
RankTower: A Synergistic Framework for Enhancing Two-Tower
Pre-Ranking Model
Yachen Yan1,∗, Liubo Li1

1Credit Karma, 760 Market Street, San Francisco, California, USA, 94012

Abstract
In large-scale ranking systems, cascading architectures have been widely adopted to achieve a balance between efficiency and effec-
tiveness. The pre-ranking module selects candidates for the subsequent ranking module, while maintaining efficiency and accuracy
under online latency constraints. In this paper, we propose a novel neural network architecture called RankTower, which is designed
to efficiently capture user-item interactions while following the user-item decoupling paradigm to ensure online inference efficiency.
The proposed approach employs a hybrid training objective that learns from samples obtained from the full stage of the cascade
ranking system, optimizing different objectives for varying sample spaces. This strategy enhances the pre-ranking model’s ranking
capability and alignment with the existing cascade ranking system. Experimental results conducted on public datasets demonstrate that
RankTower significantly outperforms state-of-the-art pre-ranking models.

Keywords
Recommender Systems, Pre-Ranking, Learning to Rank, Differentiable Sorting

Item
Corpus

Recall Pre-Ranking Ranking Re-Ranking

Item 1

Item 2

Item 3

Figure 1: The Architecture of Cascade Ranking System

1. Introduction
In industrial information services, such as recommender
systems, search engines, and advertisement systems, the
cascading architecture ranking system has been widely used
to achieve a balance between efficiency and effectiveness.
A typical cascade ranking system, as illustrated in Figure 1,
consists of multiple sequential stages, including recall, pre-
ranking, ranking, and re-ranking stages. Pre-ranking is
commonly regarded as a lightweight ranking module char-
acterized by a simpler network architecture and a reduced
set of features. Compared to ranking models, pre-ranking
models are required to score a larger number of candidate
items for each user and demonstrate higher inference ef-
ficiency. Given the emphasis on efficiency, pre-ranking
typically employs a straightforward vector-product-based
model.

We propose a novel pre-ranking framework called Rank-
Tower to address these challenges. The primary contribu-
tions are as follows:

• We introduce the RankTower architecture, which
comprises three key components: Multi-Head Gated
Network, Gated Cross-Attention Network, and Max-
imum Similarity Layer. This architecture efficiently
captures user-item interactions while following the
user-item decoupling paradigm to ensure online in-
ference efficiency.

• We employ a full-stage sampling strategy by draw-
ing the training samples from different stages of

Woodstock’22: Symposium on the irreproducible science, June 07–11, 2022,
Woodstock, NY
∗Corresponding author.
Envelope-Open yachen.yan@creditkarma.com (Y. Yan); liubo.li@creditkarma.com
(L. Li)
Orcid 0000-0002-1213-4343 (Y. Yan); 0009-0006-9933-2436 (L. Li)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

User Tower

Embedding Layer

Item Tower

Embedding Layer

Gated Cross-Attention
Network

Multi-Head Gated
Network

Multi-Head Gated
Network

Item
Multi-Embedding

Maximum Similarity Layer

Vector
Database

Online Serving

User
Multi-Embedding

Figure 2: The Architecture of RankTower

the cascade ranking system. Tightly coupled with
this sampling approach, we strategically integrate a
hybrid loss function that combines distillation and
learning-to-rank losses. This synergistic approach
facilitates comprehensive learning of the ordering
dynamics underlying user interactions while align-
ing with the inherent patterns of the cascade ranking
system.

• Experiments on public datasets demonstrate that
RankTower significantly outperforms state-of-the-
art pre-ranking models in terms of prediction accu-
racy and inference efficiency.

2. Model Architecture
The RankTower architecture, as shown in Figure 2, intro-
duces three main modules: Multi-Head Gated Network for
computing diversified user and item representations, Gated
Cross-Attention Network for modeling bi-directional user-
item interactions, and Maximum Similarity Layer for effi-
ciently capturing user-item interactions to compute the final
prediction.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:yachen.yan@creditkarma.com
mailto:liubo.li@creditkarma.com
https://orcid.org/0000-0002-1213-4343
https://orcid.org/0009-0006-9933-2436
https://creativecommons.org/licenses/by/4.0/deed.en

RankTower follows the user-item decoupling paradigm,
enabling efficient online serving by pre-computing and
caching user and item embeddings. During online serv-
ing, only the gated cross-attention layers require forward
propagation, while other operations remain parameter-free,
optimizing computational efficiency.

2.1. Preliminary
The dataset for building the pre-ranking model consists
of instances (𝑥𝑢, 𝑥𝑖, 𝑦 , 𝑝), where 𝑥𝑢 and 𝑥𝑖 are the user fea-
ture and item feature respectively, 𝑋𝑈 and 𝑋𝐼 are the user
and item input embeddings obtained by concatenating re-
spective feature embedding vectors, 𝑦 ∈ {0, 1} indicates the
user-item binary feedback label, 𝑝 is the logged ranking
model prediction that for knowledge distillation. 𝑧 and ̂𝑦
denote the pre-ranking model’s logit and prediction.

2.2. Multi-Head Gated Network
The Multi-Head Gated Network is an enhanced MLP aug-
mented with a gating mechanism for extracting diverse user
and item representations. The MLP output is multiplied by
an instance-aware gating vector, modeled by a two-layer
MLP. The input embedding does not receive gradients from
the gating network during training for stability. For exam-
ple, given an user input embedding 𝑋𝑈, the ℎ-th sub-space
𝑒ℎ𝑢 of the user multi-embedding is:

𝑒ℎ𝑢 = 𝑀𝐿𝑃𝑢(𝑋𝑈)ℎ ∘ 𝜎(𝑔𝑀𝐿𝑃𝑢(𝑋𝑈))ℎ

∈ ℝ𝐵×𝑘, ℎ = 1,⋯ , 𝐻𝑢
(1)

where ∘ denotes the Hadamard product, 𝜎 denotes the ac-
tivation function of the gating network: Sigmoid(𝑥), 𝑀𝐿𝑃𝑢
denotes the MLP layer for modeling the user input embed-
ding, 𝑔𝑀𝐿𝑃𝑢 denotes the gating MLP for facilitating selec-
tive attention, 𝐵 is the batch size and 𝑘 is the embedding
size of each sub-space.

Similarly, for item input embedding𝑋𝐼, the ℎ-th sub-space
𝑒ℎ𝑖 of the item multi-embedding is:

𝑒ℎ𝑖 = 𝑀𝐿𝑃𝑖(𝑋𝐼)ℎ ∘ 𝜎(𝑔𝑀𝐿𝑃𝑖(𝑋𝐼))ℎ

∈ ℝ𝐵×𝑘, ℎ = 1,⋯ , 𝐻𝑖
(2)

In the offline processing stage, we will periodically batch
inference and store all the user/item’s embeddings 𝑒ℎ𝑢 and
𝑒ℎ𝑖 into the vector database for online serving usage.

2.3. Gated Cross-Attention Network
The Gated Cross-Attention Network employs the cross-
attention mechanism to effectively model the interaction
between user embedding and item embedding. It utilizes the
Gated Attention Unit as the main building block, along with
residual connections and layer normalization for training
stability.

2.3.1. Cross Attention Mechanism

The Bi-Directional Gated Cross-Attention Network inter-
changeably utilizes user and item embedding as queries
and keys-values for bi-directional attention. Specifically,
with the user multi-embedding 𝐸𝑢 = Concat(e1u, ..., 𝑒

𝐻𝑢𝑢) and
item multi-embedding 𝐸𝑖 = Concat(e1i , ..., 𝑒

𝐻𝑖
𝑖), the cross-

attention compute the user attended embedding ℰ𝑢 and
item attended embedding ℰ𝑖 as follows:

User
Multi-Embedding

Item
Multi-Embedding

Gated Attention
Unit

Q KV

Gated Attention
Unit

Q KV

Add & LayerNorm Add & LayerNorm

Figure 3: The Architecture of Gated Cross-Attention Network

ℰ𝑢 = LN(𝐸𝑢 + GAU(𝑄 = 𝐸𝑢, 𝐾 = 𝐸𝑖, 𝑉 = 𝐸𝑖)) ∈ ℝ𝐵×𝐻𝑢×𝑘

(3)

ℰ𝑖 = LN(𝐸𝑖 + GAU(𝑄 = 𝐸𝑖, 𝐾 = 𝐸𝑢, 𝑉 = 𝐸𝑢)) ∈ ℝ𝐵×𝐻𝑖×𝑘

(4)

The cross-attention mechanism with two parallel
branches is designed to simultaneously attend to both user
preferences and item characteristics. This bidirectional ap-
proach allows the model to capture user-item interactions
more accurately. The overall structure of the Gated Cross-
Attention Network is illustrated in Figure 3.

2.3.2. Gated Attention Unit

The Gated Attention Unit introduces a gating mechanism
to facilitate selective attention for better learning the de-
pendency between user embedding and item embedding.
Specifically, the Gated Attention Unit effectively enables an
attentive gating mechanism as follows:

𝑄 = 𝜙(𝑋𝑄𝑊𝑄), 𝐾 = 𝜙(𝑋𝐾𝑊𝐾)

𝑉 = 𝜙(𝑋𝑉𝑊𝑉), 𝑈 = 𝜎(𝑋𝑄𝑊𝑈)
(5)

where 𝑋𝑄, 𝑋𝐾, 𝑋𝑉 are the query, key, and value input, 𝜙
is the non-linear activation function for projection layer, 𝜎
is the sigmoid function for computing gating value. With
the learned projection 𝑄, 𝐾, 𝑉, and the gating value 𝑈, we
compute the attention weights, followed by gating and a
post-attention projection.

𝑂 = (𝑈 ⊙ 𝐴𝑉)𝑊𝑜 (6)

𝐴 = softmax(
𝑄𝐾𝑇

√𝑑𝑘
) (7)

where𝐴 ∈ ℝ𝐻𝑢×𝐻𝑖 contains user to item attention weights.
This example assumes that we use user embedding as the
query, and item embedding as key and value.

2.4. Maximum Similarity Layer
The Maximum Similarity Layer computes the final proba-
bility prediction based on the user and item attended em-
beddings. Specifically, each user sub-space computes the

Item 1 Item N...User Item N+1 Item N+M Item N+M+1 Item N+M+L... ...

Pre-Ranking Model

Distillation Loss
Fine-Grained
Ranking Loss

Coarse-Grained
Ranking Loss

Impression
Samples

Candidate
Samples

Random
Samples

...

Figure 4: The Synergistic Framework for Learning User Behavior Ordering and Full-Stage Sample Ordering

maximum cosine similarity with all item sub-spaces, and
the scalar outputs are summed across user sub-spaces:

𝑠 = (
𝐻𝑢

∑
𝑝=1

Max
𝑞∈{1,⋯,𝐻𝑖}

𝐶𝑂𝑆𝐼𝑁𝐸(ℰ𝑝
𝑢 , ℰ

𝑞
𝑖))/𝜏 (8)

where 𝑝 and 𝑞 are the sub-space indexes of user-attended
embedding and item-attended embedding, respectively, and
𝜏 is the learnable temperature scalar for re-scaling the cosine
similarity. Note that theMaximum Similarity Layer does not
have any parameters which is suitable for online serving.

3. Pre-Ranking Model Optimization
The pre-ranking models trained exclusively on impression
samples, same as ranking models, suffer from sample selec-
tion bias. The pre-ranking model, which operates on the
outputs of recall models, aims to identify the most relevant
candidates set for the ranking model. Consequently, align-
ing the item distribution between the training and serving
phases is essential to mitigate this sample selection bias and
improve model effectiveness.

As illustrated in Figure 4, we implemented full-stage sam-
pling to draw training data from impression samples, can-
didate samples, and random samples to mitigate sample
selection bias. Moreover, we strategically applied various
distillation and learning-to-rank losses to different sample
scopes to effectively learn the ordering of user behaviors
and the sequencing of the sample stages.

3.1. Full-Stage Sampling
The RankTower model is trained using user-level listwise
samples containing multiple positive items and multiple
objectives. The training samples for each user are sourced
from various stages of the cascade ranking system, as shown
in Figure 1. Detailed definitions and relationships among
these components are provided below:

3.1.1. Impression Samples

The items output by the ranking model and viewed by the
user consist of both positive and negative samples. Posi-
tive samples are items that have received various types of

positive user feedback, while negative samples are items
that have been exposed to the user without receiving user
feedback.

3.1.2. Candidate Samples

The item candidates in the ranking or pre-ranking stages
that are not viewed by the user are categorized based on their
progression through the cascade ranking pipeline. Ranking
candidates, which have advanced to the ranking stage, are
generally considered as hard negative samples due to their
higher relevance and quality compared to the pre-ranking
candidates. Pre-ranking candidates are regarded as rela-
tively easy negative samples because they were filtered out
before reaching the ranking stage.

3.1.3. Random Samples

Items that are randomly sampled from the item corpus to
serve as negative samples. These random samples are con-
sidered the easiest negative samples but are included to
further enhance the generalization capability of the pre-
ranking model. The incorporation of random samples en-
sures that the model remains effective and adaptable when
encountering previously unseen items during the serving
phase, thereby improving its robustness and ability to han-
dle diverse item distributions.

3.2. Label Aggregation
Our framework incorporates two types of labels: hard la-
bels and soft labels. Hard labels represent various types of
positive user feedback on impression samples, while soft
labels are predictions made by the ranking models, used
knowledge distillation. Both categories of labels require an
aggregation function to consolidate the different user behav-
iors into a single scalar value for the pre-ranking model’s
learning.

3.2.1. Hard Labels

The aggregation of hard labels is highly dependent on the
specific business problem, requiring that labels be aggre-
gated according to their orders of importance.

For instance, in online advertising, eCPM can be uti-
lized based on the pricing model of the platform. In an
e-commerce context, one might establish a relative prefer-
ence order based on the depth of user feedback, such as
Purchase > Add to Cart > Click. For scenarios like feed rank-
ing or video recommendations, user feedback signals can
be aggregated using a weighted sum approach. Addition-
ally, we incorporate a general impression label applicable
across business scenarios, for learning the pattern of the
cascade ranking system. The label assigned a value of 1 for
impression samples and 0 otherwise.

The user feedback labels help the pre-ranking model in
learning the revenue or engagement level associated with
different user behaviors. The exposure label facilitates the
pre-ranking model’s ability to learn and replicate the rank-
ing patterns in the downstream cascade ranking system.

3.2.2. Soft Labels

For soft labels, we use the ranking objective function as
aggregation function. This approach ensures that the soft
labels are seamlessly integrated into the training process,
maintaining the consistency between the pre-ranking model
and the ranking model.

3.3. Hybrid Loss Functions
The pre-ranking model focuses on achieving both consis-
tency and ranking accuracy through the following tech-
niques:

• Knowledge Distillation: The ranking model’s predic-
tions are used as soft labels to transfer knowledge
from the ranking model (teacher) to the pre-ranking
model (student).

• Ranking Capability: Fine-grained and coarse-
grained ranking losses are applied to improve rank-
ing performance and retrieval capability, respec-
tively.

• Diverse Training Samples: The model is trained on
samples from different stages and varying easy/hard
sample levels to achieve robust generalization and
optimize hierarchical objectives.

Our synergistic framework is designed to learn both the
hierarchy of user behaviors and the pattern of the cascade
ranking system. For instance, in the context of online adver-
tising, the model is expected to understand the following
order of importance: converted items > clicked items > ex-
posed items > candidate items and randomly sampled items.

3.3.1. Distillation Loss

As the main goal for the pre-ranking model is to output a
high-quality item set for the ranking model, hence we used
a listwise loss for distilling the knowledge from the ranking
model as follows:

ℒDistillation(𝑧, 𝑝) = − ∑
𝑖∈𝒟𝐼

𝑝𝑖 log
exp(𝑧𝑖)

∑𝑗∈𝒟𝐼
exp(𝑧𝑗)

(9)

where 𝑝 is the prediction of the ranking model (soft label),
𝑧 is the logit of the pre-ranking model,𝒟ℐ is the impression
samples set. Note the distillation process from the ranking

model to the pre-ranking model is conducted exclusively
on impression samples. As the ranking model is trained
solely on these impression samples, its ability to generalize
to candidate samples and random samples is inherently
limited.

3.3.2. Fine-Grained Ranking Loss

The fine-grained ranking loss is applied to both impression
and candidate samples, which directly correspond to the
sample scope used in serving. We employ the SoftSort, a
differentiable sorting loss, to learn user behavior and the pat-
terns of the cascade ranking system. This loss function aims
to precisely rank items according to the varying degrees
of positive feedback they receive and effectively differenti-
ate positives from impression samples and negatives from
candidate samples.

Consider the SoftSort operator defined by metric func-
tion d = | ⋅ |𝑝 and temperature parameter 𝜏 for sorting 𝑛-
dimensional real vectors 𝑠 ∈ ℝ𝑛:

SoftSort𝑑𝜏 (𝑠) = softmax(
−d(𝑠𝑜𝑟 𝑡(𝑠)1𝑇, 1𝑠𝑇)

𝜏
) (10)

The output of SoftSort operator is a permutation matrix
of dimension 𝑛. The softmax operator is applied row-wise,
thereby relaxing the permutation matrices into a set of uni-
modal row-stochastic matrices. In simple words: the 𝑟-th
row of the SoftSort operator is the softmax of the negative
distances to the 𝑟-th largest element [1]. We then employ the
softmax cross entropy between the permutation matrices of
label 𝑦 and the permutation matrices of logit 𝑧. The SoftSort
loss function is hereby defined as:

ℒSorting(𝑧, 𝑦) = −tr(J𝑛(SoftSort
𝑑
𝜏 (𝑦) ∘ log SoftSort

𝑑
𝜏 (𝑧)))

(11)
where J𝑛 is a 𝑛 × 𝑛 matrix of ones, y = (𝑦𝑖)𝑖∈𝒟ℐ∪𝒟𝒞 is the

hard label and z = (𝑧𝑖)𝑖∈𝒟ℐ∪𝒟𝒞 is the logit of the pre-ranking
model. We use the tr to compute the element sum of the
matrix SoftSort𝑑𝜏 (𝑦) ∘ log (SoftSort

𝑑
𝜏 (𝑧)).

3.3.3. Coarse-Grained Ranking Loss

The coarse-grained ranking loss, applied to all samples (im-
pression, candidate, and random), aims to separate positive
and negative samples while supporting ranking among pos-
itives by distinguishing varying degrees of relevance. We
propose the Adaptive Margin Rankmax (AM-Rankmax) loss,
an extension of the Rankmax loss [2] that introduces an
adaptive margin based on the pair’s nature and label dis-
tance, thereby extending the Rankmax loss to address rank-
ing problems with ordered or continuous positive labels.

Consider the Rankmax loss for ranking problems with
binary labels only:

ℒ𝑅𝑎𝑛𝑘𝑚𝑎𝑥(𝑧, 𝑦) = ∑
𝑗∶𝑦𝑗>0

log
𝑛
∑
𝑖=1

(𝑧𝑖 − 𝑧𝑗 + 1)+ (12)

The Rankmax loss is reminiscent of pairwise losses. To
extend the Rankmax loss to more general ranking prob-
lems involving multi-level positive labels, we introduce the
adaptive margin with following enhancements:

• The loss is applied only when 𝑦𝑖 < 𝑦𝑗, which is more
suitable for multi-level positive label scenario.

• The margin adjusts based on whether 𝑦𝑖 is positive
or negative, to further enhancing the differentiality
between positive and negative samples.

• The margin scales with the label distances between
samples, reflecting varying degree of positive sam-
ples.

The adaptive margin function is:

𝑚(𝑖, 𝑗) = 𝛼 ⋅ I(𝑦𝑖 = 0) + 𝛿(𝑦𝑖, 𝑦𝑗) (13)

where 𝛼 is a constant for adding additional margin be-
tween negative and positive items, I is the indicator function.
The metric function 𝛿 can take various forms, for example
𝛿(𝑦𝑖, 𝑦𝑗) = 1 or 𝛿(𝑦𝑖, 𝑦𝑗) = 𝛽|𝑦𝑖 − 𝑦𝑗|𝑝. The adaptive margin
Rankmax loss is then given by:

𝐿AM−Rankmax(𝑧, 𝑦) = ∑
𝑗∶𝑦𝑗>0

log ∑
𝑖∶𝑦𝑖<𝑦𝑗

(𝑧𝑖 − 𝑧𝑗 + 𝑚(𝑖, 𝑗))+

(14)
where y = (𝑦𝑖)𝑖∈𝒟ℐ∪𝒟𝒞∪𝒟ℛ is the hard label from all the

samples and z = (𝑧𝑖)𝑖∈𝒟ℐ∪𝒟𝒞∪𝒟ℛ is the logit of the pre-
ranking model.

The AM-Rankmax loss function can effectively adapt to
scenarios with multiple positive labels of varying levels.
This enhancement allows the model to handle different de-
grees of positive feedback, thereby improving its ability to
generalize and accurately rank items in complex settings.

3.3.4. The Hybrid Ranking Loss

We design a hybrid ranking loss that integrates both distil-
lation and ranking objectives. The hybrid ranking loss is
the weighted sum of three losses:

ℒHybrid(𝑧, 𝑦) = 𝜆1ℒDistillation(𝑧, 𝑝)

+ 𝜆2ℒSorting(𝑧, 𝑦)

+ 𝜆3ℒAM−Rankmax(𝑧, 𝑦)

(15)

where 𝜆1, 𝜆2 and 𝜆3 are weights for each sub-objective.
Balancing distillation and ranking losses is crucial for the
pre-ranking model to inherit the ranking model’s capabili-
ties while generalizing to broader sample spaces. Weighting
fine-grained and coarse-grained ranking losses ensures a
balance between precise ranking and overall retrieval ro-
bustness.

4. Experiments
We conduct experiments on three large-scale public datasets
from online advertising, e-commerce, and short video rec-
ommendation domains to evaluate the effectiveness of Rank-
Tower. The experiments provide a comprehensive descrip-
tion of the evaluation metrics, and comparisons with state-
of-the-art pre-ranking models. We aim to answer the fol-
lowing questions through our experiments:

• Q1: How does our proposed RankTower perform
for pre-ranking task? Is it effective and efficient
under extremely high-dimensional and sparse data
settings?

• Q2: How do different settings on dataset sampling
and training losses influence the performance of
RankTower?

4.1. Experiment Setup
4.1.1. Datasets

We evaluate our model using real-world datasets: Ali-
mama1, Taobao2, and KuaiRand3. For each dataset, we
keep users with at least 100 impressions and 20 instances
of positive feedback. The data is split into 70% for training,
10% for validation, and 20% for testing. As all labels in the
datasets are binary, we aggregate them by summing the
labels to form the hard label.

4.1.2. Evaluation Metrics

We consider Recall@K and NDCG@K for evaluating the
performance of the models, and we set 𝑘 to 100 for all ex-
periment metrics.
Recall@K is the fraction of relevant retrieved within

the top 𝐾 recommendations. It’s mainly used for measuring
ranking system’s capability on retrieving relevant items.
NDCG@K measures the quality of the ranking by con-

sidering both the relevance and the position of items within
the top 𝐾 recommendations. Items with higher relevance
ranked at higher position contribute more to the metric.

4.1.3. Competing Models

We compare RankTower with the following pre-ranking
models: LR [3], Two-Tower [4], DAT [5], COLD [6], Int-
Tower [7] and ARF[8].

4.2. Model Performance Comparison (Q1)

Table 1
Performance Comparison of Different Algorithms on Alimama ,
Taobao and KuaiRand Dataset.

Alimama Taobao KuaiRand
Model Recall@K NDCG@K Recall@K NDCG@K Recall@K NDCG@K
LR 0.4802 0.3237 0.4792 0.2685 0.6713 0.5027

Two-Tower 0.5123 0.3428 0.5019 0.2921 0.6902 0.5258
DAT 0.5161 0.3472 0.5089 0.3013 0.6955 0.5312
COLD 0.5210 0.3518 0.5123 0.3070 0.7011 0.5349

IntTower 0.5215 0.3519 0.5101 0.3051 0.6960 0.5309
ARF 0.5318 0.3655 0.5215 0.3117 0.7096 0.5497

RankTower 0.5462 0.3794 0.5301 0.3223 0.7182 0.5551

The overall performance of different model architectures
is listed in Table 1. We have the following observations for
model effectiveness:

• LR exhibits the lowest performance compared to the other
neural network-based models.

• Two-Tower brings the most significant relative improve-
ment in performance, highlighting the importance of
learning deep feature interactions.

• COLD achieves strong performance among the compet-
ing models, indicating the significance of learning user-
item feature interactions.

1https://tianchi.aliyun.com/dataset/408
2https://tianchi.aliyun.com/dataset/649
3https://kuairand.com/

• ARF outperform other models without utilizing listwise
ranking losses, highlighting the importance of using list-
wise ranking losses.

• RankTower achieves the best prediction performance,
attributed to its effective modeling of bi-directional user-
item feature interactions and the design of full-stage sam-
pling and hybrid loss functions.

4.3. Model Study (Q2)
To gain deeper insights into the proposedmodel, we conduct
experiments on the KuaiRand dataset and compare model
performance on different settings, including: 1) the effect
of full-stage data sampling; 2) the effect of listwise ranking
losses; and 3) the effect of distillation from the ranking
model.

4.3.1. Effect of Full-Stage Sampling

We conduct an ablation study to evaluate the impact of
each sampling component on the model’s performance. As
shown in Table 2, the full-stage sampling strategy achieves
the best overall performance. Training the pre-ranking
model solely with impression samples hinders its ability to
generalize to unexposed items, negatively affecting retrieval
performance. We also observe that candidate samples are
more important than random samples, as they significantly
enhance themodel’s ability to discriminate between relevant
and non-relevant items.

Table 2
Experiment Results for Different Sampling Strategies.

Recall@K NDCG@K
Full-Stage Sampling 0.7182 0.5551
w/o random samples 0.7125 0.5437
w/o candidate samples 0.7040 0.5401
w/o candidate & random samples 0.6981 0.5323

4.3.2. Effect of Listwise Ranking Losses

To better understand the properties of the proposed hybrid
loss, we compare it with several widely used ranking losses
in the industry. The experiment results, as shown in Table 3,
indicate that the hybrid loss consistently outperforms other
alternatives, surpassing both its individual components: the
Sorting loss and the AM-Rankmax loss. Moreover, our pro-
posed AM-Rankmax demonstrates superior performance
compared to the original Rankmax loss and the Softmax
loss.

Table 3
Experiment Results for Different Ranking Losses.

Recall@K NDCG@K
Hybrid Loss 0.7182 0.5551
Sorting 0.7128 0.5516
AM-Rankmax 0.7132 0.5507
Rankmax 0.7105 0.5492
Softmax 0.7109 0.5498
ApproxNDCG 0.7006 0.5436
RankNet 0.7072 0.5452

4.3.3. Effect of Distillation from Ranking Model

We conduct an ablation study on the distillation component
and further compare Softmax loss with other alternatives.

The Table 4 demonstrate the efficacy of transferring
knowledge distillation. Among various loss function ex-
perimented for distillation, the Softmax loss outperforms
the other alternative losses. The Softmax loss, being a list-
wise ranking loss, proved more adept at distilling the rank-
ing model’s capabilities compared to the weighted logloss,
which essentially is a pointwise approach and exhibited sub-
optimal performance in learning the relative ranking distri-
bution. In contrast, the pairwise logloss, focusing solely on
pairwise ordering of ranking model’s predictions without
considering the relative proximity of predictions, exhibited
overfitting to the ranking model’s outputs.

Table 4
Experiment Results for Different Distillation Losses.

Recall@K NDCG@K
Distillation (Softmax) 0.7182 0.5551
Distillation (Weighted Logloss) 0.7130 0.5519
Distillation (Pairwise Logloss) 0.7071 0.5432
No Distillation 0.7108 0.5495

5. Conclusion
This paper introduces the RankTower model, designed to
enhance the performance of the two-tower model by effec-
tively capturing bi-directional latent interactions between
user and item. To ensure consistency with existing casecade
ranking system, a hybrid loss function and full-stage sam-
pling approach are integrated into the model’s optimization
framework. Comprehensive experiments demonstrate that
RankTower significantly outperforms state-of-the-art pre-
ranking models. In future work, we aim to study how to
effectively and jointly optimize the cascade ranking system
in an end-to-end fashion.

References
[1] S. Prillo, J. Eisenschlos, Softsort: A continuous relax-

ation for the argsort operator, in: International Confer-
ence on Machine Learning, PMLR, 2020, pp. 7793–7802.

[2] W. Kong, W. Krichene, N. Mayoraz, S. Rendle, L. Zhang,
Rankmax: An adaptive projection alternative to the
softmax function, Advances in Neural Information
Processing Systems 33 (2020) 633–643.

[3] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner,
J. Grady, L. Nie, T. Phillips, E. Davydov, D. Golovin,
et al., Ad click prediction: a view from the trenches, in:
Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining,
2013, pp. 1222–1230.

[4] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, L. Heck,
Learning deep structured semantic models for web
search using clickthrough data, in: Proceedings of
the 22nd ACM international conference on Information
& Knowledge Management, 2013, pp. 2333–2338.

[5] Y. Yu, W.Wang, Z. Feng, D. Xue, A dual augmented two-
tower model for online large-scale recommendation
(2021).

[6] Z.Wang, L. Zhao, B. Jiang, G. Zhou, X. Zhu, K. Gai, Cold:
Towards the next generation of pre-ranking system,
arXiv preprint arXiv:2007.16122 (2020).

[7] X. Li, B. Chen, H. Guo, J. Li, C. Zhu, X. Long, S. Li,
Y. Wang, W. Guo, L. Mao, et al., Inttower: the next gen-
eration of two-tower model for pre-ranking system, in:
Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, 2022, pp.
3292–3301.

[8] Y. Wang, Z. Wang, J. Yang, S. Wen, D. Kong, H. Li,
K. Gai, Adaptive neural ranking framework: Toward
maximized business goal for cascade ranking systems,
arXiv preprint arXiv:2310.10462 (2023).

	1 Introduction
	2 Model Architecture
	2.1 Preliminary
	2.2 Multi-Head Gated Network
	2.3 Gated Cross-Attention Network
	2.3.1 Cross Attention Mechanism
	2.3.2 Gated Attention Unit

	2.4 Maximum Similarity Layer

	3 Pre-Ranking Model Optimization
	3.1 Full-Stage Sampling
	3.1.1 Impression Samples
	3.1.2 Candidate Samples
	3.1.3 Random Samples

	3.2 Label Aggregation
	3.2.1 Hard Labels
	3.2.2 Soft Labels

	3.3 Hybrid Loss Functions
	3.3.1 Distillation Loss
	3.3.2 Fine-Grained Ranking Loss
	3.3.3 Coarse-Grained Ranking Loss
	3.3.4 The Hybrid Ranking Loss

	4 Experiments
	4.1 Experiment Setup
	4.1.1 Datasets
	4.1.2 Evaluation Metrics
	4.1.3 Competing Models

	4.2 Model Performance Comparison (Q1)
	4.3 Model Study (Q2)
	4.3.1 Effect of Full-Stage Sampling
	4.3.2 Effect of Listwise Ranking Losses
	4.3.3 Effect of Distillation from Ranking Model

	5 Conclusion

