
Engaging an LLM to Explain Worked Examples for Java
Programming: Prompt Engineering and a Feasibility Study
Mohammad Hassany1, Peter Brusilovsky1, Jiaze Ke2, Kamil Akhuseyinoglu1 and
Arun Balajiee Lekshmi Narayanan1

1University of Pittsburgh, Pittsburgh, PA
2Carnegie Mellon University, Pittsburgh, PA

Abstract
Worked code examples are among the most popular types of learning content in programming classes. Most approaches and tools for
presenting these examples to students are based on line-by-line explanations of the example code. However, instructors rarely have
time to provide line-by-line explanations of a large number of examples typically used in a programming class. This paper explores
the opportunity to facilitate the development of worked examples for Java programming through a human-AI collaborative authoring
approach. The idea of collaborative authoring is to generate a starting version of code explanations using LLM and present it to the
instructor to edit if necessary. The critical step towards implementing this idea is to ensure that LLM can produce code explanations
that look meaningful and acceptable to instructors and students. To achieve this goal, we performed an extensive prompt engineering
study and evaluated the explanation produced by the selected prompt in a user study with students and authors.

Keywords
Code Examples, Authoring Tool, Human-AI Collaboration

1. Introduction
Program code examples play a crucial role in learning to
program [1]. Instructors use examples extensively to demon-
strate the semantics of the programming language being
taught and to highlight the fundamental coding patterns.
Programming textbooks also pay a lot of attention to ex-
amples, with a considerable textbook space allocated to
program examples and associated comments.

Through this practice, worked code examples emerged
as an important type of learning content in programming
classes. Following the tradition established by a number of
programming textbooks [2, 3], a typical worked example
presents a code to solve a specific programming problem and
explains the role and function of code lines or code chunks.
In textbooks, these explanations are usually presented as
comments in the code or as explanations in the margins.
Although informative, this approach focused on passive
learning, which is known for its low efficiency. Recognizing
this problem, several research teams developed learning
tools that offered more interactive and engaging ways to
learn from examples [4, 5, 6, 7, 8]. These tools demonstrated
their effectiveness in classroom studies, but their practical
impact, i.e., wider use by programming instructors, was
limited due to authoring bottleneck. Although the authors
of example-focused learning tools usually provide a good
set of worked examples that can be presented through their
tools, many instructors prefer to use their own favorite
code examples. Instructors are usually happy to broadly
share the code of examples they created (usually providing
it on the course Web page), but they rarely have time or
patience to augment examples with explanations and add
their examples to an example-focused interactive system.
In fact, producing a single explained example could take 30
minutes or more, since it requires typing an explanation for
each code line [4, 8] or creating a screencast in a specific
format [5, 7].

The authoring bottleneck has been recognized by several
research teams, which have offered several ways to address

EDM 2024 Workshop: Leveraging Large Language Models for Next Gener-
ation Educational Technologies,July 14, 2024, Atlanta, GA

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

it. Among the approaches explored are learner-sourcing,
that is, engaging students in creating and reviewing expla-
nations for instructor-provided code [9] and automatic ex-
traction of information content from available sources, such
as lecture recordings [6]. In this paper, we explore an alter-
native approach to reduce the authoring bottleneck based
on the human-AI collaborative authoring process. With this
approach, the instructor provides the code of one of their
favorite examples along with the statement of the program-
ming problem that it is solving. The AI engine based on
large language models (LLM) examines the code and gen-
erates explanations for each code line at several levels of
detail. As an option, the instructor could edit and refine the
text produced by LLM to adapt it to the goals of the class
and the target students. As in any productive collaboration,
each side does what it is best suited to do, leaving the chal-
lenging work to the partner. To support and explore this
authoring approach, we are developing an authoring system
with the aim to radically decrease the time to create a new
interactive worked example. The examples created by the
system could be uploaded to an example exploration system
such as WebEx [4] or PCEX [8] or exported in a reusable
format.

By its nature, our project itself is a collaboration between
experts in HCI who focus on developing a usable human-AI
collaboration interface through iterative design and evalua-
tion and AI experts who focus on producing good code ex-
planations with LLM through iterative prompt engineering
and prompt evaluation. Our current work on developing
and evaluating the human-AI authoring interface is pre-
sented in [10]. In this paper, we focus on generating usable
code explanations with a popular LLM ChatGPT.

The remainder of the paper is structured as follows. We
start by reviewing related work (Section 2), focusing on
worked examples, as a special kind of learning content, and
the current work on generating code explanations using
ChatGPT. Next (Section 3), we review our prompt engineer-
ing experiments, in whichwe attempted to generate the best-
performing prompt through an internal evaluation process.
Among the options explored in this process, we assessed
the value of using the problem statement to generate good
explanations and minimize “hallucinations”. Following that

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0/deed.en

(Section 4) we present a user study, which we performed to
assess the quality of the resulting LLM explanations. In this
study, teaching assistants (TAs) and students compared the
code explanations created by experts through a traditional
process with examples created by ChatGPT to contribute to
human-AI collaborative authoring process. In Section 5 we
conclude with a summary of the work and plans for future
research.

2. Related Work

2.1. Worked Examples in Programming
Code examples are important pedagogical tools for learning
programming. Not surprisingly, considerable effort has been
devoted to the development of learning materials and tools
to support students in studying code examples. Hosseini [8]
classified the program examples that have been used in
teaching and learning to program into two groups, accord-
ing to their primary instructional goal: program behavior
examples and program construction examples. Program be-
havior examples are used to demonstrate the semantics (i.e.,
behavior) of various programming constructs (i.e., what
is happening inside a program or an algorithm when it is
executed). Program construction examples attempt to com-
municate important programming patterns and practices by
demonstrating the construction of a program that achieves
various meaningful purposes.

Program behavior examples have been extensively stud-
ied. While textbooks still explain program behavior by using
textual comments attached to lines of program code, a more
advanced method for this purpose — program visualization,
which visually illustrates the runtime behavior of computer
programs — is now considered as state-of-the-art. During
the past three decades, several specialized program visual-
ization tools have been built and evaluated to observe and
explore program execution in a visual form [11].

Computer-based technologies for presenting program
construction examples are less explored. For many years,
the state-of-the-art approach for presenting worked code
examples in online tools was simply interleaving code with
comments [1, 12, 13]. More recently, this approach has been
enhanced with multimedia by adding audio narrations to
explain the code [14] or by showing video fragments of
code screencasts with the instructor’s narration being heard
while watching code in slides or an editor window [5, 6].
However, both ways support passive learning, which is the
least efficient approach from the perspective of the ICAP
framework [15]1

An attempt to make learning from program construction
examples active was made in the WebEx system, which al-
lowed students to interactively explore instructor-provided
line-by-line comments for program examples via a web-
based interface [4]. More recently, several projects [6, 7, 8]
augmented examples with simple problems and other con-
structive activities to elevate the example study process to
the interactive and constructive levels of the ICAP frame-
work, known as the most pedagogically efficient.

A good example of a modern interactive tool for studying
code examples is the PCEX system [8]. PCEX (Program
Construction EXamples) was created in the context of an
NSF Infrastructure project (https://cssplice.org) with a focus

1The ICAP framework differentiates four modes of engagement: inter-
active, constructive, active, and passive.

Figure 1: Studying a code example in the PCEX system: 1)
title and program description, 2) program source code with lines
annotated with explanations, 3) explanations for the highlighted
line, 4) link to a “challenge” - a small problem related to the
example.

on broad reuse and has been used by several universities
in the US and Europe in the context of Java, Python, and
SQL courses. PCEX interface (Figure 1) provides interactive
access to traditionally organized worked examples, i.e., code
lines augmented with instructor’s explanations. Separating
explanations (Figure 1-3) from the code (Figure 1-2), allows
students to selectively study explanations for code lines they
want. Explanations are provided on several levels of detail,
so more details could be requested if the brief explanation
is not sufficient (Figure 1-3).

Since line-by-line multi-level example explanations of-
fered by PCEX is currently the most detailed approach for
explaining worked examples, we selected the code example
structure implemented by PCEX as the target model for our
authoring tool introduced in the next section. The tool pro-
duces code augmentedwith line-by-line explanations on sev-
eral levels of detail. The resulting example could be directly
uploaded to PCEX or exported in a system-independent for-
mat to be uploaded to other example exploration systems
such as WebEx [4].

2.2. Use of LLMs for Code Explanations
Multiple researchers have explored code summarization [16]
and explanations using transformer models [17, 18], abstract
syntax trees [19], and Tree-LSTM [20]. With the announce-
ment of ChatGPT, several research teams explored the use
of LLM for code explanations using GPT 3 [21, 22, 23], GPT
3.5 [22, 24, 25], GPT 4 [24], OpenAI Codex [26, 20, 22], and
GitHub Copilot [25]. Table 1 presents a brief summary of
the most important prior work.

In prior work, LLMswere used to generate explanations at
different levels of abstraction (line-by-line, step-by-step, and
high-level summary). Sarsa et al. [26] observed that Chat-
GPT can generate better explanations at low-level (lines).
Li et al. [24] used the result of specific-to-general generated
explanations as one of the inputs to their LLM solver, try-
ing to solve competitive-level programming problems more
efficiently. A novel research [21] tried to understand how
non-experts approach LLMs. They have identified common
mistakes and provided advice to tool designers.

The explanations and summaries generated by these
LLMswere evaluated primarily by authors [26], students [22,
23], and tool users [25]. Sarsa et al. [26] reported a high cor-
rect ratio for generated explanations with minor mistakes
that can be resolved by the instructor or teaching assistant.

Source Goal LLM(s) Type of Explanations Evaluation
[25] Provide explanations for a code

fragment selected in the IDE
GPT 3.5 Explain the selected code Interview with students,

teachers, and bootcamp tutors
[23] Scaffold student’s ability to

understand and explain code
GPT 3 Explain the intended purpose of

a function
Compare ChatGPT explanations
with student/peer explanations

[24] Given the problem description
and expert solution, ChatGPT is
prompted to generate
explanations

GPT 3.5 vs
GPT 4

Program summary, used
algorithm, step-by-step solution
description, time complexity, etc

Generated explanations were
evaluated by the human
programming expert who
authored the “oracle” solution

[22] Generate specific explanation,
summary, and concepts for a
given code snippet

GPT 3 and
Codex

line-by-line explanations, list of
important concepts, high-level
summary of the code

Students’ ratings of
explanations, and their utility
time/count

[26] Help introductory programming
course teachers by creating
programming exercises + test
cases, and code explanations

Codex step-by-step explanation,
problem-statement-like
description, high-level
description

Internal evaluation, measuring
the percentage of code being
explained

Table 1
Prior works in using LLMs (ChatGPT/Codex) to generate code explanations.

Students rated LLM-generated explanations as useful, easier,
and more accurate than learner–sourced explanations [23].

Prompt, as an essential part of communication, directly
influences the LLM’s performance. A verbose prompt will
limit the LLM’s ability to utilize its knowledge [20]. Iterative
prompts have been proven to perform well [21]. In terms of
code explanation, providing the source code and expected
outcome is essential. Adding input/output examples can
help generate better explanations. Although LLMs such as
ChatGPT can understand the natural language very well,
the researchers suggested writing the prompt as writing
a code: following a structure and marking different parts
of the prompt [21]. If possible, it is better to control the
randomness of LLMs responses (for instance, adjusting the
temperature to a lower value, perhaps 0). Producing useful
prompts requires some level of expertise - as Zamfirescu-
Pereira and colleagues [21] observed, non-experts have mis-
conceptions about LLMs and frequently struggle to come up
with a well-formed prompt. Researchers believe that LLMs
can be beneficial in environments where humans and AI
can work together, where AI performs tasks known to be
time-consuming for humans, while the human performs the
expert evaluation and adjusts the responses generated by
AI [27].

3. Prompt Tuning and
Internal Evaluation
Following the majority recent work on generating code
explanations, we choose ChatGPT as the target LLM to gen-
erate code explanations. ChatGPT provides an easy-to-use
API and an affordable pricing model. Adding ChatGPT to
an application is not a straightforward process and requires
careful planning. The key part of this process is crafting a
prompt, which requires multiple trials. Following the sug-
gestions in the previous work [28, 25], the authors used
an internal evaluation process to engineer a prompt that
produces high-quality explanations.

To shorten the prompt design process, we adopted sev-
eral design decisions that were shown to be effective in
previous work: assigning a role to ChatGPT [27], avoid-
ing verbosity [20], repetition [21], prompt that looks like
code [21], and defining the expected output format [21].
However, some design decisions not evaluated previously
were not evident, so we had to use an internal evaluation

process to select the best performing option. The questions
answered through the evaluation included the following: 1)
Does the presence of a program description in the prompt
result in better explanations? 2) Does iterative prompting
perform better than a single prompt, and if so, how many
iterations are sufficient to have a good explanation? 3) Does
adding line inclusion/exclusion criteria in the prompt help
ChatGPT to select or ignore lines in generating an expla-
nation? To answer these questions, we formally compared
ChatGPT-generated explanations through an independent
rating performed by three authors of the paper.

Since we started from previously explored prompting
techniques, the first version of our prompt was reasonably
close to our final prompt. At the first stage of the process,
we made a few small corrections of the prompt based on
observations. First, we observed that ChatGPT cannot asso-
ciate the line number with the line correctly. To address this
issue, we marked each line with its line number. We also ob-
served that sometimes, with iterative prompting, ChatGPT
generates duplicate explanations. Hence, in our iterative
prompts, we asked ChatGPT to generate explanations that
are new. Figure 2 shows the final version of the prompt that
we used with the ChatGPT gpt-3.5-turbo/16k model (temper-
ature=0) using the OpenAI API for our internal and external
evaluations.

Selecting Examples for Evaluation: We randomly selected
eight Java examples with different difficulty levels (string
operation, array, loop, and object-oriented programming)
from the PCEX repository for the study. Selected examples
include:

• Initials: Extracting initials from full name.
• JAdjacentDuplicates: Checks whether a sequence of

numbers contains adjacent duplicates.
• JArrayIncrementElements: Increments all elements

of the array by 1.
• JArrayMax : Finds the maximum value in an array.
• JPrintDigitsReverse: Prints the digits of an integer

from right to left.
• JSearchArrayValues: Search for values from one ar-

ray in another.
• JSmallestDivisor : Smallest divisor of a positive num-

ber.
• PointTester : Translate 2-dimensional coordinates.

Including/Excluding Program Description: We hypothe-
sized that adding a program description for the prompt adds

Figure 2: ChatGPT Prompt Template. ChatGPT (is given the
“professor” role) is prompted iteratively.

with desc without desc

Examples 𝑅2 𝑅3 𝑅2
Initials 88.8% 96.0% 90.7%
JAdjacentDuplicates 93.6% 99.0% 86.7%
JArrayIncrementElements 40.0% – 93.3%
JArrayMax 85.7% – 83.8%
JPrintDigitsReverse 57.1% – –
JSearchArrayValues 90.0% 71.4% 93.0%
JSmallestDivisor 46.3% – 86.3%
PointTester 91.6% – 73.3%

Table 2
Cosine similarity between rounds of explanations (𝑅𝑛=2 =
𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚(𝑅𝑛, 𝑅𝑛−1)) with and without including program descrip-
tion.

information for ChatGPT to produce better explanations,
but we were also concerned that it could confuse ChatGPT.
To compare the quality of the explanation with and without
description, the evaluators checked the explanations for the
following: 1) correctness, 2) relevance to the given program
description (when present), 3) presence of new information
in the 2𝑛𝑑 round compared to the 1𝑠𝑡 round, 4) presence of
hallucinations when the program description is not present,
5) whether the 2𝑛𝑑 round with program description in the
prompt had more information than without description.
Both Correctness and Relevance were binary ratings. For
example, given an explanation This line initializes a vari-

Round 1 Round 2

*C **R *C **R ***A
Min 98.46% 44.62% 97.53% 37.04% 32.10%
Max 100.00% 70.77% 100.00% 68.75% 39.51%

Average* 99.23% 55.38% 98.77% 46.91% 35.80%

Table 3
Internal evaluators rating, when program description is present
in the prompt, *Correctness, **Relevance to program description,
***Additional information compared to 1st round.

Round 1 Round 2

*C **H *C **H ***A
Min 93.98% 0.00% 92.94% 0.00% 41.18%
Max 100.00% 4.82% 100.00% 5.88% 55.29%

Average* 96.99% 2.41% 96.47% 2.94% 48.24%

Table 4
Internal evaluators rating, when program description is not
present in the prompt, *Correctness, **Explanation contains hal-
lucinations, ***Additional information compared to 1st round.

able ’fullName’ and assigns it the value ’John Smith’. The
’fullName’ variable stores the full name of the person whose
initials are to be printed. for the line of code String fullName
= “John Smith”; was rated as “correct” and “relevant” by one
rater.

We, as internal evaluators, rated the correctness of the
explanations higher in rounds 1 and 2 of the ChatGPT gen-
eration when the program description is present (𝑅1 =
99.23%, 𝑅2 = 98.77%), as summarized in Table 3. As an in-
teresting example, when observing the ratings that we used
to compare the amount of new information generated in
round 2 (compared to round 1), we observed that more infor-
mation is generated without program description (48.24%)
than with description (35.80%) as summarized in Table 4.
The explanations generated when the program description
is not present had additional information compared to when
it is present as shown in Figure 3. This validates previous
findings that comprehensive prompts limit LLM’s ability to
utilize their knowledge [20]. Furthermore, when the pro-
gram description is present, the authors selected the 2𝑛𝑑
round of explanations for the external evaluation because
students relate better with the program and it is also rated
higher for correctness. In the conditions that we did not
include the program description in the prompts, we were
interested to know to what extent ChatGPTmay hallucinate.
We observed hallucinations 2.94% 𝑜𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 when consid-
ering prompts without program description, which could
be attributed to greater information generation in round 2.
Given this tendency to hallucinate when generating expla-
nations with prompts do not include problem descriptions,
we decided to use the explanations generated with prompts
that include program descriptions.

Assessing Multi-Round Prompting: In this step, we as-
sessed whether prompting ChatGPT iteratively to provide
an explanation (see Figure 2) results in additional explana-
tions. When the program description was present in the
prompt, only 3 out of 9 examples had additional explanations
compared to none when not included (Table 2). Explana-
tions generated in the 3𝑟𝑑 round were either minor wording
changes (high cosine similarity) or included explanations
for unnecessary lines (closing bracket for main method and
class). Qualitatively assessing explanations generated in

Figure 3: Example of line explanations which the 2𝑛𝑑 round of
explanation when the program description is not present had
additional information compared to when present.

the 2𝑛𝑑 round, they included additional explanations or im-
proved wordings. The number of additional explanations
or improvements was not consistent among the examples
in the 2𝑛𝑑 round, but on average, in 35.80% of lines (Figure
3) when the program description is present in the prompt,
and in 48.24% of lines (Figure 4) when not, additional in-
formation was reported by the evaluators. Based on these
findings, we decided to adopt a two-round prompting option
for WEAT and used this option in the external evaluation
process. We summarize our results in Table 2.

Assessing Inclusion/Exclusion Criteria: A program descrip-
tion can provide a rich context for identifying and explaining
lines of code. However, ChatGPT may sometimes include
an unnecessary line or exclude a necessary one from the
explanation. Initially, we assumed that directly adding inclu-
sion/exclusion criteria in the ChatGPT prompt can address
this issue. However, evaluating this option internally, the
authors observed that it resulted in less than 1% new lines
inclusion and around 4 − 6% of lines exclusion. When these
criteria are present in the prompt, ChatGPT ends up having
unnecessary rounds of explanations. Sometimes ChatGPT
falls into a loop where it flips wordings between each round.
Since the author can review and ignore the explanations for
a specific line in the authoring interface, we decided not to
use Inclusion/Exclusion criteria in the prompt.

4. Evaluation
We used two different approaches to evaluate the best-
performing prompt, which we tuned through an inter-
nal evaluation process described above. In our previous
work [29] we used several formal metrics to compare the
explanations generated by ChatGPT with the explanations
produced for the same code lines by domain experts and stu-
dents in programming classes. In this paper, we report the
results of a user-centic evaluation, in which two categories
of target users compared the explanations generated by
ChatGPT with the explanations created by domain experts
for the same worked examples. Unlike some earlier studies
that used beginner students to evaluate ChatGPT explana-
tions, we used undergraduate students and senior graduate
students (teaching assistants). The reason for adding teach-
ing assistants as another category of users in the study is
that in our authoring system, direct users of the ChatGPT
explanation are not prospective consumers of explanations,
but prospective authors. While the opinion of undergradu-
ate students as consumers is important, in our human-AI
collaborative authoring approach, authors have the option
to edit the generated explanation before it will reach the
consumers. It is important to understand how satisfactory
the generated explanations appear to the prospective au-
thors since their perception of quality impacts the amount
of their work: poor explanations will require a lot of editing,

while good explanations could be accepted as-is or with
minimal changes.

To support these evaluation needs, we recruited 15 evalu-
ators, of which 6 were graduate students doing research on
computing education and 9 were undergraduate students
who just completed an advanced Java programming class.
Graduate students selected for the study usually serve as
teaching assistants or instructors in programming classes
where supplementary content development is their major
responsibility. For brevity, we refer to them as authors in our
analysis. While these authors are primary users of the gen-
erated explanations, the opinion of advanced undergraduate
students was also important for us since they are frequently
involved in learning content production through “learner-
sourcing” [9, 30]. To distinguish them from the true authors,
we refer to them as students. The participants had to provide
their responses through an evaluation form. The evaluation
was estimated to take one hour to complete. The partici-
pants received a $20 Amazon gift card as compensation.

The evaluation form included 8 examples introduced
above. For each example, the form included a program
description and the example code. For each line of each
code example, it listed an explanation generated for this
line by ChatGPT and by an expert. The participants had to
rate both explanations for a given line of code and compare
them. The order of ChatGPT and expert explanations for a
given line of code was randomized, and the evaluators did
not know which explanation was generated by ChatGPT
or the expert. “Expert explanations” were extracted from
real examples used in the PCEX system [31]. These explana-
tions were originally authored by instructors and teaching
assistants and refined through several years of classroom
use.

To evaluate the explanations, the participants had to rate
to what extent each explanation is complete and which is
better. We defined a better explanation as “providing more
information, going deeper, better connecting to program-
ming concepts”. However, we did not provide the definition
of complete explanation. Leaving an open–ended coding
task would help us understand the participants’ use of their
judgment on the completeness of the generated explana-
tions.

More specifically, participants had to rate the two expla-
nations with the following metrics (refer Figure 4):

1. Explanation 1 is sufficiently complete: Not complete
(0), Complete (1), Very complete (2)

2. Explanation 2 is sufficiently complete: Not complete
(0), Complete (1), Very complete (2)

3. Which explanation is better? Both are the same (0),
Explanation 1 is better (1), Explanation 2 is better
(2)

From the collected responses, we excluded lines that only
ChatGPT or only expert explanations but not both. In these
cases, the evaluators generally rated the explanations as bet-
ter without comparison with a missing counterpart expla-
nation. Altogether, there were 18 lines that were explained
by ChatGPT but not by the expert, and 5 lines that were
explained by the experts but not ChatGPT. Looking closer,
we observed that 4 of the 5 missing lines of ChatGPT were
in the PointTester example, which included class definition,
object instantiation, and instance variable definition. We
are not aware why the expert did not explain these lines, but
we assume these lines are either mentioned in explanations
generated for other lines or they do not provide important

Figure 4: In this figure we present an instance of the evaluation form, with the filled-in responses from a participant. The
participant indicates whether the explanation is complete and the explanation they find better. This was deployed in the form
of worksheets for quick access and response collection.

information toward understanding the program. Although
the program description had related wordings, there were
missed by ChatGPT: “Construct a class that represents... The
class should contain data that represents the point’s integer
coordinates(x, y). ... The class PointTester instantiates an
object from this class, sets the (x, y) coordinates of the ...”.
Conversely, in 14 out of 18 of these lines, ChatGPT unneces-
sarily explained class, main method definition, and closing
brackets (class, method, loop, and condition). The other
4 lines were informative and useful. This can support the
importance of having inclusion criteria in the prompt.

For the remaining 45 lines of code, we observed from
the evaluators’ ratings for the question “Explanation 1 is
sufficiently complete?” or “Explanation 2 is sufficiently com-
plete?” that ChatGPT explanations were rated as 0.59% (not
complete), 21.04% (complete) and 78.37% (very complete)
compared to Expert explanations as 6.96% (not complete),
56.44% (complete), and 36.59% (very complete). In response
to the question “Which explanation is better?”, evaluators
selected ChatGPT as the better explanation in 53.93% of
lines, compared to experts (20.59%); and in the rest of the
lines (25.48%) both were rated the same. Our calculations
of the inter-rater reliability for the ratings of the question
“Which explanation is better?” using Fleiss-Kappa gave us
0.182, 𝑝 < 0.01 score of agreement. This can be interpreted
as “slight agreement” based on the 2-raters/2-categories
table. Given that Fleiss-Kappa is a chance-corrected coeffi-
cient, it can be interpreted as a better agreement due to the
high number of subjects (45 lines of code by 15 evaluators)
[32].

We observe that the students did not rate ChatGPT ex-
planations incomplete at all with their 13.33% and 86.67%
ratings being that ChatGPT explanations are complete and
very complete, respectively. The authors also rated Chat-
GPT explanations as complete (32.59%) or very complete
(65.93%). Hence, a majority of authors and students find
ChatGPT explanations complete, as shown in Figure 5. In
terms of comparing the explanations for which is better,
51.11% and 58.15% of students and authors, respectively,
find that the explanations of ChatGPT are better for the
given lines of code. A direct comparisons of two options,
based on the question “which explanation is better (Chat-
GPT vs Expert)?”, is presented in Figure 6. Given that the
assessment was performed using blind rating, this is an en-
couraging result for the use of generative AI for authoring
tools.

Figure 5: ChatGPT and Expert’s explanations being judged by
students and authors in terms of completeness.

Figure 6: ChatGPT and Expert’s explanations being judged by
students and authors in terms of which one is better.

5. Discussion
The results of our analysis of participant evaluation re-
sponses show that both students and authors overwhelm-
ingly rate ChatGPT explanations as “very complete” or at
least “complete”. The comparison also reveals that at aver-
age, both categories of users prefer ChatGPT explanations
over expert explanations. However, in a sizeable fraction of
cases, experts’ explanations were judged to be better than
ChaGPT

Taken together, these results provide good empirical ev-
idence in support of our work on collaborative human-AI
authoring of worked examples. On one hand, after prompt
tuning, ChatGPT was able to produce good quality code
explanations. On the other hand, in a good number of cases,
the explanations produced by experts were better. In this
context, a two-step process where ChatGPT start by gen-
erating explanations and humans edit the results, when
necessary, could be “the best of both worlds”. Moreover,
given that in the majority cases ChatGPT explanations were
equal to or better than expert explanations, such edits might

be necessary only in about one-third of the cases or less,
making the collaborative authoring very efficient. Based
on the results of this study, we are now working on a new
version of Worked Examples Authoring Tool (WEAT) that
includes options for editing and reusing low–level explana-
tions generated by ChatGPT for instructors.

6. Limitations
As the first step towards this important goal, our work has
several limitations. First, the scale of our evaluation was
relatively small. Since we targeted prospective authors as
users in our evaluation process, we were able to recruit only
15 qualified subjects. Furthermore, within the time allocated
for the study, the subjects were able to process only eight
worked examples. Although we attempted to broadly vary
the topics and difficulty of selected examples to achieve
sufficient generalizability of the results, a larger-scale study
with a broader variety of examples might be necessary to
obtain deeper insights. We plan to carry out such a study
in our future work.

Although the use of the same best-performing prompt to
generate explanations for examples of different difficulties
was an important design decision to explore the generaliz-
ability of the approach, it might be possible that different
prompts will perform best for examples of different difficul-
ties. We will explore this opportunity in the next round of
our work.

We also observed that for some lines of code in our dataset,
experts, ChatGPT, or both choose to provide no explanations.
In the current study, these lines were excluded from the
evaluation as a meaningful comparison was not possible.
However, choosing whether to explain a specific line or
not is an important decision, and the current study did
not assess who is making better decisions about skipping
lines, ChatGPT or experts. This aspect requires further
investigation. In our next study, we plan to ask participant
evaluators to specify whether each line of code needs an
explanation or not.

Another potential limitation of the study was the lack of
a formal definition of what a “complete” explanation means
during external evaluation. We let the participants decide
how to rate completeness, since it is a personal decision
which editors should make when deciding whether to up-
date generated explanation or not. Although it was a natural
thing to do, it could have decreased the agreement between
the evaluators. In our future work, we will see whether the
agreement could be increased by defending correctness and
completeness ratings more formally.

Finally, an aspect of human-AI collaboration not explored
in this study is the value of keeping our engineered prompt
open to the authors to change. The existing research re-
viewed above demonstrates that users unfamiliar with LLM
are unable to produce well-performing prompts [21]. How-
ever, most instructors and Teaching Assistants (TAs) in pro-
gramming courses are computer scientists with graduate-
level training. We expected that some fraction of these
users could benefit from the ability to change the prompt
and leave this option open. However, this assumption has to
be explored. We hope that a study that engages real instruc-
tors or TAs in producing worked examples for their course
might provide interesting data on end-user work with a
prompt. The ultimate way to address these limitations and
collect valuable information is to run a multi-semester-long

study engaging instructors to use the tool to produce expla-
nations. Such a study will also enable us to assess the quality
of explanations produced through human-AI collaboration
and their value to students in introductory programming
classes.

7. Conclusion
In this paper, we report the results of our work in developing
a worked example authoring tool that utilizes ChatGPT for
the automatic generation of line-by-line code explanations.
The idea of the tool is to allow humans and AI to collaborate
in the process of authoring worked examples. To the best of
our knowledge, this is the first attempt to produce worked
examples through human-AI collaboration. Our work sup-
ports findings by other researchers and provides empirical
evidence on the value of using ChatGPT to generate line-
by-line code explanations. Through an external evaluation,
this work also compared the generated explanations and
human expert explanations.

8. Acknowledgments
We thank the organizers and mentors of the LearnLab Sum-
mer School 2023 for bringing us together and supporting
our work on this project.

References
[1] M. C. Linn, M. J. Clancy, The case for case studies

of programming problems, Commun. ACM 35 (1992)
121–132.

[2] H. M. Deitel, P. J. Deitel, C How to Program, 2nd Edi-
tion, Prentice Hall, New York, 1994.

[3] A. Kelley, I. Pohl, C by Dissection : The Essentials of
C Programming, Addison-Wesley, New York, 1995.

[4] P. Brusilovsky, M. V. Yudelson, I.-H. Hsiao, Problem
solving examples as first class objects in educational
digital libraries: Three obstacles to overcome, Journal
of Educational Multimedia and Hypermedia 18 (2009)
267–288.

[5] R. Sharrock, E. Hamonic, M. Hiron, S. Carlier, Code-
cast: An innovative technology to facilitate teaching
and learning computer programming in a c language
online course, Proceedings of the Fourth (2017) ACM
Conference on Learning @ Scale (2017).

[6] K. Khandwala, P. J. Guo, Codemotion: expanding the
design space of learner interactions with computer
programming tutorial videos, Proceedings of the Fifth
Annual ACM Conference on Learning at Scale (2018).

[7] J. Park, Y. H. Park, J. Kim, J. Cha, S. Kim, A. H. Oh, Eli-
cast: embedding interactive exercises in instructional
programming screencasts, Proceedings of the Fifth
Annual ACM Conference on Learning at Scale (2018).

[8] R. Hosseini, K. Akhuseyinoglu, P. Brusilovsky,
L. Malmi, K. Pollari-Malmi, C. Schunn, T. Sirkiä, Im-
proving engagement in program construction exam-
ples for learning python programming, International
Journal of Artificial Intelligence in Education 30 (2020)
299–336.

[9] I.-H. Hsiao, P. Brusilovsky, The role of community
feedback in the student example authoring process: an

evaluation of annotex, British Journal of Educational
Technology 42 (2011) 482–499.

[10] M. Hassany, P. Brusilovsky, J. Ke, K. Akhuseyinoglu,
A. B. Lekshmi Narayanan, Human-ai co-creation
of worked examples for programming classes, in:
5th Workshop on Human-AI Co-Creation with Gen-
erative Models (HA-GEN 2024) at IUI 2024, volume
3660, CEUR, 2024. URL: https://ceur-ws.org/Vol-3660/
paper16.pdf.

[11] J. Sorva, V. Karavirta, L. Malmi, A review of generic
program visualization systems for introductory pro-
gramming education, ACM Trans. Comput. Educ. 13
(2013) 15:1–15:64.

[12] A. Davidovic, J. R. Warren, E. Trichina, Learning ben-
efits of structural example-based adaptive tutoring
systems, IEEE Trans. Educ. 46 (2003) 241–251.

[13] B. B. Morrison, L. E. Margulieux, B. Ericson, M. Guz-
dial, Subgoals help students solve parsons problems,
Proceedings of the 47th ACM Technical Symposium
on Computing Science Education (2016).

[14] B. Ericson, M. Guzdial, B. B. Morrison, Analysis of
interactive features designed to enhance learning in
an ebook, Proceedings of the eleventh annual Interna-
tional Conference on International Computing Educa-
tion Research (2015).

[15] M. T. H. Chi, J. Adams, E. B. Bogusch, C. Bruchok,
S. Kang, M. Lancaster, R. Levy, N. Li, K. L. McEldoon,
G. S. Stump, R.Wylie, D. Xu, D. L. Yaghmourian, Trans-
lating the icap theory of cognitive engagement into
practice, Cognitive Science 42 (2018) 1777–1832.

[16] J. Phillips, D. Bowes, M. El-Haj, T. Hall, Improved eval-
uation of automatic source code summarisation, Pro-
ceedings of the 2nd Workshop on Natural Language
Generation, Evaluation, and Metrics (GEM) (2022).

[17] Y. Choi, C. Na, H. Kim, J.-H. Lee, Readsum: Retrieval-
augmented adaptive transformer for source code sum-
marization, IEEE Access 11 (2023) 51155–51165.

[18] H. Peng, G. Li, Y. Zhao, Z. Jin, Rethinking positional
encoding in tree transformer for code representation,
in: Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, Associa-
tion for Computational Linguistics, Abu Dhabi, United
Arab Emirates, 2022, pp. 3204–3214.

[19] Y. Shi, M. Chi, T. Barnes, T. W. Price, Code-dkt: A
code-based knowledge tracing model for program-
ming tasks, ArXiv abs/2206.03545 (2022).

[20] H. Tian, W. Lu, T. O. Li, X. Tang, S.-C. Cheung, J. Klein,
T. F. Bissyandé, Is chatgpt the ultimate programming
assistant – how far is it?, 2023.

[21] J. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann,
Q. Yang, Why johnny can’t prompt: How non-ai
experts try (and fail) to design llm prompts, in: Pro-
ceedings of the 2023 CHI Conference on Human Fac-
tors in Computing Systems, CHI ’23, Association for
Computing Machinery, New York, NY, USA, 2023.

[22] S. MacNeil, A. Tran, A. Hellas, J. Kim, S. Sarsa,
P. Denny, S. Bernstein, J. Leinonen, Experiences from
using code explanations generated by large language
models in a web software development e-book, in:
Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 1, SIGCSE 2023,
Association for Computing Machinery, New York, NY,
USA, 2023, p. 931–937.

[23] J. Leinonen, P. Denny, S. MacNeil, S. Sarsa, S. Bernstein,
J. Kim, A. Tran, A. Hellas, Comparing code explana-

tions created by students and large language models,
2023.

[24] J. Li, S. Tworkowski, Y. Wu, R. Mooney, Explaining
competitive-level programming solutions using llms,
2023.

[25] E. Chen, R. Huang, H.-S. Chen, Y.-H. Tseng, L.-Y. Li,
Gptutor: A chatgpt-powered programming tool for
code explanation, in: N. Wang, G. Rebolledo-Mendez,
V. Dimitrova, N. Matsuda, O. C. Santos (Eds.), Artificial
Intelligence in Education. Posters and Late Breaking
Results, Workshops and Tutorials, Industry and Inno-
vation Tracks, Practitioners, Doctoral Consortium and
Blue Sky, Springer Nature Switzerland, Cham, 2023,
pp. 321–327.

[26] S. Sarsa, P. Denny, A. Hellas, J. Leinonen, Automatic
generation of programming exercises and code expla-
nations using large language models, in: Proceedings
of the 2022 ACM Conference on International Com-
puting Education Research - Volume 1, ICER ’22, As-
sociation for Computing Machinery, New York, NY,
USA, 2022, p. 27–43.

[27] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea,
H. Gilbert, A. Elnashar, J. Spencer-Smith, D. C.
Schmidt, A prompt pattern catalog to enhance prompt
engineering with chatgpt, 2023.

[28] D. Zhou, N. Scharli, L. Hou, J. Wei, N. Scales, X. Wang,
D. Schuurmans, O. Bousquet, Q. Le, E. H. hsin Chi,
Least-to-most prompting enables complex reasoning
in large language models, ArXiv (2022).

[29] A. B. L. Narayanan, P. Oli, J. Chapagain, M. Hassany,
R. Banjade, P. Brusilovsky, V. Rus, Explaining Code
Examples in Introductory Programming Courses: LLM
vs Humans, Technical Report, AI4ED Workshop @
AAAI 2024, 2024.

[30] J. J. Williams, J. Kim, A. Rafferty, S. Maldonado, K. Z.
Gajos, W. S. Lasecki, N. Heffernan, Axis: Generating
explanations at scale with learnersourcing and ma-
chine learning, in: Proceedings of the Third (2016)
ACM Conference on Learning @ Scale, ACM, 2016, pp.
379–388.

[31] R. Hosseini, K. Akhuseyinoglu, A. Petersen, C. D.
Schunn, P. Brusilovsky, Pcex: Interactive program
construction examples for learning programming, in:
Proceedings of the 18th Koli Calling International Con-
ference on Computing Education Research, Koli Call-
ing ’18, Association for Computing Machinery, New
York, NY, USA, 2018.

[32] J. Sim, C. C. Wright, The Kappa Statistic in Reliability
Studies: Use, Interpretation, and Sample Size Require-
ments, Physical Therapy 85 (2005) 257–268.

https://ceur-ws.org/Vol-3660/paper16.pdf
https://ceur-ws.org/Vol-3660/paper16.pdf

	1 Introduction
	2 Related Work
	2.1 Worked Examples in Programming
	2.2 Use of LLMs for Code Explanations

	3 Prompt Tuning and Internal Evaluation
	4 Evaluation
	5 Discussion
	6 Limitations
	7 Conclusion
	8 Acknowledgments

