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Abstract
The challenge of creating interpretable models has been taken up by two main research communities: ML researchers primarily
focused on lower-level explainability methods that suit the needs of engineers, and HCI researchers who have more heavily emphasized
user-centered approaches often based on participatory design methods. This paper reviews how these communities have evaluated
interpretability, identifying overlaps and semantic misalignments. We propose moving towards a unified framework of evaluation criteria
and lay the groundwork for such a framework by articulating the relationships between existing criteria. We argue that explanations
serve as mediators between models and stakeholders, whether for intrinsically interpretable models or opaque black-box models
analyzed via post-hoc techniques. We further argue that useful explanations require both faithfulness and intelligibility. Explanation
plausibility is a prerequisite for intelligibility, while stability is a prerequisite for explanation faithfulness. We illustrate these criteria,
as well as specific evaluation methods, using examples from an ongoing study of an interpretable neural network for predicting a
particular learner behavior.
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1. Introduction
The growing awareness in educational data mining (EDM)
of a need for more explainable AI (XAI) has led to the increas-
ing discussion and adoption of interpretability methods [1].
Such methods are continually being developed and refined
within research communities such as machine learning (ML)
and human-computer interaction (HCI). However, the criti-
cal task of evaluating the efficacy of the explanations created
has not been sufficiently explored. Tellingly, a systematic re-
view of explainable student performance prediction models
did not find a single study that evaluated the explanations
it produced [2]. Furthermore, a standardized framework for
conducting such evaluations is still lacking [3].

In this position paper, we aim to foster discussion to be-
gin addressing this gap by proposing the goal of a unified
framework for evaluating explanations. We review con-
cepts critical to the goals of XAI, including the intended
contexts of an explanation, the multiple research milieux
of explainability and intelligibility, and proposed evalua-
tion methods. We argue that the evaluation of explanations
should be based on a set of criteria that must be met for an
explanation to be useful and propose a hierarchy of crite-
ria that brings together some previously described in the
literature. Finally, we illustrate these criteria using an ongo-
ing study of an interpretable neural network for predicting
a particular learner behavior. We conclude by discussing
the implications of this initial perspective on an evaluation
framework for future research in XAI.

2. What to evaluate?
The explainability literature has often highlighted the dif-
ference between intrinsically interpretable models that are
designed with transparency in mind and opaque black-box
models that require post-hoc explainability methods [4].
At face value, models and explanations seem like two very
different objects to evaluate. However, even intrinsically
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interpretable models—such as linear regression models or
decision trees—require some form of explanation to serve as
mediator between the model’s internal state and a user’s un-
derstanding of it. This is true in cases of local explainability—
eg. the importance of a specific feature in a decision tree for
a particular prediction—but also when global explainability
is the goal—eg. the coefficients of a linear model, along with
their meanings and interactions, which provide an overall
picture of the model’s behavior. From this perspective, the
evaluation of explainability can always be treated as the
evaluation of explanations.

3. Intended context
When evaluating any explanation, one critical aspect to
be considered is the context in which the explanation is
to be used. An explanation that is useful for researchers
carefully analyzing and modifying a model’s behavior in
a controlled environment may not be useful for a teacher
trying to understand in real time why a student is struggling
with a particular concept. The intended users for which
the explanation has been designed must clearly dictate the
criteria used to evaluate it. This is often what is meant by the
term “human-centered”, which is used in a commendable
effort to distance research from simplistic technocentric
approaches, instead emphasizing the importance of people.
But identifying “humans” as the target of our XAI efforts is
still far too broad.

When considering the requirements that an explanation
should aim to fulfill, it is useful to examine both the knowl-
edge and objectives of the intended users [5]. Teachers, for ex-
ample, may wish to help specific students with the insights
gained from an explanation. Their knowledge includes their
familiarity with their students and their knowledge of the
subject matter. Students, on the other hand, may wish to
know why a learning platform is making a specific sugges-
tion in order to gauge its effectiveness. Their knowledge
might include their level of familiarity with self-regulation
strategies, their current understanding of the subject, and
clues from what their peers are doing. Researchers may
wish instead to use an explanation to better understand
how to improve the model, which can involve reducing bias,
improving performance, or identifying and fixing bugs that
may be present [6].
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Figure 1: Evaluation criteria framework. Edges depict the direc-
tion of dependence (A -> B = A is a prerequisite of B).

Considering users’ knowledge and objectives requires a
more nuanced, context-aware approach to evaluation. Some
studies have taken a bottom-up approach to understanding
these needs. Liao et al. [7] interviewed UX and design prac-
titioners to create an “XAI question bank” with prototypical
questions users may wish to have answers to. These include
global questions about how a model works, local questions
about why a specific prediction was made, counterfactual
questions of why not a different prediction, hypothetical
questions about how to change the prediction, and more.

A similar approach in education can yield insights into
the questions that teachers, students, and other stakeholders
may wish to have answered by an explanation. Alternatively,
it may be that interactive explanations—perhaps made possi-
ble through the abilities of LLMs to answer questions using
natural language—will provide different stakeholders with
the information that is relevant to them, while also allowing
for follow-up questions to better understand explanations
[8].

4. Evaluation criteria
The XAI literature has highlighted several criteria to con-
sider when evaluating explanations. Due to the lack of a
standardized evaluation framework, these criteria often go
by different names, have varying semantic domains, or are
haphazardly used interchangeably. Some of the definitions
used in the literature implicitly suggest the existence of con-
ceptual dependencies between criteria. However, to the best
of our knowledge, they have not been previously described
hierarchically. Pulling from both the HCI and ML communi-
ties, we here propose a systematic hierarchy of criteria with
dependencies between them, as depicted in Figure 1.

The ultimate goal of an explanation is to be useful to the
user. In education, the user typically represents a stake-
holder in the learning process, such as a teacher, student,
parent, or administrator, but it can also be a researcher who
develops and improves the model.

Intuitively, in order for an explanation to be useful, it must
meet the criterion of intelligibility, which refers to how well
it can be understood. This concept has also been called
“explicitness” [9] and “comprehensibility” [10]. As discussed
in the previous section, the specific context and target user
for which an explanation has been developed is crucial to
an accurate evaluation of intelligibility. In education, an
intelligible explanation is one that can be understood by
a student, teacher, or a different stakeholder, depending
on its intended context. The term “intelligibility” arose
within the HCI community [11] and continues to be the
predominant term used by HCI researchers for what the ML
community refers to as “explainability” or “interpretability”.

We discuss further differences and similarities between these
two communities later in this paper.

Just as intuitively—though slightly more contentiously—
useful explanations must also be faithful. In this context,
faithfulness refers to the level of accuracy with which an ex-
planation reflects the model’s internal state [9, 12]. Faithful
explanations have also been called accurate explanations
[13] and high-fidelity explanations [10, 14]. Faithful expla-
nations can be thought of as providing a view of the model’s
internal causality (what leads to its predictions). In educa-
tion, a faithful explanation is one that provides accurate
insights into why a model has made a specific content pre-
diction, such as a study content recommendation or the
detection of learner disengagement.

Unlike with intelligibility, however, there is not univer-
sal agreement on the necessity of explanation faithfulness.
This disagreement arises from the use of post-hoc explain-
ability techniques—such as LIME [15] and SHAP [16]—that
derive explanations from a simplified approximation of a
more complex model. Post-hoc explanations don’t directly
access a model’s internal causality, but rather provide a jus-
tification of predictions after-the-fact. Some argue that a
lack of faithfulness can lead to misleading and problematic
explanations [13, 17] while others suggest that approximate
explanations can be used to achieve “sufficient understand-
ing” for specific users performing specific tasks [18]. We
argue that, while perfect faithfulness to a model may not
be necessary in all contexts, a high level of faithfulness is
nevertheless important for an explanation to be useful.

Note that intelligibility and faithfulness are independent
criteria. An explanation can be very intelligible but not
particularly faithful, or highly faithful but quite unintelligi-
ble. Yet a useful explanation requires both conditions to be
present past a minimum threshold.

Another criterion described in the literature is plausibility
[12]. A plausible explanation is one that aligns with human
intuition. For example, explaining that a model predicts
a student is disengaged because they did well on a prob-
lem is nonsensical. Cases of an explanation that is faithful
but not plausible serve as evidence of a problem with the
model itself—perhaps it is overfitted and is picking up on
noise in the training data. Because plausibility is impor-
tant to sensemaking, we argue that it is a prerequisite for
intelligibility.
Stability refers to the consistency of an explanation for

similar examples [9, 10]. That is, an explanation is stable
when it provides similar results for similar inputs. For ex-
ample, one would expect a learner model to provide similar
latent knowledge estimates on a particular knowledge com-
ponent for students who encountered similar struggles on
the same problems. If an explanation is not stable, it is diffi-
cult to trust it as a reliable source of information. Stability is
also a prerequisite for faithfulness. If an explanation is not
adequately stable, it is unlikely to be faithful to the model’s
internal state.

5. Bridging perspectives
As noted earlier, our evaluation criteria hierarchy for expla-
nations is informed by two distinct research communities:
the ML and HCI communities. While there is much overlap
between them, Liao & Varshney [18] have pointed out a
tension in the goals and methods used by these two com-
munities. The ML community and the XAI sub-community



have primarily focused on technical solutions to the chal-
lenge of interpretability, often relying on lower-level ex-
plainability methods that suit the needs of engineers. The
HCI community, on the other hand, has been more heav-
ily informed by the social and information sciences, which
has led to more user-centered approaches often based on
participatory design methods.

The terms and definitions used by these communities
are illustrative of their differing perspectives. The ML com-
munity has settled on terms such as “explainability” and
“interpretability”, and has even fostered a growing group of
eXplainable AI (XAI) researchers. The coining of the term
XAI has been attributed to van Lent et al. [19], who used
it to describe a system that can present an “easily under-
stood chain of reasoning” from input, “through the AI’s
knowledge and inference”, to the final prediction. The HCI
community, on the other hand, prefers the term “intelligibil-
ity”, which was originally defined as systems that “represent
to their users what they know, how they know it, and what
they are doing about it” [11]. Notice the emphasis that ex-
plainability places on the prediction process from input to
output, contrasted with the pragmatic emphasis on users in
the HCI definition. Yet despite these differences, there are
more overlaps between these communities than points of
divergence.

It may be that at least part of the tension described by Liao
& Varshney [18] is the result of a semantic misalignment
between the two groups. Technical approaches tend to
emphasize explanation faithfulness because they emphasize
the role of engineer-researcher as the target user, while
socio-behavioral approaches care more about explanation
intelligibility that have non-researchers as the end-users. In
other words, while both communities are working towards
the same goal of making AI understandable by people, they
are doing so from different perspectives and with different
priorities, which leads them to sometimes talk past each
other without realizing it. Vaughan & Wallach [6] argue for
a bringing together of these communities to create a more
holistic approach to XAI.

It should also be noted that some HCI researchers include
aspects of transparency not often considered to be within
the realm of explainability as crucial to its goals. These go
beyond the internal workings of a model, including expla-
nations of the data used for training, performance metrics,
levels of uncertainty, and the types of features it relies on
[18, 6]. Among education researchers, Kay et al. [20] make
reference to the concept of scrutability in the sense of being
able to scrutinize a model or system (with a heavy focus
on learners as target users). Full scrutability may require
similar aspects of transparency that go beyond the model
itself.

6. Evaluation methods
An additional layer above that of which evaluation criteria
to use is the question of which methods to use to evaluate
explanations. The evaluation method will dictate the spe-
cific criteria that can be measured. Using Doshi-Velez &
Kim [21] as a guided taxonomy of evaluation methods, we
can see how the evaluation criteria framework we have pro-
posed can be used alongside these different methods. Within
this taxonomy, the choice of evaluation method depends
on the domain-specific needs and the context of intended
interpretability.

Doshi-Velez & Kim [21] propose three categories of eval-
uation methods. In decreasing level of resource complexity,
they are:

• Application-grounded evaluation, which in-
volves human users performing realistic tasks.

• Human-grounded evaluation, which involves hu-
man users performing simplified tasks.

• Functionally grounded evaluation, which does
not involve humans but rather uses quantifiable
properties of explanations as a proxy for inter-
pretability.

An example of application-grounded evaluation in edu-
cation is the way learning dashboards are sometimes eval-
uated by how well they help instructors understand and
provide help to students [22, 23], or work on open learner
models (OLMs) that provide students with explanations of a
model’s estimates of their understanding [24]. This evalua-
tion method can be used to effectively measure explanation
intelligibility (and, by extension, plausibility), but it does
not directly tackle the question of explanation faithfulness.

Functionally grounded evaluation, being the least direct
category, makes it difficult to make any claims about either
intelligibility or faithfulness. It allows for a proxy mea-
surement of intelligibility by considering properties such
as model sparsity or explanation simplicity [14], but it does
not capture the specific needs of any end-user. While it can
be helpful to consider potential target users while conduct-
ing this type of evaluation—ideally realistic stakeholders in
education—the results are generally context-agnostic and
therefore may lack real-world validity. Stability is perhaps
the only criterion that can effectively be evaluated using
functionally grounded evaluation. This method may be most
appropriate for preliminary studies in an area without much
prior research.

Some forms of human-grounded evaluation, on the other
hand, are more likely to capture evidence of explanation
faithfulness. Doshi-Velez & Kim [21] identify three exam-
ples within this category: binary forced choice, forward
simulation, and counterfactual simulation.

In binary forced choice, participants must select which ex-
planation they consider best when presented with multiple
options. This method was used in an educational context
by Swamy, Du, et al. [25] to gauge which explanations were
trusted most by university-level educators. This somewhat
approximates a measurement of plausibility by allowing
participants to identify explanations that match their intu-
itions, but it does not truly measure intelligibility. It also
does not evaluate faithfulness.

In forward simulation, participants must correctly predict
the model’s output given specific inputs. An experiment
along these lines was proposed by Baker [26] to test in-
terpretability. This provides a very direct measurement of
faithfulness, since an explanation must be faithful in order
for the task to be performed accurately. It also serves to
measure intelligibility, since participants must understand
the explanation to succeed. However, given a sufficiently
simple model, it may be possible to succeed at a forward
simulation task by only using a model’s parameters as ex-
planation without understanding the purpose, features, or
even the domain for which the model was built.

A counterfactual simulation is similar to a forward simula-
tion, but participants must correctly identify how a specific
input needs to be changed in order to alter the model’s
given output. This also allows for an evaluation of both
faithfulness and intelligibility, but the same caveats apply



as for forward simulation. The ability to recognize valid
counterfactuals has been identified by Cohausz [27] as a key
step towards using machine learning to design theoretically
sound causal models.

7. Evaluation case study
We now turn to an illustration of the concepts discussed here
using an ongoing study of an interpretable neural network
for predicting a particular learner behavior. The model in
question is a convolutional neural network (CNN), designed
to be interpretable via targeted regularization to create bi-
nary convolutional filters that more accurately align with
the input data [28]. The CNN was trained to predict stu-
dents’ gaming the system behavior (GTS) on a dataset of
interactions with the Cognitive Tutor Algebra system. The
details and results of an early version of this model were
previously reported in Pinto et al. [29].

7.1. Setting up the questionnaire tasks
To evaluate the level of interpretability of this model, we
designed a questionnaire that tasks participants with both
a forward simulation and counterfactual simulation. The
questionnaire is designed for participants from a wide range
of backgrounds—both with and without prior experience in
machine learning.

The forward simulation task presents participants with
the inputs for a particular instance—that is, the values for
each variable for a given “clip” of five consecutive student
actions. They must then predict whether the model would
label this clip as GTS or not GTS, given the patterns in the
convolutional filters.

The counterfactual simulation task again presents par-
ticipants with the inputs for a specific clip, but this time
also providing the model’s predicted label. Participants are
asked to identify a single change to the inputs that would
alter the model’s prediction. For example, given a series of
inputs and the model’s prediction of not GTS, what change
to the inputs would result in the model labeling this clip as
GTS. Participants select the single correct answer from a
series of multiple-choice options.

Figure 2 shows an example from the digital questionnaire
platform. The inputs (leftmost blue grid) are presented in
a simplified tabular format: a grid with features stacked
vertically (labeled v01–v24), with each column representing
a separate action in the sequence (labeled 1–5). Blue cells
indicate a feature value of 1 (present), while white cells indi-
cate a feature value of 0 (absent). The binary convolutional
filters (green grids) are represented in the same manner, but
each only depicts three actions to match the kernel size of
the model’s convolutional layer.

This visualization—along with the background informa-
tion provided—serves as the model’s explanation, showing
the patterns that the model has learned to associate with
GTS behavior. It presents both a global explanation of the
model’s logic (patterns that are indicative of GTS) and ex-
planations of specific outputs (the model’s prediction for a
particular clip of student actions). The questionnaire is used
as a tool to evaluate the explanations themselves.

For the forward simulation task, the instructions ask the
following questions: “would the model identify the follow-
ing clip of student actions as GTS or not GTS? If GTS, what

Figure 2: Example visualization from the questionnaire that
serves as the core of the model’s explanation.

is the number of the matching model pattern?” In the coun-
terfactual simulation task, we ask “which of the following
changes to the input would alter the model’s prediction?”
Possible answers for the counterfactual simulation include
the addition or removal of specific actions, such as “add
v07 to action 2” or “remove v19 at action 4”. For both tasks,
we also ask participants to rate their confidence on each
question.

7.2. Evaluating the evaluation
The evaluation methods used in this questionnaire clearly
fall within the category of human-grounded evaluation in
the method taxonomy proposed by Doshi-Velez & Kim [21]—
they involve human users performing simplified tasks. As
such, they provide measurements of faithfulness and intelli-
gibility. By calculating the average accuracy rate (proportion
correct out of total questions) across the entire sample of
participants, we can quantify how well the explanations
were understood (intelligibility). Because the tasks align
so closely with the model’s actions, the accuracy rate also
serves to measure how well the explanations reflect the
model’s internal state (faithfulness).

However, the caveat provided earlier in regards to for-
ward and counterfactual simulation tasks applies here—
participants are not required to understand the specific pur-
pose of the model or the value of its predictions in order
to succeed. In fact, while we present an explanation of
GTS and the aims of the model as background information,
we’ve entirely excluded meaningful feature labels from the
explanations. This approach makes it impossible to evaluate
explanation plausibility, weakening its claims of evaluating
intelligibility beyond a surface-level understanding.

Furthermore, this questionnaire does not claim to target
any specific end-users. It has been designed for partici-
pants from a wide range of backgrounds, and for no specific
purpose other than its completion. We previously high-
lighted the importance of intended context when evaluating
explanations, which is difficult to account for using the sim-
plified tasks of human-grounded methods. An application-
grounded evaluation would allow for a better understanding
of the specific needs of end-users, but it would also make it
difficult to measure faithfulness and would require a more
complex and time-consuming study design [21]. When it
comes to designing an evaluation, tradeoffs may be neces-
sary.



8. Discussion
Much like the complexity of evaluating the different aspects
of a model’s performance, the evaluation of explanations is
itself a complex task and cannot be captured in its entirety
by any one metric or method. We have aimed to provide an
initial framework to guide this daunting but important task.
However, much work remains to be done.

We have brought together evaluation criteria described
by different communities into a cohesive whole, but they
largely remain abstract ideas. In order to be useful in prac-
tice, these criteria must be operationalized more concretely
in the educational contexts in which we wish to use them.
Furthermore, this high-level overview is likely missing key
criteria that measure aspects of explanations that are cur-
rently not being captured.

For example, when describing the aspects of intelligibility
that can be captured by human-grounded evaluation meth-
ods, as well as those that may go overlooked by such an
approach, we found that we didn’t have the exact language
to elucidate our point. It may be that there is an element of
intelligibility that requires an additional criterion to fully
capture—something along the lines of an explanation’s fi-
delity to its intended context.

Similarly, the framework’s hierarchical structure itself
may benefit from further scrutiny. Edge cases theoretically
could exist that don’t perfectly fit, such as the possibility of
a highly overfitted model leading to explanations that are
faithful but not very stable.

Nevertheless, future research may build on the framework
and ideas presented here to create a more comprehensive
evaluation framework for explanations. A unified frame-
work should be adaptable to the specific needs of different
contexts, should be informed by the perspectives of both the
technical ML and human-centered HCI communities, and
should be relevant to the needs of stakeholders in education.

9. Conclusion
In this position paper, we have proposed the need for a uni-
fied framework for evaluating explanations in the context
of XAI. We have reviewed important concepts for better
understanding the nature of explanations, including their
role as mediators between models and users, the central role
played by an explanation’s intended context, and the varied
perspectives brought by different research communities. We
have further argued that useful explanations require both
faithfulness and intelligibility, and have proposed a hier-
archy of criteria that brings together concepts previously
described in the literature. Finally, we have provided a case
study for these criteria using the ongoing evaluation of a
neural-network-based learner behavior detector.
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