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Abstract	
The	paper	presents	a	novel	approach	to	detect	cracks	in	existing	reinforced	concrete	(RC)	bridges	
using	computer	vision	(CV)	techniques	as	smart	sensors	and	to	identify	existing	damages	from	
photos.	 This	 method	 involves	 training	 specialized	 convolutional	 neural	 networks	 (CNNs)	 to	
identify	cracks	 in	RC	components,	 focusing	on	automated	detection.	The	process	begins	with	
defining	a	detailed	dataset	of	labeled	crack	images	by	domain	experts	in	the	field.	Subsequently,	
CNNs	designed	for	crack	detection	are	trained	and	assessed.	The	effectiveness	of	the	method	is	
initially	evaluated	through	visual	comparisons,	with	more	specific	evaluations	planned	to	use	
defined	metrics	upon	completion	of	development.	This	 innovative	methodology	aims	to	drive	
digital	progress	and	artificial	intelligence	applications	in	advanced	visual	inspections,	ultimately	
safeguarding	the	structures	of	existing	bridge	stock.	
	
	
Keywords		
Existing	bridges,	Conservation,	Visual	inspections,	Crack	detection,	Structural	Health					
management,	Computer	vision,	Artificial	Intelligence1	

	
	

2	
1. Introduction 

In	recent	years,	bridge	collapses	[1]	have	highlighted	the	importance	of	the	safety	of	existing	
infrastructures,	especially	historic	ones.	This	concerns	not	only	ancient	masonry	bridges,	
but	also	reinforced	concrete	(RC)	bridges,	which	are	crucial	for	their	function	and	cultural	
value.	Events	such	as	earthquakes	have	shown	the	vulnerability	of	these	structures,	making	
careful	monitoring	necessary	to	avoid	economic	losses	and	protect	the	built	heritage	[2].		
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The	focus	has	been	on	developing	systematic	and	non-invasive	methods	for	monitoring	and	
maintaining	these	critical	infrastructures	[3],	[4].	
Existing	 RC	 bridges,	 which	 are	 often	 more	 than	 50	 years	 old,	 suffer	 from	 several	

problems	including	concrete	deterioration	and	steel	corrosion	[5].	These	issues	underline	
the	urgency	of	assessing	the	state	of	conservation	of	existing	bridges	as	a	fundamental	step	
for	their	efficient	management.	Two	critical	aspects	emerge:	
1.	Limitations	of	economic	and	temporal	resources.	
2.	Huge	number	of	structures	to	be	assessed.	
To	address	this	problem,	the	Ministry	of	Infrastructure	and	Transport	(MIT)	has	released	

the	new	Guidelines	for	the	management	of	bridges	safety	[6].	The	decree	provides	a	multi-
level	approach	aimed	at	defining	risk-based	priority	lists	to	direct	accurate	assessments	and	
interventions	 on	 the	most	 critical	 bridges,	 and	 then	 to	 drive	 available	 resources	 on	 the	
worst	cases.		
Level	1	of	 the	Guidelines	consists	of	visual	 inspection	activities	on	bridges,	necessary	 to	
identify	the	current	state	of	conservation	and	the	presence	of	any	degradation	phenomena.	
Traditional	 methods	 consist	 of	 inspecting	 bridges	 by	 trained	 inspectors,	 which	 identify	
defects	and	define	their	intensity	and	extension	using	numerical	coefficients.	
It	 is	 worth	 observing	 that	 this	 operation	 requires	 significant	 human	 and	 economic	

resources	 that	 infrastructure	 managers	 should	 face.	 Furthermore,	 traditional	 visual	
inspection	methods	are	time-consuming,	laborious	and	highly	dependent	on	the	inspectors'	
experience,	which	can	lead	to	inconsistent	assessments	[7].	Visual	inspection	of	a	bridge	
requires	access	to	all	parts	of	it,	such	as	the	piers	and	supports,	which	is	not	always	possible,	
as	shown	in	[8].	In	addition,	these	inspections	often	require	the	limitation	of	the	bridge	to	
traffic,	causing	issues	to	the	bridge	serviceability.	For	this	reason,	research	is	underway	to	
find	innovative	solutions	that	automate	inspections,	reducing	time	and	costs	and	improving	
the	safety	of	inspectors.		
One	 of	 the	 most	 alarming	 defects	 is	 represented	 by	 cracks	 [9],	 which	 have	 specific	

geometric	 characteristics	 such	 as	 width,	 length	 and	 orientation	 (e.g.,	 longitudinal	 or	
diagonal)	 [10].	With	 the	 aim	 of	 improving	 the	 current	 practice	 in	 cracks	detection,	 this	
paper	 explores	 the	possibility	 to	 automatically	detect	 cracks	on	bridge	 surface,	 through	
advanced	computer	vision	(CV)	technologies,	leveraging	machine	learning	(ML)	and	deep	
learning	(DL)	algorithms	for	defects	detection.	
The	paper	proposes	a	processing	pipeline	for	automatic	crack	detection	in	existing	RC	

bridges.	The	system	uses	a	pixel-based	method	to	generate	several	patches	from	a	limited	
number	of	 images	showing	cracks	on	RC	bridge	surfaces.	These	 images	are	then	used	 to	
train	a	convolutional	neural	network	(CNN)	to	identify	the	presence	of	cracks	in	the	images.		
The	document	has	been	organized	as	follows:	Section	2	reports	a	review	of	the	state-of-the-
art	 techniques	 of	 ML	 and	 DL	 for	 civil	 engineering;	 Section	 3	 presents	 the	 proposed	
framework,	detailing	the	steps	of	the	process;	Section	4	discusses	the	preliminary	findings	
and	finally	Section	5	provides	the	concluding	remarks	anticipating	future	developments.	



2. State-of-the-art on crack detection 

ML	has	been	applied	 in	 various	 fields	of	 civil	 and	structural	 engineering	 [11],	 including	
earthquake	 engineering	 [12],	 structural	 property	 identification	 and	 structural	 health	
monitoring	[13].	CV,	which	is	the	application	of	DL	in	the	field	of	image	analysis,	has	shown	
promising	results	in	assessing	the	state	of	conservation	of	structures.		
One	 interesting	application	 in	 this	 field	 is	 represented	by	VULMA	 [14],	 a	 tool	able	 to	

derive	a	simplified	vulnerability	index	using	images	of	existing	buildings.	This	tool	is	based	
on	the	use	of	Google	Street	View	to	automatically	collect	data,	subjected	to	the	labelling	for	
13	 different	 geometrical	 parameters.	 Subsequently,	 by	 training	 a	 cascade	 of	 CNNs	with	
transfer	 learning	 and	 fine-tuning	 techniques,	 the	 tool	 extracts	 an	 accurate	 simplified	
vulnerability	index	for	each	analyzed	image.		
Analogously,	 also	 for	 bridge	 analysis	 and	 the	 detection	 of	 structural	 defects	 such	 as	

cracks,	 several	 studies	 have	 proposed	 the	 use	 of	 CV	 applications.	 In	 bridge	 damage	
detection,	 CNNs	 have	 been	mostly	 used	 to	 automatically	 identify	defects	 through	 pixel-
based	analysis,	with	a	focus	on	crack	detection	and	damage	assessment.	For	example,	Zhang	
et	al.	[15]	presented	CrackNet,	a	CNN	that	achieved	a	remarkable	accuracy	score	of	88.86%	
on	a	3D	dataset	containing	2,000	images	of	cracks	present	on	asphalt	surfaces.	Similarly,	
Yang	et	al.	[16]	developed	a	fully	convolutional	network	for	crack	segmentation,	achieving	
an	outstanding	accuracy	of	97.96%	on	a	custom	dataset.	
Further	progress	was	made	in	crack	identification	in	concrete	structures.	Qiao	et	al.	[17]	

proposed	an	advanced	method	using	the	U-Net	CNN,	which	outperformed	standard	U-Net	
models	by	11.7%	in	terms	of	average	accuracy.	Inam	et	al.	[18]	successfully	used	the	U-Net	
model	for	crack	segmentation,	accurately	measuring	attributes	such	as	width,	length,	and	
area.	
Other	innovative	approaches	include	the	YOLO	algorithm,	as	proposed	by	Yu	et	al.	[19],	

to	identify	cracks	in	images.	After	training	and	testing	on	a	large	dataset	of	manually	labeled	
crack	images,	authors	used	the	K-Means	method	to	determine	the	optimal	size	of	regions	of	
interest	resulted	in	an	average	accuracy	of	84.37%.	
Finally,	recent	developments	in	crack	detection	adopted	the	integration	of	a	Bottleneck	

Transformer	into	an	improved	version	of	the	YOLOv5	network,	as	proposed	by	Yu	and	Zou	
[20].	This	approach	has	been	shown	to	accurately	capture	elongated	features	such	as	cracks,	
achieving	a	higher	accuracy	score	than	the	original	version	of	YOLOv5.	Similarly,	the	use	of	
semantic	segmentation	algorithms	such	as	DeepLabv3+,	as	presented	by	Fu	et	al.	[21],	has	
shown	improved	accuracy	in	crack	segmentation,	revealing	finer	details	and	improving	the	
overall	effectiveness	of	the	system.	
A	 final	 contribution	 in	 the	 field	 of	 using	 CV	 for	 automatic	defect	 identification	 in	RC	

bridges	 was	 presented	 by	 Cardellicchio	 et	 al.	 [22],	 which	 used	 CNNs	 and	 different	 DL	
techniques	 to	 classify	 various	 common	 defects	 in	 bridges,	 and	 interpreting	 the	 results	
through	AI	explainability	techniques,	such	as	Class	Activation	Maps	(CAMs).	Although	the	
initial	performances	were	not	promising,	 new	evaluation	metrics	were	proposed,	which	
proved	to	be	effective	in	a	real	case	study.	



3. CNN-based crack detection framework  

The	objective	of	a	crack	detection	problem	is	to	determine	if	a	specific	pixel	in	an	image	of	
an	RC	element	is	part	of	a	crack.	To	solve	this	problem,	a	new	framework	is	proposed	to	
detect	cracks	using	CNNs.	The	method	analyzes	small	portions	of	images	to	determine	the	
probability	that	the	central	pixel	of	each	portion	belongs	to	a	crack.		
This	method	represents	a	first	step	towards	the	automated	generation	of	large	amounts	

of	ground	truth	data	that	can	be	used	to	train	pixel-based	classifier	models.	The	goal	is	to	
simplify	the	training	process	and	significantly	increase	the	number	of	images	available	to	
train	such	models.	Figure	1	reports	the	flowchart	illustrating	the	proposed	framework.	
	

	

Figure	1:	Proposed	framework.	

3.1. Data preparation 

The	first	step	of	the	framework	is	to	create	the	dataset	with	annotated	cracks	to	train	the	
algorithm.	 This	 phase	 includes	 three	 main	 steps:	 proper	 image	 selection,	 manual	
annotation,	and	extraction	of	the	ground	truth	mask	for	each	image	(see	Figure	2).	The	three	
steps	are	following	described:	

1. Image	 selection:	 the	 first	 step	 consists	 of	 selecting	 high-resolution	 images	where	
cracks	 are	 clearly	 visible.	However,	 including	 images	with	occlusions	 can	 also	be	
beneficial,	as	they	represent	real-world	conditions	and	enhance	the	performance	of	
the	ML	model.	Vegetation,	shadow,	reflection	or	elements	that	look	like	cracks	(like	
grout	run-off)	are	some	of	the	occlusions	that	make	the	dataset	heterogeneous.	This	
variety	improves	the	generalization	and	robustness	of	the	proposed	CNN.	

2. Manual	 annotation:	 the	 second	 step	 consists	 of	 performing	manual	 annotation	of	
cracks.	To	ensure	accurate	and	high-quality	labels,	reducing	biases,	and	improving	
the	generalization	of	 the	model,	 images	need	to	be	annotated	by	hand	by	domain	
experts.	 Using	 the	 “Polyline”	 command	 of	 the	 Computer	 Vision	 Annotation	 Tool	
(CVAT)	 [23],	 the	 annotations	 are	 then	 exported	 to	 the	 Dataset	 Management	
Framework	 (Datumaro)	 format.	 In	 this	way,	 the	 exported	 file	 includes	 the	 image	
metadata	(file	name,	dimensions)	and	the	annotations	that	specify	the	object	type	
(class)	 and	 the	 array	 of	 point	 coordinates	 (x,y)	 of	 the	 polylines	 for	 a	 precise	
segmentation	of	the	cracks.	

3. Ground	truth	mask	extraction:	the	third	step	consists	of	generating	the	ground	truth	
image	with	the	annotated	cracks.	In	the	pixels	where	the	polyline	(crack)	is	present,	
the	value	255	is	assigned,	corresponding	to	white,	while	all	the	other	pixels	are	set	



to	0,	corresponding	to	black	(absence	of	cracks).	This	allows	to	obtain	a	black	image	
with	white	cracks,	providing	a	clear	definition	of	the	classes.	

At	this	point,	the	dataset	for	training	the	CNN	is	complete	and	ready	to	be	processed.	
	

	

Figure	2:	Data	preparation	workflow.	

3.2. Dataset Preprocessing 

To	train	the	CNN,	a	preprocessing	step	is	performed.	During	this	phase	small	patches	of	
the	original	image	are	extracted.	This	is	done	by	applying	a	sliding	window	that	runs	over	
the	 image,	 capturing	 square	 parts	 of	 a	 fixed	 size	 (defined	as	 “𝐹𝑤	 ×	𝐹ℎ”).	 Each	 patch	 is	
automatically	 labeled	 as	 "positive"	 if	 the	 center	 is	 associated	 with	 a	 crack,	 "negative"	
otherwise.		
It	is	worth	noting	that	splitting	images	into	patches	can	lead	to	an	unbalanced	dataset	

because	most	 of	 the	 pixels	 do	 not	 contain	 cracks.	 In	 particular,	 the	 number	 of	 patches	
containing	cracks	(positive	patches)	is	much	smaller	than	the	number	of	patches	without	
cracks	(negative	patches),	resulting	in	an	unbalanced	dataset.	To	address	this	imbalance,	
the	 dataset	 is	 balanced	 by	 downsampling	 the	 negative	 patches.	 This	 involves	 randomly	
selecting	a	number	of	negative	patches	equal	to	the	number	of	positive	patches,	resulting	in	
a	more	balanced	dataset.	
Finally,	the	use	of	patches	allows	the	application	of	data	augmentation	techniques,	such	

as	rotations	and	translations.	This	process	increases	data	diversity	and	makes	the	model	
more	robust	to	variations	in	the	input	data.	

3.3. CNN model 

This	study	proposes	a	CNN	architecture	similar	to	the	one	proposed	by	Cardellicchio	et	
al.	in	[24]	for	plant	root	segmentation.		
The	network	model	proposes	a	simple	but	efficient	architecture	with	three	stacked	CNN	

layers,	each	followed	by	a	max-pooling	and	ReLU	activation	operation.	In	this	architecture,	
the	 RGB	 image	 is	 processed	 through	 three	 different	 convolutional	 layers,	 each	 applying	
filters	to	explore	and	capture	visual	patterns	in	the	image.	In	addition,	there	is	a	gradual	
decrease	 in	 kernel	 density,	 which	 means	 that	 the	 filters	 used	 become	 smaller	 as	 one	
proceeds	 through	 the	 convolutional	 layers.	 After	 the	 third	 convolutional	 layer,	 a	 max-
pooling	layer	is	applied,	the	purpose	of	which	is	to	reduce	the	spatial	size	of	the	data	while	



retaining	the	most	significant	features	extracted	from	the	previous	layers.	These	features	
are	then	passed	to	a	fully	connected	layer,	where	each	neuron	is	connected	to	all	neurons	in	
the	 previous	 layer,	 facilitating	 the	 integration	 of	 the	 extracted	 information.	 Finally,	 the	
results	obtained	are	transferred	to	the	decision	layer,	which	is	responsible	for	making	the	
final	decisions,	such	as	recognizing	the	class	of	the	object	in	the	image	(presence	of	cracks,	
in	this	case).	

4. Preliminary Results  

The	proposed	framework	aims	to	predict	the	presence	of	cracks	on	concrete	surfaces,	
for	which	a	software	has	been	developed	in	Python	[25]	using	OpenCV	[26],	NumPy	[27],	
Scikit-learn	[28]	and	PyTorch	[29]	libraries.	For	this	purpose,	a	dataset	of	photos	related	to	
existing	RC	bridges	was	used,	with	450	annotated	images	specifically	used	for	the	training	
phase.	Images	of	bridges	are	particularly	well-suited	for	this	procedure	because,	compared	
to	other	RC	structures,	they	have	exposed	structural	surfaces	where	defects,	such	as	cracks,	
are	directly	visible.	
The	neural	network	was	subjected	only	 to	preliminary	 tests,	 in	order	 to	qualitatively	

evaluate	 its	 performance.	 In	 particular,	 the	 functionality	 of	 the	method	was	 verified	 by	
visually	 comparing	 the	 original	 image,	 which	 contains	 the	 crack,	 with	 the	 automatic	
segmentation	generated	by	the	model.	As	shown	in	Figure	3,	the	results	clearly	indicate	that	
the	trained	network	can	accurately	follow	the	path	of	the	crack	during	the	segmentation	
process.	
	
	



	
Figure	3:	Comparison	between	the	original	images	(a)	and	the	masks	containing	the	

cracks	segmented	by	the	trained	CNN.	
	
This	 result	 is	 significant	 because	 it	 demonstrates	 the	 model	 ability	 to	 identify	 and	

delineate	cracks	effectively,	which	is	crucial	for	applications	where	accurate	detection	of	
structural	 defects	 is	 required.	 The	 good	 visual	 match	 between	 the	 real	 crack	 and	 the	
automatic	 segmentation	 suggests	 that	 the	 neural	 network	 training	 algorithm	 has	 been	
properly	configured	and	that	the	model	has	the	potential	to	improve	with	additional	data	
and	 further	optimizations.	These	preliminary	 tests	provide	 a	promising	basis	 for	 future	
development	of	the	network,	indicating	that	this	could	be	the	right	track	to	achieve	a	robust	
and	reliable	system	for	automatic	crack	segmentation.		

5. Conclusions and further works  

This	paper	proposes	a	CV-based	methodology	to	automatically	detect	cracks	in	existing	
RC	bridges.	Three	main	steps	of	the	proposed	framework	were	identified:		

a) Definition	of	the	dataset	of	RC	bridge	surface	images	with	the	annotated	cracks.	
b) Extraction	of	small	patches	from	images	in	the	training	dataset.		



c) Implementation	of	three	stacked	layers	CNN	model	for	automatic	identification	
of	cracks.	

Then,	a	CNN	is	trained	to	identify	the	presence	of	cracks	in	the	images.	Thus,	from	each	
photo	provided	as	 input,	 the	proposed	 framework	 is	 able	 to	determine	 the	presence	or	
absence	of	cracks.	This	approach	is	particularly	practical	in	contexts	with	few	labeled	data,	
as	it	allows	the	generation	of	numerous	patches	from	a	limited	number	of	images,	thus	being	
effective	in	reliably	identifying	complex	cracks	by	reducing	the	computational	effort.	
The	evaluation	of	the	method	has	been	based	on	preliminary	visual	comparisons.	Once	

the	development	 is	 complete,	 a	 rigorous	 evaluation	 should	be	 carried	out	using	 specific	
evaluation	 metrics	 and	 quantitatively	 comparing	 this	 method	 with	 other	 existing	
approaches.	This	should	enable	quantification	of	the	model's	effectiveness	and	verification	
of	its	capability	to	accurately	and	reliably	detect	cracks.	
In	 conclusion,	 this	work	proposes	 a	 preliminary	promising	 framework	 for	 automatic	

crack	detection	in	reinforced	concrete	bridges,	paving	the	way	for	automated	and	intelligent	
inspection	 systems	 for	 health	 assessment	 of	 civil	 infrastructures.	 This	 innovative	
methodology	aims	to	enhance	digital	progress	and	utilize	artificial	intelligence	for	advanced	
visual	inspections,	which	are	key	to	the	development	of	automated	inspection	systems	for	
defect	 identification.	 This	 approach	 ultimately	 contributes	 to	 the	 preservation	 of	 the	
existing	bridge	structure	portfolio.	
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