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Abstract
A reliable knowledge structure is a prerequisite for building effective intelligent tutoring systems(ITS). To achieve an explainable and
trustworthy knowledge structure, we propose a specific method for constructing causal knowledge networks. This approach leverages
Bayesian networks as a foundation and incorporates causal relationship analysis to derive a causal network. Additionally, we introduce
a reliable knowledge-learning path recommendation technique based on this framework, improving teaching and learning quality while
maintaining transparency in the decision-making process.
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1. Introduction
The interconnected knowledge system, comprised of subject
knowledge components, forms the basis of Intelligent Tu-
toring Systems (ITS)[1]. In teaching activities, the process
of teaching and learning new knowledge usually follows
a sequential methodology based on predefined teaching
objectives[2]. As a result, the relationships and learning
sequences among knowledge components within the sys-
tem greatly influence learner outcomes. Additionally, these
relationships can be utilized for domain knowledge mod-
eling, learning recommendations, and even the construc-
tion of knowledge graphs[3, 4, 5]. Such graphs incorporate
emerged knowledge, target knowledge, and relationships
throughout the learning process, generating multiple learn-
ing paths and facilitating path recommendations[6].

Currently, most studies on knowledge component rela-
tionships are focused on correlations rather than causations.
Correlations lack true explainability, as exemplified by the
saying “Storks Deliver Babies”[7], which illustrates correla-
tion but not causation, thus failing to prove explainability.
In the field of deep learning, correlation discovery has been
extensively studied, yielding many excellent models. How-
ever, the demand for explainability in education renders
most deep learning “black box” models insufficient. Exam-
ples include graph structure learning based on Graph Neural
Networks[8] and unsupervised deep graph structure learn-
ing[9]. Traditional network structure learning methods,
such as Bayesian network structure learning, although ex-
plainable, often struggle to accurately identify causal struc-
tures. Therefore, finding the most accurate causal relation-
ships while maintaining explainability is key to completing
knowledge component network structure learning.

This research aims to explore and understand the rela-
tionships between knowledge components, focusing on the
nature and causes of these relationships. As previously
discussed, correlation does not necessarily imply causa-
tion. Thus, relationships identified solely from data cannot
be directly defined as causal, as this could be misleading.
The study will focus on discovering causal relationships
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between each pair of knowledge components[10, 11, 12]. As
Plato (1961) suggests, contemplating relationships should
involve seeking the causes of each thing: why it comes
into existence, why it ceases to exist, and why it exists in
the first place. The study of causality spans various disci-
plines, all focused on addressing the fundamental question
of “Why?”[13]

Therefore, it is essential to investigate an explainable and
trustworthy knowledge relationship structure to answer
“Why” and provide a method of “How” to utilize this struc-
ture. This model aims to enhance transparency in knowl-
edge teaching and improve overall educational quality.

In this paper, we introduce the concept of a causal knowl-
edge network and address some potential challenges. We
begin by illustrating the construction of a causal knowledge
network and then present a method for leveraging this struc-
ture for learning path recommendations, ultimately aiming
to improve teaching quality[14, 15]. Finally, we discuss the
potential limitations and challenges associated with this
approach.

2. Related works
Research on the relationships between knowledge compo-
nents has predominantly focused on identifying prerequisite
relationships, which are crucial for delineating the direc-
tional connections between concepts [16]. Various data-
driven approaches have been explored, including the de-
velopment of preliminary tests and manual associations
[17, 18]. However, these strategies have shown limited ef-
fectiveness when dealing with large datasets or complex
networks. While methods based on information theory and
topic modeling offer better explainability, they require ex-
tensive manual intervention [19]. The rise of deep learning
has advanced the application of semantic analysis in iden-
tifying prerequisite relationships, particularly in contexts
like Wikipedia and MOOCs, though challenges in scalability
and explainability remain [20, 21].

Although these studies have successfully identified pre-
requisite relationships among knowledge components and
considered them as a specific type of causal relationship to
optimize teaching or learning sequences, uncovering latent
causal relationships from student test data is more critical
for adaptive learning systems. This is because learning out-
come data can more accurately reflect students’ mastery of
content, aligning better with the essence of personalized
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Figure 1: Experiment design and data representation: This figure demonstrates the use of Bayesian Knowledge Networks to
investigate causal relationships among knowledge components through targeted interventions and counterfactual experi-
ments. The process involves recommending new strong and weak ties, representing the data, and conducting counterfactual
experiments to validate the potential causal structures.

learning [22]. Causal relationships, including prerequisite
ones, more authentically represent the connections between
elements [23]. Therefore, there is a need for a causality-
based discovery approach to extract the causal relationships
between knowledge components from student test data.

3. Causal network of knowledge
components

To capture the causal relationships among learning con-
cepts, we begin by establishing a foundational knowledge
network using available data. Bayesian networks—prob-
abilistic graphical models represented through Directed
Acyclic Graphs (DAGs) and Conditional Probability Tables
(CPTs)—are used to model the relationships between vari-
ables, making them ideal for constructing knowledge net-
work structures due to their directed and probabilistic na-
ture[24]. When calculating the Bayesian network structure,
we use the Bayesian Information Criterion (BIC) [25] as the
scoring function. Since we will later update the network
with causal effects, any function can initially be selected.
So, to compute the structure of a Bayesian Network (BN)
using the BIC score, we start by defining the BIC score for
a given Bayesian Network structure 𝐺 with parameter set 𝜃
and dataset 𝐷. The BIC score is given by:

BIC(𝐺, 𝜃, 𝐷) = log 𝑃(𝐷 ∣ 𝐺, 𝜃) −
|𝜃|
2
log𝑁 (1)

where 𝑃(𝐷 ∣ 𝐺, 𝜃) is the likelihood of the data given the
network structure and parameters, |𝜃 | is the number of pa-
rameters in the model, and 𝑁 is the number of data points.

Next, we compute the likelihood for each node 𝑋𝑖 in the
network with parents Pa(𝑋𝑖):

𝑃(𝐷 ∣ 𝐺, 𝜃) =
𝑛

∏
𝑖=1

𝑞𝑖
∏
𝑗=1

𝑟𝑖
∏
𝑘=1

(𝑃(𝑋𝑖 = 𝑘 ∣ Pa(𝑋𝑖) = 𝑗, 𝜃))𝑁𝑖𝑗𝑘 (2)

where 𝑛 is the number of nodes, 𝑞𝑖 is the number of parent
configurations for node 𝑋𝑖, 𝑟𝑖 is the number of states of node
𝑋𝑖, and 𝑁𝑖𝑗𝑘 is the number of instances in the data where
𝑋𝑖 = 𝑘 and Pa(𝑋𝑖) = 𝑗.

The log-likelihood component of the BIC score is com-
puted as follows:

log 𝑃(𝐷 ∣ 𝐺, 𝜃)

=
𝑛
∑
𝑖=1

𝑞𝑖
∑
𝑗=1

𝑟𝑖
∑
𝑘=1

𝑁𝑖𝑗𝑘 log 𝑃(𝑋𝑖 = 𝑘 ∣ Pa(𝑋𝑖) = 𝑗, 𝜃)
(3)

To determine the number of parameters |𝜃 | in the network,
we use the formula:

|𝜃 | =
𝑛
∑
𝑖=1

𝑞𝑖(𝑟𝑖 − 1) (4)

Finally, we substitute the log-likelihood and the number
of parameters into the BIC formula to calculate the BIC
score:



BIC(𝐺, 𝜃, 𝐷) = (
𝑛
∑
𝑖=1

𝑞𝑖
∑
𝑗=1

𝑟𝑖
∑
𝑘=1

𝑁𝑖𝑗𝑘 log 𝑃(𝑋𝑖 = 𝑘 ∣ Pa(𝑋𝑖) = 𝑗))

− 1
2
(

𝑛
∑
𝑖=1

(𝑟𝑖 − 1)𝑞𝑖) log𝑁

(5)
Then we can use a structure search algorithm to learn

the network structure that can maximize the BIC function
value. The algorithm structure is shown in Algorithm 1.
The obtained network structure will be used as the initial
structure for learning the causal network.

Algorithm 1 Structure Search Algorithm
1: Input: Data set 𝐷, initial Bayesian Network structure

𝐺0
2: Output: Optimal Bayesian Network structure 𝐺∗

3: Initialize 𝐺 ← 𝐺0
4: Compute BIC(𝐺)
5: repeat
6: improvement ← false
7: 𝐺best ← 𝐺
8: for each possible modification 𝐺′ of 𝐺 do
9: Compute BIC(𝐺′)

10: if BIC(𝐺′) > BIC(𝐺best) then
11: 𝐺best ← 𝐺′

12: improvement ← true
13: end if
14: end for
15: if improvement then
16: 𝐺 ← 𝐺best
17: end if
18: until improvement is false
19: return 𝐺

Following the initial network construction, we delve into
the task of uncovering the causal relationships between
the knowledge components. This involves conducting in-
terventions and counterfactual experiments on the basic
network structure. We design intervention experiments
to manipulate specific knowledge components using do-
calculus, developed by Judea Pearl, enabling observation of
changes in the probabilistic dependencies among the com-
ponents. By doing so, we can assess whether the existing
connections between concepts are robust and should be re-
tained as strong links or if they should be weakened due to
the intervention. These experiments are outlined in Fig. 1,
which provides a visual representation of the fundamental
operations involved.

Once we have intervened and observed the effects, we
introduce new data to reevaluate the strength of the connec-
tions that have been formed or adjusted. This step is crucial
for reinforcing our understanding of the causal relationships
and for refining the network structure to better represent
the true causal mechanisms at play.

In addition to intervention experiments, we also conduct
counterfactual experiments, which involve hypothesizing al-
ternative scenarios and examining how the network would
respond under those conditions. During these experiments,
we modify the node associations within the network to
simulate the hypothesized conditions and then apply do-
calculus[26] to the altered network to explore the potential
outcomes. This process allows us to test the robustness of

the causal relationships under different hypothetical con-
texts.

The specific intervention process is as follows: first, we
use the initially obtained network structure 𝐺0 to represent
the assumed causal relationships between variables. Let the
variables in the network be 𝑋1, 𝑋2, ..., 𝑋𝑛, and their causal
relationships are represented by a directed acyclic graph
(DAG) as 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of nodes and 𝐸 is
the set of directed edges.

To calculate the causal effect of node 𝑋𝑖 on node 𝑋𝑗, we
can use Pearl’s back-door criterion [27]. The back-door
criterion tells us that to calculate the causal effect of 𝑋𝑖 on
𝑋𝑗, we need to control for all non-descendant nodes of 𝑋𝑖
and then intervene on 𝑋𝑖. Therefore, we need to find the set
𝑍 of all non-descendant nodes belonging to 𝑋𝑖, and for each
node 𝑍𝑘 in 𝑍, calculate 𝑃(𝑍𝑘|𝑝𝑎(𝑍𝑘)), where 𝑝𝑎(𝑍𝑘) is the
parent node of 𝑍𝑘. Then, intervene on 𝑋𝑖 by setting it to a
specific value 𝑥′𝑖 , and calculate 𝑃(𝑋𝑗|𝑑𝑜(𝑋𝑖 = 𝑥′𝑖 ), 𝑍). Finally,
calculate the causal effect of 𝑋𝑖 on 𝑋𝑗, i.e., 𝑃(𝑋𝑗|𝑑𝑜(𝑋𝑖 = 𝑥′𝑖 )).

By combining insights from both intervention and coun-
terfactual experiments, we construct a comprehensive
causal network of knowledge components. This network
not only reflects the probabilistic relationships between con-
cepts but also provides a deeper understanding of the causal
mechanisms that drive knowledge acquisition and mastery.
The resulting causal network serves as a valuable tool for
educators and learners alike, offering a detailed map of the
interconnectedness of knowledge and a basis for targeted
interventions to enhance learning outcomes.

4. Knowledge learning path
planning

The causal network serves not merely as a static representa-
tion of knowledge interconnectivity but as a dynamic tool
for educational planning. Each node within the network,
fortified by the robustness of its causal linkages, becomes a
critical checkpoint in an individual student’s learning tra-
jectory.

To effectively assess and support learning, it is essential
to first construct a comprehensive causal network. This
network takes the form of a conceptual map that connects
all relevant concepts and topics involved in the learning
objectives through their causal relationships. Following
this, an initial assessment of students’ understanding is con-
ducted through methods such as quizzes, interviews, or
observations to determine their grasp of each knowledge
component within the network. The assessment results
will help us identify the knowledge components that stu-
dents have not fully mastered, which are the gaps in their
understanding.

By analyzing the interconnections of these unmastered
knowledge components within the causal network, we can
trace the origins of the knowledge gaps and establish a path
leading to the root nodes—the fundamental causes of the
students’ difficulties. Throughout this process, we highlight
all problematic nodes, which are points where students
are likely to encounter challenges and require additional
support. After identifying the root nodes, we recommend
that learners concentrate on strengthening their grasp of
these critical concepts through additional practice, review
sessions, or targeted instruction.

Ultimately, we provide learners with a detailed guide that
serves as a roadmap for their systematic journey through



Figure 2: Knowledge component learning path recommendation based on causal networks: The figure demonstrates the
steps of addressing a learning problem in a knowledge network: identifying unmastered components, tracing the causal
relationships of the issue, and planning an effective learning path to achieve mastery.

the causal network, ensuring they address each concept log-
ically and organized. This approach fills in knowledge gaps
and builds a solid foundation of interconnected knowledge.

To illustrate this process more clearly, we refer to Fig. 2
in the text, which provides a visual representation of the
causal network and the traced path. At the same time, to
quickly find the path for students to solve the superficial
problem step by step from the root problem, we build upon
the network structure obtained in the previous section. By
learning path tracing and based on the current mastery
status of each knowledge component node, we identify the
root problem node and then proceed to find the shortest
path to the superficial problem node, obtaining the shortest
learning path to facilitate student learning. The specific
algorithmic process is illustrated in Algorithm 2.

Algorithm 2 Find Shortest Path in a Directed Graph
Require: Directed graph 𝐺, source node 𝑠, target node 𝑡
Ensure: Shortest path from 𝑠 to 𝑡 in 𝐺
1: Initialize an empty queue 𝑄
2: Enqueue 𝑠 into 𝑄
3: Initialize a dictionary 𝑑𝑖𝑠𝑡 with all nodes in 𝐺 as keys,

set 𝑑𝑖𝑠𝑡[𝑠] = 0 and 𝑑𝑖𝑠𝑡[𝑣] = ∞ for all other nodes 𝑣
4: while 𝑄 is not empty do
5: Dequeue a node 𝑢 from 𝑄
6: for each neighbor 𝑣 of 𝑢 in 𝐺 do
7: Calculate 𝑎𝑙𝑡 = 𝑑𝑖𝑠𝑡[𝑢] +weight(𝑢, 𝑣)
8: if 𝑎𝑙𝑡 < 𝑑𝑖𝑠𝑡[𝑣] then
9: 𝑑𝑖𝑠𝑡[𝑣] = 𝑎𝑙𝑡

10: Enqueue 𝑣 into 𝑄
11: end if
12: end for
13: end while
14: return 𝑑𝑖𝑠𝑡[𝑡]

5. Experiment

5.1. Data preparation
Before learning the causal network of knowledge compo-
nents, it is necessary to collect data on students’ actual

learning processes. This type of data is similar to datasets
like Assistment1 and Junyi2. In our current experiments,
we have collected data on the learning processes and out-
comes of mathematics courses from 77 classes in 19 elemen-
tary schools and 7 middle schools across Shanghai, Sichuan,
Jiangsu, and Beijing, China. These classes cover four grades,
from fourth to seventh. Using common cognitive diagnostic
methods such as knowledge tracing and the DINA model,
we obtained students’ mastery states of knowledge compo-
nents. These mastery states, represented as time series data,
serve as the foundation for constructing the causal knowl-
edge network proposed in this study. The experimental data
were obtained from our self-designed adaptive learning plat-
form3, which served as the data foundation for constructing
the network.

Following is an example from a small-scale experiment.
For larger-scale experiments and comparisons with other
methods, please look forward to our future research publi-
cations.

5.2. Experimental Example
We demonstrate the construction process of a causal knowl-
edge network through a small-scale experiment, with the
algorithm workflow shown in Algorithm 3.

The Algorithm 3 begins with a learning performance
dataset as input, which is then transformed into a knowl-
edge mastery dataset containing student IDs and corre-
sponding levels of knowledge proficiency. Subsequently,
an initial knowledge network 𝐷 is constructed through cor-
relation learning, and the following steps are iteratively
executed while the student scores remain stable: the cur-
rent knowledge network structure’s score is calculated using
the Bayesian Information Criterion (BIC), followed by the
optimization of the network structure throughHill Climbing
search to identify a better network structure D(new), which
then updates𝐷 toD(new). Once the optimization is complete,
the algorithm returns a knowledge network D(Bayesian) that
has been updated through Bayesian inference, and proceeds

1https://sites.google.com/site/assistmentsdata/datasets
2https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
3http://web.ai-learning.cn/



Algorithm 3 Constructing Causal Knowledge Networks

Input: Learning performance dataset = {id,s(𝑖𝑑)}𝑠𝑡𝑢𝑑𝑒𝑛𝑡_𝑖𝑑𝑖𝑑=1
Transform: Learning performance dataset ⇒ Knowledge
mastery dataset = {id,k(𝑖𝑑)}𝑠𝑡𝑢𝑑𝑒𝑛𝑡_𝑖𝑑𝑖𝑑=1
Initial knowledge network through correlation learning:
D
while 𝑠𝑐𝑜𝑟𝑒 is stable

D(new), score = Algorithm 1({id,k(𝑖𝑑)}𝑠𝑡𝑢𝑑𝑒𝑛𝑡_𝑖𝑑𝑖𝑑=1 , D)
D = D(new)

return D(Bayesian)

for 𝑒𝑑𝑔𝑒 in D(Bayesian)

Causality = Refute({id,k(𝑖𝑑)}𝑠𝑡𝑢𝑑𝑒𝑛𝑡_𝑖𝑑𝑖𝑑=1 , 𝑒𝑑𝑔𝑒)
Output D(Causality)

to traverse each edge of the network, using the Refute func-
tion to verify the causality of each edge. Ultimately, the
algorithm outputs a knowledge network D(Causality) that
has undergone causality analysis.

In the Algorithm 3, the Refute method is used to validate
the reliability of the inferred causal relationships through
interventions, which is the causal effect calculation method
discussed previously. In this process, counterfactual data
can be generated through sampling, perturbation, or other
methods as needed for the experiment to verify the causal
relationships. In the experimental example of this study,
we calculate causal effects using only intervention methods
and determine the strength of the causal relationships to
decide whether to add or remove a particular edge. And
BIC_score comes from [28] and the hill-climbing algorithm
from [29].

As shown in Fig. 3, through the refutation experiment on
edge (a), we found weak causal effect and low credibility of
the correlation relationship, and therefore cannot admit the
existence of causal relationships between nodes. In contrast,
the refutation experiment on edge (b) revealed a causal effect
of about 0.77 and over 95% credibility, indicating a Strong
tie between the nodes. The modified network structure
was then generated accordingly. Certainly, we can continue
to explore the causal relationships between more nodes
and update the network, in order to obtain the final causal
network.

6. Discussion
A well-structured knowledge network can effectively sup-
port the development of ITS, enhancing personalization and
improving educational quality. However, constructing such
knowledge structures has always been a topic of interest,
and the relationships between knowledge components can
be challenging to elucidate. Most studies define knowledge
structures through associative relationships, which do not
necessarily represent the true causal links between knowl-
edge components.

During the construction of the causal network, we per-
form intervention and counterfactual experiments to dis-
cover and validate causal relationships. In the intervention
process, we establish two new causal connections: Strong
and Weak tie. Incorporating causal connection strength
allows us to assess the nonlinear impact and differences
in interaction strength[30]. Counterfactual experiments
further reinforce causal relationship judgments. These ex-
periments construct a “virtual” world to explore alternative

potential outcomes, which helps make causal judgments.
Constructing causal knowledge component networks pro-

vides foundational insights for knowledge tracing (KT),
learning resource recommendations, learning path planning,
and learning outcome assessment. Specifically, utilizing
feature causality can effectively select data features that en-
hance the performance of KT, while the causal relationships
among these features can explain why a particular feature
improves KT prediction outcomes[31]. Moreover, discov-
ering causal relationships among behaviors can elucidate
which behaviors are causally linked to learning outcomes,
providing teachers with actionable insights for instructional
support[32]. Therefore, advancing research on knowledge
component causal graphs can offer a foundational knowl-
edge structure for building ITS. This structure can represent
the relationships among knowledge components, aiding in
the planning of students’ learning sequences and the recom-
mendation of practice resources based on the root causes
of their issues. Additionally, feedback on the reliability and
trustworthiness of the network structure from both teachers
and students can be integrated with technical updates to
continuously refine and enhance the knowledge component
network, making it more accurate and explainable.

However, there are still some limitations and challenges;
for example, the structural learning of large-scale Bayesian
networks remains a challenging scientific problem, espe-
cially when analyzing causal relationships on this basis,
which further increases the difficulty. The main challenges
are high computational complexity, insufficient data, and un-
certainty features. For instance, insufficient data in existing
educational datasets, the largest online education dataset,
EdNet2, contains over 39,000 knowledge components, with
approximately 15,000 in mathematics and 8,000 in science.
On average, each knowledge component has only 341 data
entries. This amount of data per knowledge component is
insufficient for generating large-scale networks.

7. Conclusion
This paper focuses on constructing a causal knowledge net-
work to investigate the causal relationships among learn-
ing concepts to enhance teaching quality and effectiveness.
Using Bayesian networks and causal inference methods, a
knowledge network based on learning performance data has
been established. The relationships between nodes in the
network have been validated and refined through interven-
tion and counterfactual experiments. This work provides
educators and learners with a comprehensive causal knowl-
edge network that reflects the probabilistic relationships
between concepts and provides insights into the causal
mechanisms driving knowledge acquisition and mastery.
Overall, this research offers a significant tool and approach
for the education domain to promote explainability in educa-
tional technology and to provide personalized and effective
learning support for learners.
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Figure 3: Construction of knowledge component causal network
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