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Abstract

Digital transformation in higher education resulted in a surge of information technology solutions suited for the needs of academia. The
massive use of digital technology in education leads to the production of vast amounts of education and learner-related data, enabling
advanced data analysis methods to explore and support the learning processes. When focusing on supporting at-risk students, the
dominant research focuses on predicting student success. Enabling prediction models to help at-risk students involves a reliable technical
solution and a transparent and explainable solution to build trust among the target learners and educators. Counterfactual explanations
(aka counterfactuals) from explainable machine learning tools promise to enable trustful explainable models, provided the features are
actionable and causal. However, determining the most suitable counterfactual generation method for student success prediction models
remains unexplored. This study evaluates standard counterfactual methods —Multi-Objective Counterfactual Explanations, Nearest
Instance Counterfactual Explanations, and What-If Counterfactual Explanations. The methods are evaluated using a black-box machine
learning model trained on the Open University Learning Analytics dataset, demonstrating their practical usefulness and suggesting
concrete steps for model prediction alteration. Our results indicate that the Nearest Instance Counterfactual Explanation method
based on the sparsity metric provides the best results regarding several quality criteria. Detailed statistical analysis finds statistically
significant differences between all methods except the difference between the Nearest Instance Counterfactual Explanation and the
Multi-Objective Counterfactual Explanation method, which suggests that the methods might be interchangeable in the context of the

given dataset.
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1. Introduction

The pace of digital transformation in higher education in-
creased over the decade. With this increase, the data gener-
ated by the learners, lecturers, and educational institutions
are multiplied. The data growth enabled the use of advanced
Data Science methods for the analysis within the field of
Learning Analytics [1]. With the extensive use of analytical
tools in all areas of human life concerns about security and
privacy emerged, resulting in new data protection regula-
tions (e.g., GDPR in EU) [2]. Consequently, trust in advanced
analytical tools and Machine Learning methods in higher
education has been reduced. To overcome the distrust, a
new approach called Trusted Learning Analytics emerged
[3]. The TLA approach emphasizes using ‘white box* Ma-
chine Learning (ML) methods and systems. Within this
focus, the Explainable Artificial Intelligence (XAI) methods
play a crucial role because they unlock the potential of the
‘black box‘ models for use within the TLA systems [3].

A typical task in Learning Analytics (LA) is the predictive
modelling of learner success, which enables identifying the
learners needing help with their studies [4]. The ML model
is trained with historical data collected within the same
educational context. This model is then used as a trigger
for educational intervention to support needy learners (i. e.
[5], [6] or [7].

In the ML modelling process, black box models, known
for their high predictive accuracy, are often preferred over
interpretable models [8, 9, 10]. The XAI tools are primar-
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ily categorized into global and local. At the global level,
they reveal which variables are important in the model. In
contrast, at the local level, they answer questions about
the contributions of variables in generating individual pre-
dictions [11, 12, 13]. However, commonly used global and
local tools, while sufficient for understanding the prediction
made for a particular observation, are insufficient for gen-
erating a counterfactual understanding of an undesirable
outcome. Therefore, counterfactual explanations have be-
come popular, defined as the necessary changes in the values
of variables to flip the model’s prediction into the intended
outcome [14]. Although student success prediction models
may indicate an unfavorable prediction for a student, they
do not generate output for reversing the student’s situation.
Using counterfactual explanations alongside such models is
highly promising for addressing this issue. Students, teach-
ers, and curriculum designers are guided toward actions or
measures to be taken through their generated explanations.

The use of counterfactual explanations in LA has been
explored in several studies [15, 16, 17]. Yet, the focus of
counterfactual explanations is in the frame of delivering ac-
tionable insights to the relevant stakeholders. None of the
studies have investigated the quality of the generated coun-
terfactual explanations. Facing numerous counterfactual
explanations due to the nature of optimization problems re-
quires selecting those explanations that fulfil specific criteria
beneficial for the stakeholder. Because of their background,
challenges, and needs differences, each learner requires per-
sonalized counterfactual [18]. Thus, several desired quality
measures that a counterfactual explanation must satisfy.

To explore how the typical ML black box model trained
for the predictive modelling of student success within the
frame of TLA, we employed the open-access dataset Open
University Learning Analytics Dataset (OULAD) [19] to
answer the following research questions:

RQ1: What is the most appropriate method for generating
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the counterfactual explanations?
RQ2: What is the most relevant quality measure of the meth-
ods for generating counterfactual explanations?

This study compares the qualities of different counterfac-
tual generation methods for students whose success predic-
tion model developed on the OULAD anticipates failing. It
is essential in two ways: (1) because the missing evaluation
of the counterfactual quality can lead to inefficient explana-
tions, and this may compromise their trustworthiness [20],
and (2) there is no uniformly better method for each domain
[21] and this is the first benchmark in the domain of LA.

The remainder of the paper introduces our approach for
analysis and selecting the most appropriate counterfactual
generation method followed by the results and their discus-
sion. Finally, the conclusions are presented.

2. Methods

2.1. Data

Dataset. We employed the OULAD dataset released by the
Open University, the largest distance learning institution in
the United Kingdom, to analyse counterfactual generating
methods. The typical courses at OU take approximately
nine months and consist of multiple assignments and a fi-
nal exam. The most crucial assignments are Tutor Marked
Assignments (TMAs), which represent milestones in the
course schedule. The dataset contains data about learn-
ers’ demographics, assessment results, and interaction with
Moodle-like Learning Management System (LMS). For the
analysis, we selected STEM course FFF and its presentation
2013J studied by 2283 students. The course contains five
TMAs in weeks 2, 5, 13, 18, and 24. The last TMA was used
as a target variable for model training. Learners can achieve
scores from 0 to 100; we set a threshold for passing to 40
points. The following groups of students were excluded
from the data set: actively withdrawn students (n = 675)
and students who did not submit all TMAs (n = 500). The
resulting dataset contains the data of 1108 students. It con-
sists of 14 predictors from which 6 of categorical variables
are encoded numerically. The online interactions of learn-
ers with the LMS (i.e., ‘n_clicks_xy* variables) have been
computed for the top five most common activity types in
the VLE, and they represent 95% of all student click-stream
data. Table 1 presents the details of selected variables.

2.2. Counterfactual Explanations

Let X = [x1,x, ..., xp] be a data matrix of n observations
from p variables, and y be the response vector. The goal is
to find f : X — ythat minimizes the expected value of the
loss function L in predictive modelling. A counterfactual
x’ € RP of an observation x € R? is calculated through an
optimization problem:

argminyereL[ f(x), y'] + d(x, x") (1)

where R? denotes the p-dimensional real space, L denotes
a loss function that penalizes deviation of the prediction
f(x’) from the interested outcome y’, and d, represents a
distance function between the observation and its counter-
factual. A counterfactual explanation can be briefly defined
as the necessary changes in one or more than one variable to
flip the model prediction. The distance function d controls
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Figure 1: An illustration of the counterfactual generation

the distance between the target observation and the coun-
terfactual. Figure 1 illustrates a counterfactual generation
example. The value of the variable X3 must be changed to
x3 to flip the model’s prediction y to y’. To illustrate this in
the context of the OULAD dataset: An at-risk student can
pass the course if the student increases assessment results or
the total number of clicks in the discussion forum before the
final exam.

Counterfactuals aim to minimize the distance between
the target observation and the counterfactual; however,
there are more properties for a counterfactual explanation
[22, 23]. Sparsity advocates for a minimal number of
variable alterations, thereby maintaining its simplicity.
Minimality focuses on the smallest possible changes in
variable values. Validity is maintained by minimizing the
disparity between the counterfactual instance, denoted
as x’, and the observation x while ensuring the model
output aligns with the desired label y’. Proximity denotes
the necessity of a slight divergence between the factual
and counterfactual features. Plausibility mandates that
counterfactual explanations remain realistic and adhere
closely to the underlying data distribution. There are more
than known 120 counterfactual generation methods; see
[24] for details. However, we considered three commonly
used counterfactual methods to make comparing the quality
of counterfactuals feasible.

What-if counterfactual explanations. What-if method
(Whatlf) finds the observations closest to the observation
x from the other observations in terms of Gower distance,
solving the following optimization problem [25]:

x" € argmin,exd(x, x). (2)

Multi-objective counterfactual explanations. The
multi-objective counterfactual explanations method (MOC)
objects to find counterfactuals corresponding to the valid-
ity, proximity, sparsity, and plausibility of solving a multi-
objective optimization problem [26]:

x € minyo,(f(x), "), 0,(x, x"), 0,(x, x"), 0p(x, X)]  (3)

where the objectives correspond to the desired properties,
validity, proximity, sparsity, plausibility, respectively.
Thus, it generates valid, proximal, sparse, and plausible
counterfactuals.

Nearest instance counterfactual explanations. The
nearest instance counterfactual explanations method (NICE)
finds the observations most similar to the observation in
terms of the heterogenous Euclidean overlap method [27].
Because of the NICE method, there are two options in the ob-
ject function based on the properties proximity, and sparsity,
which can be used in these two ways.

The Whatlf method generates valid, proximal, and plau-
sible counterfactuals. It is shown that the MOC method
generates more counterfactuals than other counterfactual
methods that are closer to the training data and require



Table 1

The details of the variables used to train our student success prediction model

Variable Description Class Values

gender student’s gender categorical ~ {0,1}

region the geographic region, where the student lived while taking the  categorical {1,2,..,13}
module presentation

education the highest student education level on entry to the module presenta-  categorical  {1,2,...,5}
tion

imd_band the IMD band of the place where the student lived during the module  categorical ~ {1,2,..., 10}
presentation

age_band a band of student’s age categorical  {1,2,3}

num_of _prev_attempts  the number of how many times the student has attempted this mod-  numeric {0,1,....4}
ule

credits the total number of credits for the modules the student is currently ~ numeric [60,360]
studying

disability indicates whether the student has declared a disability categorical ~ {0,1}

assessment_results the weighted sum of all previous assessments 2?:1 wa, where  numeric [24.25,72.75]
w, = (0.125,0.125,0.250,0.250) is the vector of weights T =
(0.125,0.125,0.25,0.25) is the vector of corresponding weights

n_clicks_disc_forum the number of clicks on discussion forum numeric [0,7670]

n_clicks_disc_hpage the number of clicks on discussion homepage numeric [4,3150]

n_clicks_assignments  the number of clicks on assignments numeric [0,7193]

n_clicks_quizzes the number of clicks on quizzes numeric [0,4857]

n_clicks_course_page the number of clicks on course page numeric [0,1196]

fewer feature changes [26]. Moreover, NICE generates the
proximity counterfactuals. However, there is no uniformly
better method in the datasets from different domains [21].
Thus, evaluating the quality of the generated counterfac-
tual is necessary, and we conduct the experiments in the
following section.

2.3. Experiment design

This study focuses on which method provides the highest
quality counterfactual explanations for the student success
prediction model trained using the OULAD dataset. Thus,
our approach is (1) selecting the most appropriate ML model,
(2) generating the counterfactuals, and (3) producing the
evaluation criteria. Modeling. We used forester [28] for
model selection and hyperparameter optimization. It is an
AutoML tool that adjusts the hyperparameters of tree-based
models using Bayesian optimization. The reason for us-
ing this tool instead of manual modelling is its ability to
make Bayesian optimization highly practical with its rele-
vant parameters. Additionally, the fact that tree-based mod-
els exhibit lower prediction performance than alternative
complex models in classifying tabular datasets [29] supports
the idea that using this tool does not limit model selection.
The number of optimization rounds bayes_iter is taken
as 5, and the number of trained models random_evals is
taken as 10 in the AutoML tool, respectively. forester re-
turns 28 models, including decision trees, random forests,
XGBoost, LightGBM, and their fine-tuned versions with
Bayesian optimization and random search in Table 2. Be-
cause the best-performing one is a fine-tuned random forest
model with random search —accuracy 0.900, AUC 0.771, and
F1 0.946— the counterfactuals are generated on it.
Counterfactual generation. We  used
counterfactuals package [21] to generate the counter-
factual explanations for the at-risk students using the
counterfactual generation methods Whatlf, proximity-
based NICE (NICE_pr), sparsity-based NICE (NICE_sp), and
MOC. The non-actionable variables that are impossible to
change are kept constant, such as gender, disability,

region, age_band, education, imd_band, num_of-
_prev_attempts, cummulative_assessment_results.
The MOC, NICE _pr, NICE_sp, and WhatIf methods generate
191, 39, 19, and 120 counterfactuals for the 12 failed students
predicted by the student success prediction model. It is
essential to compare the counterfactual generation methods
in terms of the number of generated counterfactuals because
it shows the diversity of alternative ways to flip the model
decision. The higher number of counterfactuals is better.
The materials for reproducing the experiments performed
and the dataset are accessible in the following anonymized
repository: https://github.com/mcavs/HEXED2024_paper.

3. Results and discussion

The quality metrics minimality, plausibility, proximity, spar-
sity, validity are calculated to evaluate the generated coun-
terfactuals by the methods Whatlf, NICE_pr, NICE_sp, and
MOC. It should be highlighted that the lower values are
better for each metric. Some user studies have shown that
the users prefer to use the counterfactuals, which perform
well on the criteria in [30, 31]. Thus, we compared their
qualities in two steps. First, we used the average values and
the standard deviations of these metrics given in Table 3,
and second, we compared the distribution of the results in
Figure 2.

It is seen that the quality of counterfactuals is quite good
in terms of proximity, plausibility, and validity. However,
the results are not promising for Whatlf in minimality and
sparsity. It is expected because it is known the WhatIf
method generates valid, proximal, and plausible counterfac-
tuals. Therefore, we do not recommend using this method
in this domain. On the other hand, counterfactuals gener-
ated by the NICE method that optimizes based on sparsity
showed better results in sparsity and other quality metrics
than the one that optimizes based on proximity. There are
differences between the NICE_pr and NICE_sp in terms of
minimality and sparsity. NICE_sp shows better performance
because it optimizes based on sparsity and the metrics spar-
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Table 2
The best score test table of forester

No  Name Engine Tuning Accuracy AUC  F1
1 ranger_RS_3 ranger random_search ~ 0.900 0.771  0.946
2 xgboost_RS_3 xgboost random_search ~ 0.900 0.801  0.946
3 lightgbm_RS_1 lightgbm random_search ~ 0.900 0.787  0.946
4 xgboost_bayes xgboost bayes_opt 0.900 0.753  0.946
5 decision_tree_bayes  decision_tree  bayes_opt 0.900 0.809  0.945
6 lightgbm_bayes lightgbm bayes_opt 0.900 0.745  0.945
7 ranger_model ranger basic 0.892 0.726  0.942
28 xghoost_RS_4 xgboost random_search  0.092 0.190  0.086
Table 3
The averages and standard deviations of the quality metrics for the methods
Metric MOC NICE_pr NICE_sp Whatlf
minimality  0.07£0.36 0.71+£094 0 7.83£1.26
plausibility ~ 0.06 £0.03  0.04 £0.02 0.04+0.02 0
proximity 0.02+0.03 0.02 +£0.01 0.02 + 0.01 0.10 +£ 0.03
sparsity 1.62+083 195+110 1 8.69 + 1.25
validity 0.07+£0.05 0 0 0

sity and minimality are quite related metrics. Sparsity refers
to the changes in the number of variables while minimal-
ity refers the the smallest possible changes in the variable
values. Therefore, using the NICE_sp method may be pre-
ferred to obtain better-quality explanations in this domain.
Although the MOC method shows results competing with
NICE_sp, it is poor on average.

Figure 2 shows the distribution of the quality metrics of
the counterfactuals, providing deeper insights. The WhatIf
method appears to produce explanations that are not min-
imal compared to the others. Although the NICE_pr was
better than the WhatIf method in this regard, it performed
worse than the other methods. When the methods are com-
pared in terms of plausibility, it is seen that the WhatIf
is better than the others, but the difference is low. While
the Whatlf method produced fewer proximity explanations,
other methods produced proximity explanations at a similar
level. A similar pattern against the WhatIf has also been
observed for sparsity. As expected, the NICE_sp method
shows the best performance in terms of sparsity. Surpris-
ingly, no method other than the MOC produced non-validity
explanations. This is the most problematic quality feature
for the MOC. The intriguing observation is the quality of
counterfactuals generated by the MOC is better than the
NICE_pr in terms of proximity, even though the NICE_pr
method aims to create the proximity counterfactuals.

In summary, the quality of the explanations produced
by the methods compete with each other in terms of both
average and distribution properties, and it is not possible
to say that the NICE_sp method produces the best quality
explanations based on visual outputs alone. Therefore, us-
ing the Kruskal-Wallis test and the pairwise Wilcoxon test,
we statistically test whether the explanations made by the
methods differ. A Kruskal-Wallis test was performed on the
quality metric values of the four methods (MOC, NICE_pr,
NICE_sp, and WhatIf). The differences between the rank to-
tals of the methods were significant, )((24) = 48.823, p < .001.
Post hoc comparisons were conducted using Wilcoxon Tests
with a Benjamini-Hochberg adjusted alpha level of .016. The
difference between the MOC and NICE_pr was no statisti-
cally significant (p = .115). The other comparisons were
significant. The results of the statistical tests support the

previous results.

4. Conclusions

In this study, we explored the possibilities of using XAI tools
in the frame of the TLA research. Our research focused on
deploying the counterfactual explanation methods on the
OULAD dataset containing the demographics, results, and
learner interactions with LMS to answer the following re-
search questions: 1) What is the most appropriate method
for generating the counterfactual explanations? Selection
of the most suitable method depends on the stakeholder
requirements and the educational context. However, se-
lecting the most appropriate methods is generally guided
by evaluating standard counterfactual properties: Sparsity,
Validity, Proximity, and Plausibility. The evaluation of our
approach on the OULAD dataset resulted in the finding that
explanations generated using the NICE method based on
sparsity are of higher quality in terms of all considered met-
rics than explanations generated through other methods
(Table 3). 2) What is the most relevant quality measure of
the methods for generating counterfactual explanations? As
mentioned before, selecting a method depends highly on the
educational setting. Yet, it might be defined by the relevant
stakeholder as the most essential criteria chosen from those
used as a standard evaluation measure. In addition, the
statistical hypothesis testing results indicate no statistically
significant difference between the Nearest Instance Counter-
factual Explanation and the Multi-Objective Counterfactual
Explanations method, which indicates the requirement for
the deep validation of generated counterfactual explana-
tions for the at-risk students to avoid misconceptions. This
suggests that the human-in-the-loop is needed even when
selecting the most optimal method in technical validation.
In addition, the counterfactuals provide a simple way to un-
derstand and uncover the issues about learner learning and
open the path to recommendations for possible educational
interventions. Finally, the study has some limitations. Due
to the focus of the study, data drift was not considered, and
only the most common counterfactual explanation methods
were used. Furthermore, we believe that conducting quali-
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Figure 2: The distributions of the quality metrics for the methods

tative studies and evaluating the explanations solely based
on quality metrics would provide further validation for the
findings.
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