wrong conclusions even if the user
model is correct. This may refer to either the knowledge
or the beliefs about the world, the latter including the
prioritisation of these beliefs.

5.1.1. Incorrect World Knowledge

The first misalignment scenario we consider is the situa-
tion in which the agent has incorrect knowledge about
the world. This means that there is either a sentence
𝜑 ∉ 𝑊 that the agent does not know or the agent incor-
rectly accepts 𝜑 ∈ 𝑊 as known.

If the agent is missing the information 𝜑, we can up-
date the configuration Conf of the agent using Conf ∗𝑊 𝜑.
By definition, this update requires 𝜑 to be consistent with
𝐶𝐶 ∪ 𝑇 𝑟(𝑃). If we assume that 𝜑 is the only cause of
misalignment then this requirement also makes sense
intuitively. In order for the agent to also be able to give
advice, there are the additional requirements of the ef-
fective configuration. While we have explained above
that these requirements are reasonable, they might be
hard for the user to understand, especially if the agent
becomes more complex. In future work we hope to look
into ways to identify problematic cycles in the agents
configuration and assist the user in resolving them.

Example 3. In Example 2, we have identified that the
agent’s advice would be to pursue higher intensity exercis-
ing and specifically to go for a run. However, the user may
be unable to go for a run because their regular running
route is under construction. While this is related to a certain
context in a way, which we discuss later on, we can treat
this as direct information about the world. This means we
update the agent’s configuration with 𝐸𝑥′ = 𝐸𝑥 ∗𝑊 ¬𝑅𝑢𝑛.
As a result, {𝐻 𝐼 , 𝑅𝑢𝑛} is no longer an extension of 𝐸𝑥′, and
the agent’s advice will instead be based on the extension
𝐸′ = {𝐻𝐼 ,𝑊 𝑒𝑖𝑔ℎ𝑡𝑠}.

Next we consider that the agent has wrongly identified
the current context 𝐶𝐶. If the mistake concerns a context
factor 𝑐 that is already in 𝐶, this can easily be resolved
using the updates Conf ∗𝐶𝐶 𝑐 and Conf ÷𝐶𝐶 𝑐, similarly to
the updates to the knowledge base we described above.
However, if the user thinks that a new context factor
should be considered which is not yet in the language
of the agent, then simply adding it to the current con-
text 𝐶𝐶 is not enough. We likely need to add a context
assumption rule which specifies whether this context
factor is normally assumed to be true or false. Addition-
ally, we probably want to include this context factor in
the relevant goal and action selection rules. Since we
do not have an update that can modify individual rules,
this needs to be achieved by deleting the original rule,
then including the modified rule and lastly reinstating
the relevant orderings.

Example 4. We consider that the user does not want to go
for a run because it is raining. The original configuration of
the agent did not account for the context of rain, so we need
to perform a series of updates to include this. We begin by
adding 𝑅𝑎𝑖𝑛 to the description of the current context using
𝐸𝑥1 = 𝐸𝑥 ∗𝐶𝐶 𝑅𝑎𝑖𝑛. We add a context assumption rule to

specify that unless we have other knowledge, we assume it
is not raining. We use the update 𝐸𝑥2 = 𝐸𝑥1 ∗𝐷𝐶

⊤∶¬𝑅𝑎𝑖𝑛
¬𝑅𝑎𝑖𝑛 𝛿8.

We remove the action selection rule 𝛿6 which is concerned
with running through 𝐸𝑥3 = 𝐸𝑥2 ÷𝐷𝐴 𝛿6. We add the
modified action selection rule and obtain 𝐸𝑥4 = 𝐸𝑥3 ∗𝐷𝐴
¬𝑅𝑎𝑖𝑛∶𝑅𝑢𝑛

𝑅𝑢𝑛 }. We now restore the ordering by including 𝛿7 <
𝛿9. This gives us the final updated configuration 𝐸𝑥′ =
𝐸𝑥5 ∗<𝐴 (𝛿7, 𝛿9)
The resulting default theory 𝐷𝐿(𝐸𝑥′) only has one <-

preserving extension 𝐸′ = {𝐻𝐼 ,𝑊 𝑒𝑖𝑔ℎ𝑡𝑠}.

5.1.2. Incorrect Beliefs about the world

The agent’s beliefs about the world, modelled as context
assumption rules in 𝐷𝐶, may also be incorrect.

If a new belief 𝛿 needs to be adopted, then this can be
done using the update Conf ∗𝐷𝐶 𝛿. This will cause the
dependency graph of the agent to change, which may
mean that the resulting configuration is not effective.
This brings similar problems as a change in the world
knowledge.

A belief 𝛿 can be removed from the agent’s configura-
tion with the update Conf ÷𝐷𝐶 𝛿. While this will produce
an effective configuration, this may lead to the agent’s
advice being less specific towards the user’s context.

The beliefs about the world may also need to be priori-
tised differently, by updating the ordering <𝐶. While we
have introduced updates Conf ∗<𝐶 (𝛿𝑖, 𝛿𝑗) and Conf ÷<𝐶
(𝛿𝑖, 𝛿𝑗) to add or remove a relation to the ordering, in prac-
tice we will likely want to make more complex changes.
While these can all be broken down into multiple appli-
cations of the two updates we have defined, this may
be too complicated for the user to oversee themselves.
Additionally, we also need to make sure that the relation
remains acyclic and does not contradict the implicit or-
dering of the default theory modelled in the dependency
graph.

Example 5. So far the agent’s configuration has included
the context assumption rule 𝛿1 that unless other information
is available, the user’s blood pressure is normal. For this we
remove the original rule 𝛿1 using 𝐸𝑥1 = 𝐸𝑥÷𝐷𝐶 𝛿1 and then
add the new rule through 𝐸𝑥′ = 𝐸𝑥1 ∗𝐷𝐶

⊤∶𝐵𝑃
𝐵𝑃 . This means

that even if the agent does not know the blood pressure
levels of the user, so 𝐵𝑃 ∉ 𝐶𝐶, it will still recommend
higher intensity exercises.

5.2. Incorrect User Model
The user model of our agent contains information about
the user’s goals, the user’s possible actions and the prefer-
ences regarding these. While humansmay have goals and
preferences that are not strictly logical, the formal frame-
work of the agent requires the goals to be consistent with
the current context and the knowledge about the world

and the dependency graph to fulfil the requirements from
Proposition 1. The agent will need to collaborate with
the user to ensure that the user model is as accurate as
possible while still meeting the formal requirements.

5.2.1. Incorrect Goals

The goals of the user are what motivates the advice that
the agent gives, but they are also subject to change as the
needs and desires of the user develop. Each goal 𝑔 ∈ 𝐺 has
to correspond to a plan 𝜋 ∈ 𝑃, so that the agent knows
how each goal can be achieved. Additionally, a goal
should occur in the consequent of a goal selection rule,
otherwise it cannot be considered in the agent’s advice.
Any changes to the goals of the user therefore have to be
captured in the set of plans and the goal selection rules.

If a new goal 𝑔 is added, this goal needs a correspond-
ing plan 𝜋, which can be added with the update Conf∗𝑃 𝜋.
Usually wewill also add a goal selection rule (𝜑 ∶ 𝑔/𝑔) 𝛿𝑔,
for a sentence 𝜑 ∈ ℒ𝐶 describing the context in which
the goal can be selected, by Conf ∗𝐷𝐺 𝛿𝑔. The goal selec-
tion rule will then likely need to prioritised adequately,
by adding relations to the ordering <𝐺 using Conf∗<𝐺
and Conf÷<𝐺 . Each of these updates will affect the de-
pendency graph, which means there is a risk that the
resulting agent is not effective.

If the user no longer wants to pursue a goal 𝑔, then the
relevant goal selection rules as well as their orderings
need to be removed using the appropriate update.

If a plan or a goal selection rule needs to be changed,
the original rule has to be deleted and the new version
needs to be added in separate updates as for updates to
the world model.

Example 6. We want the agent to consider the additional
goal Rest when giving advice. This goal is achieved if no
exercise is done, so the plan is 𝜋 = (Rest, ¬𝑊𝑎𝑙𝑘 ∧ ¬𝑌 𝑜𝑔𝑎 ∧
¬𝑅𝑢𝑛 ∧ ¬𝑊 𝑒𝑖𝑔ℎ𝑡𝑠). For now we do not have any context
requirements for this goal to be selected but we prioritise it
above the other goal selection rules. We begin by including
the plan 𝑝 in the set of plans using 𝐸𝑥1 = 𝐸𝑥 ∗𝑃 𝑝. We then
include the goal selection rule ⊤ ∶ 𝑅𝑒𝑠𝑡/𝑅𝑒𝑠𝑡 𝛿𝑔 with the
update 𝐸𝑥2 = 𝐸𝑥1 ∗𝐷𝐺 𝛿𝑔. Lastly, we include the relations
(𝛿2, 𝛿𝑔) and (𝛿3, 𝛿𝑔) in the ordering <𝐺 through the update
𝐸𝑥′ = 𝐸𝑥2∗<𝐺 {(𝛿2, 𝛿𝑔), (𝛿3, 𝛿𝑔)}. This results in an effective
configuration 𝐸𝑥′ with the <-preserving extension 𝐸′ =
{𝑅𝑒𝑠𝑡, ¬𝑊𝑎𝑙𝑘, ¬𝑌 𝑜𝑔𝑎, ¬𝑅𝑢𝑛, ¬𝑊 𝑒𝑖𝑔ℎ𝑡𝑠}.

5.2.2. Incorrect Actions

The actions that are recommended by the agent are deter-
mined by the plans for the selected goals and the action
selection rules. The user may either want to change the
context prerequisites for selecting certain actions, add a
new action selection rule or remove an existing action
selection rule. These can each be achieved using the

updates Conf∗𝐷𝐴 and Conf÷𝐷𝐴 . If the preferences of the
user regarding the actions need to be changed, this can
be handled analogous to the change of the ordering <𝐶,
using the updates Conf∗<𝐴 and Conf÷<𝐶 .

Example 7. In Example 3, the user was not able to go for
a run and we added ¬𝑅𝑢𝑛 to the agent’s world knowledge.
This time we will remove the action selection rule for 𝑅𝑢𝑛
instead. By performing the update 𝐸𝑥′ = 𝐸𝑥 ÷𝐷𝐴 𝛿6, the ac-
tion selection rule and its corresponding ordering in <𝐴 are
removed. This leads to the same < −preserving extension
as in Example 3, 𝐸′ = {𝐻𝐼 ,𝑊 𝑒𝑖𝑔ℎ𝑡𝑠}. While these updates
formally have the same result, they intuitively mean differ-
ent things. In Example 3 the user is not able to run due to
outside circumstances from the world that may be resolved
at some point. We can remove ¬𝑅𝑢𝑛 from the knowledge
base𝑊 and are still able to use the previous user model. The
update in this example on the other hand removes running
as a possible action from the user model, indicating that
the user no longer views this as an option.

6. Discussion
We have introduced a formal framework which can be
used to specify the configuration of a behaviour sup-
port agent. The configuration can be translated into a
theory of ordered default logic and the <-preserving ex-
pansions of this theory determine the advice that the
agent presents to the user. We have also defined updates
on the configuration of the agent which can add or re-
move information from each of the components. These
updates can be used to resolve misalignments between
the user and the agent.

In order to use the updates for realignment, it is neces-
sary for the agent and the user to accurately identify the
precise cause of the misalignment. While this problem
needs to be addressed through communication between
the agent and the user [10], we want to facilitate this
process using the formal framework of the agent. In fu-
ture work we hope to study whether the structure of the
framework is understandable to users, how we can for-
mally identify potential causes of misalignment and how
we can explain problematic cycles in the dependency
graph to assist the user in resolving these.

So far we have only included the basic updates which
add or remove information from each component of the
agent’s configuration. However, in [9] there are also
other updates on default theories, such as introducing a
possibility by ensuring that there is at least one consis-
tent extension which contains a sentence 𝜑. It may be
interesting to see whether these updates can be adapted
for ordered default logic and what they would mean for
the agent’s configuration. The updates we have used so
far have also each been permanent changes of the agent’s
configuration. In practice there may be situations which

require different advice in the moment but should not
be considered in the future. These might require dif-
ferent types of updates to optimise the computational
complexity of the agent.

In order to further demonstrate the potential of our
framework, we also hope to implement the example agent
we have presented in this paper. Since ordered default
logic can be translated into regular default logic using the
process described in [13], we can use existing solvers for
default logic to implement the reasoning of the agent. By
combining this with implementations of belief revision
operators, we can study how our framework behaves in
a real application. For this, we will likely also need to op-
timise the agent to reduce the computational complexity.
A first step for this is to consider the work of [14] which
discusses specific types of default theories for which an
extension can be found in polynomial time.

Acknowledgments
This research was partly funded by the Hybrid Intelli-
gence Center, a 10-year programme funded by the Dutch
Ministry of Education, Culture and Science through the
Netherlands Organisation for Scientific Research, https://
hybrid-intelligence-centre.nl, grant number 024.004.022.

References
[1] H. Oinas-Kukkonen, Behavior change support

systems: A research model and agenda, in:
T. Ploug, P. Hasle, H. Oinas-Kukkonen (Eds.), Per-
suasive Technology, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010, pp. 4–14. doi:10.1007/
978-3-642-13226-1_3.

[2] N. Albers, M. A. Neerincx, W.-P. Brinkman, Per-
suading to prepare for quitting smoking with a vir-
tual coach: Using states and user characteristics
to predict behavior, in: Proceedings of the 2023
International Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’23, International
Foundation for AutonomousAgents andMultiagent
Systems, 2023, p. 717–726.

[3] M. B. van Riemsdijk, C. M. Jonker, V. Lesser, Cre-
ating socially adaptive electronic partners: Inter-
action, reasoning and ethical challenges, in: Pro-
ceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, AA-
MAS ’15, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 2015,
p. 1201–1206.

[4] Z. Akata, D. Balliet, M. de Rijke, F. Dignum,
V. Dignum, G. Eiben, A. Fokkens, D. Grossi, K. Hin-
driks, H. Hoos, H. Hung, C. Jonker, C. Monz,
M. Neerincx, F. Oliehoek, H. Prakken, S. Schlobach,

L. van der Gaag, F. van Harmelen, H. van Hoof,
B. van Riemsdijk, A. vanWynsberghe, R. Verbrugge,
B. Verheij, P. Vossen, M.Welling, A research agenda
for hybrid intelligence: Augmenting human intel-
lect with collaborative, adaptive, responsible, and
explainable artificial intelligence, Computer 53
(2020) 18–28. doi:10.1109/MC.2020.2996587.

[5] S. S. Sundar, Rise of Machine Agency: A Framework
for Studying the Psychology of Human–AI Interac-
tion (HAII), Journal of Computer-Mediated Com-
munication 25 (2020) 74–88. doi:10.1093/jcmc/
zmz026.

[6] D. Goldenberg, K. Kofman, J. Albert, S. Mizrachi,
A. Horowitz, I. Teinemaa, Personalization in prac-
tice: Methods and applications, in: Proceedings
of the 14th ACM International Conference on Web
Search and Data Mining, WSDM ’21, Association
for Computing Machinery, New York, NY, USA,
2021, p. 1123–1126.

[7] E. Fermé, M. Garapa, M. D. L. Reis, Y. Almeida,
T. Paulino, M. Rodrigues, Knowledge-driven profile
dynamics, Artificial Intelligence 331 (2024) 104117.
doi:10.1016/j.artint.2024.104117.

[8] P. B. De Laat, Algorithmic decision-making based
on machine learning from big data: can trans-
parency restore accountability?, Philosophy & tech-
nology 31 (2018) 525–541.

[9] G. Antoniou, On the dynamics of default rea-
soning, International Journal of Intelligent Sys-
tems 17 (2002) 1143–1155. doi:https://doi.org/
10.1002/int.10065.

[10] P.-Y. Chen, M. Tielman, D. Heylen, C. Jonker,
M. Riemsdijk, Acquiring semantic knowledge for
user model updates via human-agent alignment
dialogues: An exploratory focus group study, in:
HHAI 2023: Augmenting Human Intellect - Pro-
ceedings of the 2nd International Conference on
Hybrid Human-Artificial Intelligence, IOS Press,
2023, pp. 93–108. doi:10.3233/FAIA230077.

[11] J. Wolff, V. De Boer, D. Heylen, M. B. Van Riemsdijk,
Using default logic to create adaptable user models
for behavior support agents, HHAI 2024: HYBRID
HUMAN AI SYSTEMS FOR THE SOCIAL GOOD
(2024) 350.

[12] R. Reiter, A logic for default reasoning, Artifi-
cial Intelligence 13 (1980) 81–132. doi:https://doi.
org/10.1016/0004-3702(80)90014-4, special Is-
sue on Non-Monotonic Logic.

[13] J. P. Delgrande, T. Schaub, Expressing pref-
erences in default logic, Artificial Intelligence
123 (2000) 41–87. doi:https://doi.org/10.1016/
S0004-3702(00)00049-7.

[14] C. H. Papadimitriou, M. Sideri, Default theories that
always have extensions, Artificial Intelligence 69
(1994) 347–357. doi:https://doi.org/10.1016/

https://hybrid-intelligence-centre.nl
https://hybrid-intelligence-centre.nl
http://dx.doi.org/10.1007/978-3-642-13226-1_3
http://dx.doi.org/10.1007/978-3-642-13226-1_3
http://dx.doi.org/10.1109/MC.2020.2996587
http://dx.doi.org/10.1093/jcmc/zmz026
http://dx.doi.org/10.1093/jcmc/zmz026
http://dx.doi.org/10.1016/j.artint.2024.104117
http://dx.doi.org/https://doi.org/10.1002/int.10065
http://dx.doi.org/https://doi.org/10.1002/int.10065
http://dx.doi.org/10.3233/FAIA230077
http://dx.doi.org/https://doi.org/10.1016/0004-3702(80)90014-4
http://dx.doi.org/https://doi.org/10.1016/0004-3702(80)90014-4
http://dx.doi.org/https://doi.org/10.1016/S0004-3702(00)00049-7
http://dx.doi.org/https://doi.org/10.1016/S0004-3702(00)00049-7
http://dx.doi.org/https://doi.org/10.1016/0004-3702(94)90087-6
http://dx.doi.org/https://doi.org/10.1016/0004-3702(94)90087-6

0004-3702(94)90087-6.
[15] M.-A. Williams, Iterated theory base change: A

computational model., Proceedings of the Four-
teenth International Joint Conference on Artificial
Intelligence (1995) 1541–1549.

[16] C. E. Alchourrón, P. Gärdenfors, D. Makinson, On
the logic of theory change: Partial meet contraction
and revision functions, The Journal of Symbolic
Logic 50 (1985) 510–530.

[17] T. I. Aravanis, P. Peppas, Belief revision in answer
set programming, in: Proceedings of the 21st Pan-
Hellenic Conference on Informatics, PCI ’17, Asso-
ciation for Computing Machinery, New York, NY,
USA, 2017. doi:10.1145/3139367.3139387.

[18] P. Krümpelmann, G. Kern-Isberner, Belief base
change operations for answer set programming, in:
L. F. del Cerro, A. Herzig, J. Mengin (Eds.), Logics in
Artificial Intelligence, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012, pp. 294–306.

[19] S. Pandžić, On the dynamics of structured ar-
gumentation: Modeling changes in default justi-
fication logic, Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinfor-
matics) 12012 LNCS (2020) 222 – 241. doi:10.1007/
978-3-030-39951-1_14.

http://dx.doi.org/https://doi.org/10.1016/0004-3702(94)90087-6
http://dx.doi.org/https://doi.org/10.1016/0004-3702(94)90087-6
http://dx.doi.org/10.1145/3139367.3139387
http://dx.doi.org/10.1007/978-3-030-39951-1_14
http://dx.doi.org/10.1007/978-3-030-39951-1_14

	1 Introduction
	2 Preliminaries
	2.1 Ordered Default Logic
	2.2 Belief Revision

	3 Behaviour Support Agent
	3.1 Syntax
	3.2 Determining the Agent's Advice

	4 Agent Updates
	4.1 Updates to Knowledge Base
	4.2 Updates to the Beliefs
	4.3 Updates to the Ordering

	5 Resolving Misalignments
	5.1 Incorrect Reasoning
	5.1.1 Incorrect World Knowledge
	5.1.2 Incorrect Beliefs about the world

	5.2 Incorrect User Model
	5.2.1 Incorrect Goals
	5.2.2 Incorrect Actions

	6 Discussion

