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Abstract 
Extracting skill information for students in online learning environments has been a challenging topic 
across different domains. Predicting the number of skills is the first step towards estimating students’ 
skills. In this paper, we propose prediction methods based on Machine Learning (ML) models, where 
we used the analysis model to generate simulation data reflecting the data features of our target 
scenarios and took the features from simulation data to train and test ML models. We illustrated this 
approach in tandem with Multidimensional Item Response Theory (MIRT) for the simple and complex 
structure, and further compared the trained ML models with a selection of statistical methods based 
on the test data. Our preliminary results show that, compared to statistical methods, ML models 
generally reach a noticeably higher proportion of correct estimations for both structures. 
Additionally, we find that an increase in the percentage of missing values and sample size leads to 
negative and positive effects on the methods’ performance respectively. Using simulation data from 
the analysis model to train ML models and doing prediction can extend the current operation of skill 
extraction, which provides extra options for the practitioners. 
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1. Introduction 

Skill information is one type of fundamental quantitative evidence for building an online 
learning system (including adaptive lifelong learning system). With accurate users’ skill 
estimates, such a system can personalize materials and instruction design to improve the 
learning experience effectively and efficiently. With monitoring the changes of users’ skill 
information, the system can recommend further learning resources to adapt to users’ situation 
frequently. However, what skills can be extracted and monitored and how the skill information 
can be estimated by which test items and relevant users’ response are still a challenging topic.  

Several kinds of techniques have been used to extract users’ skill information based on users’ 
response to test items, such as Multidimensional Item Response Theory (MIRT) [2], Cognitive 
Diagnostic Model (CDM) [3], Matrix Factorization (MF) [4,5], and so forth. The common start 
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for conducting these techniques is to decide the number of skills and clarify the relationship 
between items and skills (or knowledge components). In other words, the number of skills and 
which items can be used to measure which skills are clearly defined before skill estimation and 
tracing algorithms are performed. For example, in the MIRT, the item-dimension relationship 
needs to be explored, which serves as the basis for estimating user’s skill values, after the 
predetermination of the number of latent dimensions. In the CDM, the item-attributes 
relationship depicted by the Q-matrix functions in a similar way and the number of attributes 
should also be confirmed beforehand. In the MF, the number of ranks for shaping two 
decomposed matrices (i.e., a user-factor matrix and an item-factor matrix) is required initially 
before the technique is performed. Traditionally, the number of skills and the item-skill 
relationship are theoretically defined by domain experts. However, human examination is too 
inefficient to satisfy the needs of online learning system because of the large number of items, 
which calls for the data-driven approach (i.e., extracting the number of skills and exploring and 
confirming the item-skill structure based on the response matrix).   

Many techniques have been proposed to estimate the number of skills based on data-driven 
evidence. For example, in the MIRT, the number of latent dimensions is estimated by certain 
statistical methods, such as Kaiser Criterion (KC) [6], Empirical Kaiser Criterion (EKC) [7], 
Parallel Analysis (PA) [8], non-graphical Scree Plot with Optimal Coordinates (OC) or 
Acceleration Factor (AF) [9], Very Simple Structure (VSS) with two variants (i.e., C1 & C2) [10], 
and so forth. In the CDM, the number of attributes and related Q-matrix are estimated and 
evaluated by the designed algorithms or statistics, such as the G-DINA Discrimination Index 
(GDI) method [11], the stepwise method [12], and so on. In the MF, the number of ranks is 
usually seen as a hyperparameter, which is predicted based on the evaluation of defined loss 
[13]. Additionally, some researchers have explored using Machine Learning (ML) methods to 
estimate the number of skills, and they found that it can increase the proportion of correct 
predictions. For example, Goretzko & Bühner [14] used eXtreme Gradient Boosting (XGBoost), 
Random Forest (RF), and Adaptive Boosting to predict the number of factors for continuous 
response simulation data, and found that these methods performed better than other traditional 
statistical methods in terms of prediction accuracy (i.e., the proportion of correct estimation). 
However, their study did not explore the possibilities of using ML methods to predict the 
number of skills for the dichotomous response with considering the features of online or 
adaptive learning data (e.g., the sparsity and the large number of items) and properties of 
different multidimensional structures.   

In this study, we aim to fill this research gap by proposing ML prediction methods inspired 
by Goretzko & Bühner [14] and comparing their performance with other selected statistical 
methods. The general operation is that we use the analysis model (such as the MIRT, CDM, or 
MF) to generate simulation data reflecting the data features of target scenarios in online 
learning environments. The simulation data includes two parts, i.e., the training data (including 
validation data) for training and tuning ML models and the test data for evaluating the 
performance of ML models and selected statistical methods. In detail, the selected methods 
included: 1) ML models: the regression variant of XGBoost and RF whose results were rounded 
to the integer; 2) statistical methods: KC, PA, EKC, Scree Plot (OC), Scree Plot (AF), VSS (C1), 
and VSS (C2). For the sake of parsimony, the explanation of methods’ mechanism is skipped, 
and relevant details can be consult by provided references.  
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In the following sections, we illustrate this operation in tandem with the MIRT for the simple 
and complex structure. MIRT is the prevailing statistical model for analyzing students’ binary 
response (0: wrong; 1: right) to estimate students’ ability and relevant item parameters in the 
field of psychological and educational assessments. The principle of MIRT is that it models the 
probability of giving a correct answer based on the interaction between students’ ability and 
item parameters. For example, a 2-parameter MIRT model can be expressed by:  

 

𝑃(𝑥𝑖𝑗 = 1|𝜽𝒊; 𝒂𝒋, 𝑑𝑗) =
𝑒𝑥𝑝(𝜶𝒋𝜽𝒊

′ + 𝑑𝑗)

1 + 𝑒𝑥𝑝(𝜶𝒋𝜽𝒊
′ + 𝑑𝑗)

 

 
In the above formula, 𝑥𝑖𝑗 = 1 refers to the correct response of user i for item j and the 𝜽𝒊 =

(𝜃𝑖1, 𝜃𝑖2, … , 𝜃𝑖𝑘), 𝜶𝒋 = (𝛼𝑗1, 𝛼𝑗2, … , 𝛼𝑗𝑘), and 𝑑𝑗 indicate the ability of user i for skill k, the item 
discrimination of item j for skill k, and the item intercept for item j respectively [2]. As for the 
two multidimensional structures, under the simple structure, each item is solely related to one 
latent skill and the latent skills are correlated with each other. Under the complex structure, 
each item is related to more than one latent skill and the latent skills are correlated with each 
other as well. 

2. Method 

2.1. Data 

Table 1 presents the settings for generating the training data and test data by a 2-parameter 
MIRT model for the simple and complex structures based on R function “simdata” of R package 
“mirt” [15] in R 4.3.2 [16]. These simulation features contained the number of items, the number 
of latent skills, the sample size, and the proportion of missing values in the response matrix, 
and the correlation between latent skills. The relevant settings mimicked the possible features 
of online learning and assessments [17,18]. The settings for generating the training data were 
randomly selected from the designed range for each simulation feature, except for the number 
of latent skills. In detail, we randomly selected 20 values from the specified range for the number 
of items. For the sample size and missingness, we randomly selected 10 values, and for the 
correlation, we randomly selected 5 values. The setting for generating the test data were based 
on fixed values for detecting their effects on methods’ performance. In total, there were 80,000 
and 7200 scenarios for the training and test data respectively. Considering the constraints on 
computation power, we randomly selected 1000 scenarios for both and generated one dataset 
for each scenario as the preliminary results for the subsequent analysis. The simulation codes 
will be publicly available by contacting the corresponding author when the paper with final 
results is published. 

Table 1 
Settings of Generating Simulation Data  

Features Settings for Training Data Settings for Test Data 

The number of items From 300 to 800 300, 400, 500, 600, 700, 800 

The number of latent skills 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 3, 4, 5, 6, 7, 8 

Sample size From 300 to 800 300, 400, 500, 600, 700, 800 
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Missingness (proportion) From 0 to 0.9 0, 0.25, 0.5, 0.75, 0.9 

Correlation (latent skills) From 0.1 to 0.5 0.1, 0.2, 0.3, 0.4, 0.5 

 

2.2. Methods Implementation 

All methods implementation was based on R 4.3.2 [16]. The statistical methods were mainly 
implemented based on the tetrachoric correlation matrix corresponding to the dichotomous 
responses by R function “tetrachoric2” of R package “sirt” [19] with Bonett method [20]. The 
results of KC and EKC were estimated by manual function in R. PA and scree plot (OC & AF) 
were performed by relevant functions in R package “nFactors” [21], and VSS (C1 & C2) was 
implemented by relevant functions in R package “psych” [22]. 

Table 2 
Hyperparameter Consideration for ML models 

Random Forest XGBoost 
Number of trees From 10 to 500 Maximum depth of a 

tree 
From 1 to 20 

Number of 
considered variables 
at each split 

From 1 to all 
features 

Minimum sum of 
instance weight 
(hessian) 

From 1 to 10 

Minimum size of 
terminal nodes 

From 1 to 10 Fraction of features 
for each tree 

From 0.5 to 1 

Maximum size of 
terminal nodes 

From 5 to 50 Fraction of samples 
for each tree 

From 0.5 to 1 

Maximum number of 
iterations for tuning 

100 Number of boosting 
rounds 

 

From 30 to 100 

Loss function Mean Squared Error Learning rate From 0.01 to 0.5 
  Minimum loss 

reduction 
From 0 to 10 

  Loss function Mean Square Error 

 
The RF and XGBoost were implemented by relevant functions in R package “mlr” [23] and 

“xgboost” [24]. Both ML models were trained and tested based on the features extracted from 
available information, such as the original response matrix, the estimated tetrachoric 
correlation matrix, and the estimated results of statistical methods. The features included [14]: 
1) from the response matrix: the sample size, the number of items, and the proportion of 
missingness; 2) from the correlation matrix: the determinant, the number of entries smaller or 
equal to 0.1, the number of eigenvalues larger than 0.7, the relative proportion of eigenvalues, 
the standard deviation of all eigenvalues, the number of eigenvalues accounting for over 50% or 
75% of the variance, the matrix norms (i.e., the L1-norm, Frobenius-norm, maximum-norm, and 
spectral-norm), the average of off-diagonal entries and the communality estimates, the 
sampling adequacy [25], the Gini-coefficient [26], the Kolm inequality [27], the top 50 

18



eigenvalue estimates; 3) from the results of statistical methods: KC, PA, EKC, scree plot (OC), 
scree plot (AF), VSS (C1), and VSS(C2).  

As ML models can be trained by integrating the results of statistical methods, which may 
lead to a fairness concern regarding the method comparison, we trained RF and XGBoost in two 
ways, i.e., one without including results of statistical methods in the features and another with 
including them. Additionally, all ML models were trained by 10-fold cross-validation based on 
the training data. Table 2 provides the partial hyperparameter settings for the RF and XGBoost 
with or without extra features (i.e., the results of statistical methods). The settings of other 
possible hyperparameters followed the default settings of two R packages. The relevant codes 
will be publicly available by contacting the corresponding author when the paper with final 
results is published. 

2.3. Evaluation Metrics 

To evaluate and compare the performance of all candidate methods, the deviation score and 
several metrics based on the deviation score were used. The deviation score is defined as the 
estimated number of latent skills minus the true number of latent skills. The correct-estimation 
proportion is the number of deviation scores equal to zero divided by the total number of 
estimates (i.e., 1000). The under-estimation proportion is the number of deviation scores lower 
than zero divided by the total number of estimates. The over-estimation proportion is the 
number of deviation scores higher than zero divided by the total number of estimates. The bias 
is the average of deviation scores. The precision is the average absolute deviation score. 

3. Results 

Table 3 shows the results of all selected methods based on the test data. For the simple structure, 
KC, PA, EKA, and scree plot (OC) performed worse than other methods. Their correct-
estimation proportions were nearly equal to zero. For scree plot (AF), VSS (C1), and VSS (C2), 
the correct-estimation proportions ranged from 0.5 to 0.3, which was obviously better than 
other statistical methods. Regarding the performance of ML models, RF and XGBoost without 
extra features reached even higher correct-estimation proportions (more than 0.7) than the 
variants with extra features (less than 0.7). The correct-estimation proportions of all ML models 
were higher than the statistical methods, with the minimum difference between them equal to 
0.1954. In terms of under and over estimation, KC, PA, EKC, and scree plot (OC) tended to overly 
estimate the number of latent skills, which was further confirmed by the result of bias and 
precision. ML models tended to estimate a higher number of latent skills as well, although their 
over-estimation proportions were relatively lower. In contrast, scree plot (AF), VSS (C1), and 
VSS (C2) estimated a smaller number of latent skills than the true number of skills.  

For the complex structure, the general pattern was similar to the simple structure. KC, PA, 
and scree plot (OC) had the lowest proportions of correct estimations, again close to zero. EKC 
performed poorly as well, even though its correct proportion was around 0.1. The correct 
proportion of scree plot (AF), VSS (C1), and VSS (C2) ranged from 0.2490 to 0.3740, which was 
better than other statistical methods. In terms of the performance of ML models, their 
proportions of correct estimation were higher than 0.74, which was substantially better than 
statistical methods. Regarding the under and over estimation, KC, PA, scree plot (OC), and EKC 
overly estimated the number of latent skills (their over-estimation proportions above 0.9), while 
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scree plot (AF), VSS (C1), and VSS (C2) tended to estimate a smaller number of latent skills (their 
under-estimation proportions ranging from around 0.4 to 0.5). ML models also estimated a 
smaller number of latent skills, but their under-estimation proportions (around 0.14) were 
noticeably lower than statistical methods. The patterns of under and over estimations were 
further supported by the results of bias and precision.  

Table 3 
Results of Test Data 

  Correct-
estimation 
Proportion 

Under-
estimation 
Proportion 

Over-
estimation 
Proportion 

Bias Precision 

Simple Structure 
KC 0 0 1 168.0779 168.0779 
PA 0.0065 0 0.9935 94.0455 94.0455 
EKC 0.0195 0 0.9805 71.4870 71.4870 
Scree Plot (OC) 0.0130 0.0065 0.9805 30.3312 30.3442 
Scree Plot (AF) 0.3571 0.6169 0.0260 -2.7273 2.7792 
VSS (C1) 0.3636 0.4481 0.1883 -1.6039 2.3571 
VSS (C2) 0.4545 0.2792 0.2662 -0.6818 1.3312 
RF  0.7143 0.1364 0.1494 0.0519 0.4935 
RF (extra) 0.6883 0.0519 0.2597 0.5260 0.6818 
XGBoost 0.7078 0.1104 0.1818 0.1169 0.4545 
XGBoost (extra) 0.6494 0.0909 0.2597 0.4935 0.7143 
Complex Structure 
KC 0 0 1 160.7990 160.7990 
PA 0.0550 0 0.9450 86.2640 86.2640 
EKC 0.1010 0 0.8990 67.2240 67.2240 
Scree Plot (OC) 0.0580 0.0020 0.9400 27.1280 27.1420 
Scree Plot (AF) 0.3740 0.5800 0.0460 -2.5580 2.6500 
VSS (C1) 0.2490 0.6710 0.0800 -2.5470 2.7810 
VSS (C2) 0.3130 0.3930 0.2940 -0.3890 1.7310 
RF  0.7600 0.1280 0.1120 -0.1920 0.5240 
RF (extra) 0.7490 0.1380 0.1130 -0.2280 0.5200 
XGBoost 0.7940 0.1420 0.0640 -0.3040 0.4840 
XGBoost (extra) 0.7820 0.1490 0.0690 -0.3210 0.5050 

 
Figure 1 and Figure 2 present the effects of simulation features on the correct-estimation 

proportions of selected methods. As these proportions were extremely low for KC, PA, EKC, 
and scree plot (OC), they were omitted in the effects analysis. For the simple structure, when 
the percentage of missing values in the response matrix increased from 0 to 90%, the respective 
proportions of all methods decreased, especially for ML models (falling from above 0.8 to below 
0.2). Raising the sample size from 300 to 800 generally led to an increase in the respective 
proportions of ML methods by 0.2, while the effects of sample size on statistical methods were 
not detectable due to the fluctuations. Regarding the effects of the number of latent skills, 
changing the settings from 1 to 8 was related to the tremendous decrease in the proportions of 
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scree plot (AF) and VSS (C1) by around 0.7. For the effects of the number of items, when it rose 
from 400 to 600, the proportion of most methods went down by around 0.2. 

Figure 1: Effects of Simulation Features (x-axis) on the Correct-estimation Proportions (y-axis) 
for the Simple Structure 

 

Figure 2: Effects of Simulation Features (x-axis) on the Correct-estimation Proportions (y-axis) 
for the Complex Structure 

Compared to the patterns in the case of simple structure, the changes of proportions for the 
complex structure fluctuated less. When the missingness percentage went up from 0 to 90%, the 
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proportions of ML methods dropped down from over 0.9 to lower than 0.3 and the proportions 
of statistical methods went down relatively slightly by around 0.2. Raising the sample size led 
to the increase in proportions of ML methods by around 0.2, while the proportions of statistical 
methods fluctuated by a small amount. In terms of the number of latent skills, when it changed 
from 2 to 8, the proportion of statistical methods fell down massively from over 0.6 to below 
0.1. In contrast, the proportion of ML models almost stayed the same. Regarding the number of 
items, the proportion of all methods fluctuated slightly without noticeable changes across 
different settings. 

4. Discussion 

In the present study, we proposed a general operation of building prediction models using ML, 
with simulation data to estimate the number of latent skills for online learning environments, 
which was illustrated based on the MIRT. The results of the performance comparison revealed 
that ML models had a markedly better performance than statistical methods regarding the 
correct-estimation proportions. This finding is generally consistent with the previous study [14]. 
However, the correct estimation of proportions in the previous study is higher than 0.9, which 
is different from the results in this study (ranging from 0.65 to 0.8). One possible explanation 
for this difference might be due to the different simulation models and scenarios. In the previous 
study, the dichotomous response generated by the MIRT was not considered. The simulation 
settings more reflected the features of relatively small-scale psychological tests instead of the 
large-scale online learning settings. For example, the number of items is usually set below 100 
in the field of psychology, while it might be over hundreds and even thousands in the online 
learning environments. Additionally, the problem of missingness or sparsity is also less of a 
concern in previous research. Regarding the performance of statistical methods, our results 
showed that they performed surprisingly poorer than previous studies. Goretzko & Bühner [14] 
found that KC, EKC and PA reached over 0.75 regarding the correct estimation proportion, 
which is completely different from our results. Guo & Choi [28] found that the proportion of 
identifying the correct number of latent skills for PA with tetrachoric ranged from 0.43 to 1 
across various simulation features, which is also dissimilar from our results. It may be 
speculated that this is because of the different settings of simulation features.  

Except for the results of methods comparison, the effects analysis of simulation features 
found that the increase in the missingness and sample size lead to a going-down and going-up 
trends for most of methods regarding the correct estimation proportions. It is interesting to 
note that raising missingness and sample size may have negative and positive impact on 
methods’ performance respectively. As mentioned above, missingness was not considered in 
the previous study, and our study fills this gap. As for the positive effects of sample size, our 
results further confirm the findings of the previous study. For example, the correct estimation 
proportion of ML models increased by 0.06 when the sample size rose from 250 to 1000 in the 
study of Goretzko & Bühner [14].  

Overall, the results of this study imply that compared to statistical methods, using simulation 
data generated by the analysis model (e.g., the MIRT) to train ML models and applying them to 
do predictions can work relatively effectively for estimating the number of latent skills in online 
learning environments. This kind of operation can be generalized to other kinds of analysis 
models. For example, when practitioners believe that their real-world data fits the assumptions 
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of CDM, they can choose a suitable model of CDM to simulate data reflecting the data features 
of expected scenarios and train ML models to predict the number of attributes in the Q-matrix. 
This can also be used for MF in terms of predicting the number of ranks.   

Several limitations of this study need to be acknowledged. First, the trained and tuned ML 
models were not tested by real data. The conclusions of simulation study heavily rely on the 
data-generation model and the settings of simulation features, so relevant findings should be 
confirmed further based on real data. Second, due to the constraints of computational power, 
the present preliminary study only covered partial simulation scenarios, and the number of 
simulated data was limited to one for each scenario, which may make the relevant conclusions 
less stable. Third, as mentioned above, the illustration was based on the MIRT, and whether the 
findings remain the same for CDM or MF still needs to be tested.  

5. Conclusion 

In this study, we used the MIRT to generate simulation data reflecting the data features of target 
scenarios and took the features from simulation data to train and test two ML models (i.e., RF 
and XGBoost) for the simple and complex structure. These two ML models were compared with 
selected statistical methods regarding their performance of predicting the number of latent 
skills. The preliminary results show that the ML models (with or without including results of 
statistical methods during the training stage) generally outperform statistical methods in terms 
of correct estimation proportions. Additionally, regarding the effects of simulation features, we 
find that raising missingness level and the number of samples leads to a falling-down and going-
up trend respectively in the correct estimation proportions of most methods. To conclude, our 
result implies that compared to statistical methods, using simulation data generated by the 
selected analysis model to train ML models and further doing prediction can relatively improve 
the prediction of the number of latent skills and extend the current operation related to users’ 
skill extraction.  
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