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Abstract 
Petroglyphs of Bangudae Terrace in Daegok-ri, Ulju are the world's oldest whale hunting petroglyphs and are 
located on a cliff in Daegokcheon. It was designated as South Korea's National Treasure No. 285, and was 
listed as the 'Daegokcheon Petroglyph Group' on the 'Priority List', a list of UNESCO World Heritage 
candidates.  
When stone cultural assets such as the Petroglyphs of Bangudae Terrace are damaged, it is very difficult to 
restore them to their original state. Therefore, it is very important to predict risk factors in advance and 
regularly manage them for preservation.  
In this paper, we will use two Deep Learning models such as PiDiNet, and DexiNed to extract edges and 
legions. And then we will measure the contours and areas of the extracted areas. In terms of area, both ‘Cavity’ 
and ‘Joint separation’ showed the highest values in the first quarter. Additionally, looking at the change from 
the second quarter to the fall, the numbers appear to be stable in the case of ‘Cavity’.  
In the future, we will continue to conduct experiments to improve the accuracy of edge and area extraction 
and to present a reference point for whether displacement has occurred through additional experiments so that 
we can automatically determine that displacement has occurred- 
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1. 1 Introduction 

Petroglyphs	 of	 Bangudae	 Terrace	 in	 Daegok-ri,	 Ulju	 are	 the	 world's	 oldest	 whale	 hunting	
petroglyphs	 and	 are	 located	 on	 a	 cliff	 in	 Daegokcheon.	 It	 was	 designated	 as	 South	 Korea's	
National	Treasure	No.	285,	and	was	listed	as	the	'Daegokcheon	Petroglyph	Group'	on	the	'Priority	
List',	 a	 list	 of	 UNESCO	 World	 Heritage	 candidates	 selected	 by	 the	 Cultural	 Heritage	
Administration	 (CHA)	 of	 the	 South	 Korea	 [1].	 However,	 due	 to	 the	 Sayeon	 Dam	 located	
downstream	of	Daegokcheon,	the	water	volume	decreases	during	the	dry	season	when	rainfall	
is	low,	but	when	rainfall	increases,	the	water	level	rises	rapidly,	causing	the	petroglyphs	to	be	
submerged,	gradually	accelerating	damage	due	to	encroachment	or	erosion	[2].	
When	stone	cultural	assets	such	as	the	Petroglyphs	of	Bangudae	Terrace	are	damaged,	it	is	very	
difficult	to	restore	them	to	their	original	state	[3,	4].	Therefore,	it	is	very	important	to	predict	
risk	factors	in	advance	and	regularly	manage	them	for	preservation	[5].	However,	such	regular	
monitoring	 and	 management	 has	 many	 limitations	 in	 terms	 of	 resources,	 information	
processing,	 and	 expertise,	 therefore	 various	 studies	 are	 being	 conducted	 to	 automatically	
monitor	and	manage	cultural	assets	using	Deep	Learning	technology	[6,	7].		
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We	will	use	two	Deep	Learning	models,	including,	PiDiNet	[6],	and	DexiNed	[7],	as	Deep	Learning	
architectures	 to	 extract	 edges	 and	 legions	 [8].	 And	 then	 we	 will	 extract	 ‘Cavity’	 and	 ‘Joint	
separation’	using	them,	and	measure	the	contours	and	areas	of	the	extracted	areas	over	time	to	
monitor	trends	in	displacement.	
This	 paper	 is	 structured	 as	 follows.	 Chapter	 2	 will	 describe	 the	 data	 collection	 process	 for	
Petroglyphs	of	Bangudae	Terrace,	datasets	for	experiments,	and	labeling	methods.	Chapter	3	will	
describe	the	Deep	Learning	Neural	Network	used	for	edge	extraction.	Chapter	4	will	present	the	
preprocessing	process	and	results	of	displacement	measurement	and	analyzes	the	experimental	
results.	And	we	will	conclude	in	Chapter	5.	

2. Dataset and preprocessing 

The	 monitoring	 image	 is	 data	 taken	 from	 a	 telephoto	 camera	 located	 200m	 across	 from	
Petroglyphs	 of	 Bangudae	 Terrace,	 and	 is	 captured	 once	 a	 day	 at	 the	 same	 time.	 Since	 it	 is	
impossible	to	capture	the	entire	area	at	once,	the	horizontal	area	is	divided	into	12	areas	and	
then	filmed	by	rotating	the	camera	angle.	The	original	data	is	saved	as	a	JPEG	image,	the	standard	
is	4912	x	7360,	and	the	data	capacity	is	approximately	20	to	35	MB	per	image.	

2.1. Labeling Method 

Labeling	data	for	learning	has	the	same	file	name	as	the	original	data,	but	is	saved	as	PNG	with	a	
different	extension.	Additionally,	the	dimensions	of	4912	x	7360	horizontal	and	vertical	are	the	
same	 as	 those	 of	 the	 original	 data.	 This	 is	 tailored	 to	 an	 open	 source-based	 Deep	 Learning	
algorithm	for	learning.	The	learning	data	is	divided	into	‘Joint	separation’	areas,	‘Cavity’	areas,	
and	areas	containing	both	‘Joint	separation’	and	‘Cavity’	according	to	the	type	of	displacement	
(See	Figure	1).	And	depending	on	the	labeling	method,	it	is	divided	into	'Linestrip',	'Polygon',	and	
'Linestrip	&	Polygon'	(See	Figure	2).	
	

					 	 	 	 	 	 	 	 	 	 	 	 	
Figure	1:	Displacement	type																																															Figure	2:		Labeling	method 

2.1.1. ‘Cavity’ labeling 

The	cavity	is	located	at	the	bottom	of	the	Petroglyphs	of	Bangudae	Terrace,	and	is	an	empty	space	
naturally	created	by	water	flow	and	erosion	over	a	long	period	of	time.	We	used	a	labeling	tool	
called	Labelme	to	 label	 the	 ‘Cavity’	area	and	 labeled	 it	with	 ‘Linestrip’	or	 ‘Polygon’	 type	(See	
Figure	3).	In	the	case	of	‘Cavity’,	unlike	‘Joint	separation’,	they	have	a	simple	shape,	so	the	labeling	
method	of	‘Linestrip	&	Polygon’	was	not	applied.	
	



	 	 	
(a)	Original	data	 (b)	Labeling	by	‘Polygon’	 (c)	Labeling	by	‘Linestrip’	

Figure	3:	Labeling	of	‘Cavity’	area		

2.1.2. ‘Joint separation’ labeling 

The	 main	 rock	 surface	 of	 the	 Petroglyphs	 of	 Bangudae	 Terrace	 has	 various	 types	 of	 ‘Joint	
separation’	 developed,	 including	 vertical	 separation,	 diagonal	 separation,	 and	 complex	
separation.	We	used	a	labeling	tool	called	Labelme	to	label	the	‘Joint	separation’	area	and	labeled	
it	with	‘Linestrip’,	‘Polygon’,	and	‘Linestrip	&	Polygon’	(See	Figure	4).	
	

											 	 	 	 	
(a) Original	data	 (b)	Labeling	by	

‘Polygon’	
(c)	Labeling	by	
‘Linestrip’	

(d)	Labeling	by	
‘Polygon’&Linestrip’	

Figure	4:	Labeling	of	‘Joint	separation’	

2.1.3. ‘Cavity & ‘Joint separation’ labeling 

We	 labeled	 the	 ‘Cavity’	 and	 ‘Joint	 separation’	 areas	 in	 the	 same	manner	 as	described	 in	 the	
previous	section	to	experiment	with	images	containing	both	of	them	(See	Figure	5).		
	

	 	 	 	
(a) Original	data	 (b)	Labeling	by	

‘Polygon’	
(c)	Labeling	by	
‘Linestrip’	

(d)	Labeling	by	
‘Polygon’&Linestrip’	

Figure	5:	Labeling	of	‘Cavity’	&	‘Joint	separation’	

2.2. Data normalization 

To	normalize	 the	 learning	data,	we	 converted	 the	 labeling	data	 to	 a	binary	 image	with	pixel	
values	from	0	to	255	(See	Figure	6-(a)).	And	the	sizes	of	both	the	original	image	and	the	labeled	
image	were	normalized	to	1,280	x	720.	In	this	process,	a	comparative	experiment	was	conducted	
using	two	different	methods:	cropping	and	reducing	the	image	size	to	1/10	and	resizing	it	to	491	
x	736	(See	Figure	6-(b)).	



	 	
(a)	‘Crop’	 (b)	‘Resize’	

Figure	6:	Normalization	of	training	data	

3. Deep Learning Networks for Edge Detection 

In	this	paper,	we	utilize	an	Open	Source-based	pre-trained	Deep	Learning	model	based	on	CNN.	
After	 labeling	 the	 original	 image	 of	 the	 Petroglyphs	 of	 Bangudae	 Terrace,	 it	 goes	 through	
preprocessing	processes	such	as	black-and-white	processing	and	normalization,	and	uses	this	as	
learning	data	to	extract	edges.		
Based	on	this	result,	we	can	determine	the	detection	area	for	‘Cavity’	and	‘Joint	separation’,	and	
detect	 or	 predict	 whether	 displacement	 will	 occur	 by	 analyzing	 the	 change	 patterns	 of	
displacement	values	in	time	series.	Figure	7	shows	the	overall	research	and	development	flow	
chart	for	the	method	proposed	in	this	paper.	
	

Figure	7:	Research	and	development	flow	chart 
	
We	used	two	Artificial	Intelligence	Neural	Networks,	including	PiDiNet,	and	DexiNed,	to	detect	
the	displacement	of	the	Petroglyphs	of	Bangudae	Terrace	in	Daegok-ri,	Ulju,	South	Korea	and	
measure	the	amount	of	displacement	in	this	research.	PiDiNet	is	specialized	in	detecting	details	
in	images	[6]	while	DexiNed	is	optimized	for	boundary	edge	detection	[7].	

3.1. PiDiNet 

The	PiDiNet	model	uses	a	deep	and	wide	separable	Neural	Network	structure	for	fast	inference	
and	easy	learning	[9]	(see	Figure	8).	PiDiNet	do	not	use	any	normalization	layers	for	simplicity	
since	the	resolutions	of	the	training	images	are	not	uniform	and	replace	the	vanilla	convolution	
in	 the	 3	 ×	 3	 depth-wise	 convolutional	 layer	 in	 the	 residual	 blocks	 with	 Pixel	 Difference	
Convolution	(PDC)	[6].		
It	learns	rich	edge	representations	through	side	structures	and	effectively	generates	edge-maps	
[10].	 It	 generates	 a	 lot	 of	 multi-scale	 edge	 information	 through	 many	 Compact	 Dilation	
Convolution	 based	 Module	 (CDCM)	 and	 removes	 background	 noise	 using	 Compact	 Spatial	
Attention	 Module	 (CSAM).	 Then,	 it	 combines	 single	 edge	 maps	 with	 a	 sigmoid	 function	 to	
generate	the	final	edge	map.		



 
Figure	8:	Architecture	of	PiDiNet		

3.2. DexiNed 

The	 DexiNed	model	 consists	 of	 two	 subnetworks:	 Dexi	 and	 USNet	 (see	 Figure	 9).	 The	 Dexi	
network	consists	of	six	blocks	that	act	as	encoders,	and	each	block	consists	of	sub-blocks	with	
multiple	neural	network	layers	and	skip-connections	[11,	12].	
It	generates	edge	maps	combined	with	the	learned	filter	for	each	block,	and	finally	creates	one	
edge	map	by	combining	the	features	generated	from	each	edge	map.	USNet	passes	the	feature	
maps	from	the	Dexi	network	through	two	blocks.	In	the	first	block,	a	kernel	of	size	1	x	1	is	used	
to	process	it	through	the	ReLU	activation	function,	and	then	a	kernel	of	size		
s	×	s,	where	s	is	the	input	feature	map	size,	is	used	to	create	a	feature	map	of	the	same	size	as	the	
predicted	answer	value	[7].	

 
Figure	9:	Architecture	of	DexiNed	



4. Experiment results and analysis 

4.1. Preprocessing and evaluation measurement 

When	the	‘Joint	separation’	or	‘Cavity’	areas	of	the	edge-extracted	image	were	not	clear,	we	went	
through	the	process	of	increasing	the	contrast	to	make	the	areas	clearer.	Figure	10-(a)	shows	the	
result	of	adjusting	the	brightness	intensity	to	increase	the	contrast	of	the	image	contrast,	making	
the	‘Joint	separation’	area	clearer.		Figure	10-(b)	shows	the	results	of	finding	the	contour	line	for	
each	 joint	 area	 detected	 after	 preprocessing	 and	 calculating	 the	 area	 and	 length	 for	 the	
corresponding	contour	area.	

  

(a)	Contrast	enhancement	 (b)	Displacement	measurement	
Figure	10:	Contrast	enhancement	and	displacement	measurement	results 
	
The	red	dots	in	Figure	11-(a)	are	the	horizontal	and	vertical	endpoints	of	each	‘Joint	separation’	
area	detected	 in	 the	 resulting	 image.	Using	 these	points,	we	 can	 find	 the	maximum	distance	
between	the	horizontal	end	points	and	the	maximum	distance	between	the	vertical	end	points	
of	the	‘Joint	separation’	
Performance	evaluation	of	the	Deep	Learning	architecture	used	in	the	experiment	can	be	done	
through	accuracy	and	structural	similarity	index.	
Accuracy	is	obtained	as	a	ratio	of	how	well	the	‘Joint	separation’	area	of	the	ground	truth	image	
binarized	into	black	and	white	matches	the	‘Joint	separation’	area	extracted	from	the	image	to	
be	 evaluated	 (see	 Figure	 11-(b)).	 The	 structural	 similarity	 index	 (SSI)	 is	 obtained	 using	 the	
structural	 similarity,	 such	 as	 luminance,	 contrast,	 and	 pixel	 value,	 of	 the	 two	 images	 being	
compared.	
	

	 	
(a)	Maximum	horizontal	and	vertical	

distance	measurement	
(b)	Accuracy	and	Similarity	

Figure	11:	Maximum	distance	and	measurement	accuracy	



4.2. Measurement of displacement of ‘Joint separation’ 

When	looking	at	the	displacement	of	‘Joint	separation’	by	season	using	the	PiDiNet	model,	which	
shows	the	best	general	performance,	the	contour	area	showed	values	of	1,312,	1,606,	1,660,	and	
1,014	in	spring,	summer,	fall,	and	winter,	respectively.	and	the	contour	lengths	showed	values	of	
365,	381,	383,	and	342,	respectively	(see	Table	1).		
If	we	only	look	at	the	amount	of	change	in	the	area	value,	we	can	assume	that	there	has	been	a	
somewhat	significant	change,	but	if	we	look	at	the	change	in	the	length	value,	we	may	conclude	
that	 there	 is	no	 significant	 change.	Therefore,	 it	 is	 necessary	 to	 comprehensively	 review	 the	
amount	of	change	in	area	and	length	to	determine	whether	there	has	been	a	significant	change.	

Table	1	
Seasonal	‘Joint	separation’	displacement	measurement	results	

4.3. Measurement of displacement of ‘Cavity’ and analysis 

In	the	case	of	the	‘Cavity’,	the	contour	area	showed	values	of	13,827,	13,263,	14,392,	and	8,468	
in	spring,	summer,	fall,	and	winter,	respectively,	and	the	contour	length	showed	values	of	2,361,	
2,273,	2,886,	and	2,255,	respectively	(see	Table	2).	This	also	showed	similar	aspects	to	the	‘Joint	
separation’	analysis	results.	

Table	2	
Seasonal	‘Cavity’	displacement	measurement	results	

4.4. Integrated analysis of joint and cavity displacement measurements 

	
Figure	12:	Area	changes	in	‘Cavity’	and	‘Joint	separation’	according	to	temperature		

Result	 	 	 	 	
Date	 April	1,	2022	 June	26,	2022	 Sep.	22,	2022	 Dec.	15,	2022	
Season	 spring	 summer	 fall		 winter	
Area	 1,312	 1,606	 1,660	 1,014	

Contour	 365		 381	 383		 342	

Result	 	 	 	 	
Date	 April	1,	2022	 June	26,	2022	 Sep.	22,	2022	 Dec.	15,	2022	
Season	 spring	 summer	 fall		 winter	
Area	 13,827	 13,263	 14,392	 8,468	

Contour	 2,361	 2,273	 2,886	 2,255	



In	terms	of	area,	both	‘Cavity’	and	‘Joint	separation’	showed	the	highest	values	in	the	first	quarter	
(See	 Figure	 12).	 Additionally,	 looking	 at	 the	 change	 from	 the	 second	 quarter	 to	 the	 fall,	 the	
numbers	appear	to	be	stable	in	the	case	of	‘Cavity’.	In	the	case	of	‘Joint	separation’,	there	is	some	
change,	but	the	value	appears	to	be	stably	maintained	between	1,312	and	1,660.	
	
Changes	in	the	contour	path	showed	slightly	different	characteristics	in	cavities	and	joints,	as	
shown	in	Figure	13.	In	the	case	of	cavities,	the	contour	length	had	the	greatest	value	in	fall,	and	
in	 the	 case	of	 joints,	 the	difference	was	 large	between	 the	 first	 quarter	and	 spring,	 and	 then	
showed	stable	values	from	the	second	quarter	to	fall.	Comparatively,	the	deviation	between	area	
and	contour	length	was	larger	in	the	cavity,	and	the	contour	length	of	all	joint	joints	was	more	
stable	than	the	area.	

 
Figure	13:	Contour	changes	in	‘Cavity’	and	‘Joint	separation’	according	to	temperature		
	
According	to	the	comprehensive	survey	research	report	on	the	Daegokcheon	petroglyph	group	
[2],	 the	 ‘Cavity’	 and	 ‘Joint	 separation’	 of	 the	Petroglyphs	of	Bangudae	Terrace	undergo	 rapid	
displacement	during	the	spring	thaw,	but	after	April,	the	measured	values	showed	a	stable	value	
and	showed	a	slight	divergence	in	the	negative	direction.	It	is	assumed	that	the	gap	narrowed	
due	to	thermal	expansion	of	the	rock,	and	this	trend	is	consistent	with	the	results	of	this	research.	
In	 addition,	 it	 was	 reported	 that	 the	 correlation	 between	 temperature	 and	 displacement	 is	
inversely	 proportional,	 which	 is	 also	 found	 to	 show	 a	 similar	 pattern	 to	 the	 results	 of	 this	
research.	 However,	 in	 winter,	 area	 and	 contour	 length	 were	 directly	 proportional	 to	
temperature.	We	analyzed	that	in	the	case	of	year	of	2022,	unlike	2019	when	the	comprehensive	
research	report	was	written,	there	were	many	abnormal	climates,	and	the	light	and	dark	in	the	
photo	may	have	had	an	effect.	

5. Conclusion 

Petroglyphs	of	Bangudae	Terrace	in	Daegok-ri,	Ulju	are	designated	as	National	Treasure	No.	285	
of	the	Republic	of	Korea,	and	are	listed	as	the	'Daegokcheon	Petroglyph	Group'	in	the	'Priority	
List',	a	UNESCO	World	Heritage	candidate	list	selected	by	the	Cultural	Heritage	Administration	
(CHA).	However,	they	are	submerged	in	water	due	to	the	Sayeon	Dam	located	downstream	of	
Daegokcheon	Stream,	and	damage	from	erosion	is	gradually	accelerating.	
In	 this	 paper,	we	 presented	 a	method	 to	measure	 and	 automatically	monitor	 the	 amount	 of	
displacement	 of	 Petroglyphs	 of	 Bangudae	 Terrace	 using	 Deep	 Learning	 technology.	 Using	



PiDiNet	and	DexiNed	Deep	Learning	models,	we	were	able	to	automatically	extract	edges	and	
areas	and	detect	whether	displacement	occurred	by	measuring	changes	in	the	outline	length	and	
area	of	the	extracted	area.	
In	terms	of	area,	both	‘Cavity’	and	‘Joint	separation’	showed	the	highest	values	in	the	first	quarter.	
Additionally,	looking	at	the	change	from	the	second	quarter	to	the	fall,	the	numbers	appear	to	be	
stable	in	the	case	of	‘Cavity’.	In	the	case	of	‘Joint	separation’,	there	is	some	change,	but	the	value	
appears	to	be	stably	maintained.	In	terms	of	contour	length,	the	contour	length	of	‘Cavity’	had	
the	greatest	value	in	fall,	and	in	the	case	of	‘Joint	separation’,	the	difference	was	large	between	
the	first	quarter	and	spring,	and	then	showed	stable	values	from	the	second	quarter	to	fall.		
In	the	future,	we	will	continue	to	conduct	experiments	to	improve	the	accuracy	of	edge	and	area	
extraction	 and	 to	present	 a	 reference	 point	 for	whether	 displacement	 has	 occurred	 through	
additional	experiments	so	that	we	can	automatically	determine	that	displacement	has	occurred.	
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