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Abstract
Choosing appropriate courses for a semester is a challenging task for undergraduate students. To facilitate the course selection process,
different course recommendation systems have been proposed implementing different machine learning algorithms and techniques.
At the same time, recently, there has been a rapid development of Large Language Models (LLMs) (e.g., GPT4, Llama3, and Gemini),
which have been adopted in numerous applications and have influenced all walks of life. In this paper, we explore their potential
to assist stakeholders in higher education with course recommendation. We explore two different ways to directly (and offline, to
ensure no sensitive data leakage) generate recommendations from pre-trained or fine-tuned LLM models. We also propose a novel
ChatGPT-assisted course recommendation model (GPTaCR) which follows a different methodology. It utilizes the output of ChatGPT to
form rules that capture relationships among courses. Based on these rules, we generate a set of courses for every student to take next,
given their prior enrolment history. We use a real-world dataset to evaluate the performance of our proposed models compared to other
relevant course recommendation approaches. The findings highlight that our proposed manages to best combine the rich knowledge
base of ChatGPT with information about past students’ enrollment history. We hope that this work can be a source of motivation for
researchers to look into how LLMs might improve recommendation performance and other educational data mining tasks.

Keywords
LLMs, Course Recommendation, Course Descriptions, Undergraduate Education,

1. Introduction
In higher education, one of the difficulties faced by students
is to select a set of courses every semester and balance the
course workload within a semester. While selecting courses,
they need to consider degree requirements, prerequisites
of courses, their interests and career choices, and which
courses will build their base knowledge to take more ad-
vanced courses in the future. So, choosing a good set of
courses is a non-trivial task for students. They may get
assistance from the departmental course catalog or other
senior students. However, their insights might not be per-
sonalized to the preferences, experience, and background
of a particular student. Academic advisors can also help,
but in most institutions, the high ratio of students to advi-
sors limits the time and dedication an advisor can devote
to a single student, consequently limiting the usefulness of
their interactions [1]. Due to the lack of proper guidance,
students may not select appropriate courses, which might
have adverse effects on their time-to-degree or retention.

The development of data mining and machine learning
models can assist student advising by generating person-
alized course recommendations for each student based on
insightful analysis of historical data records of past stu-
dents. For example, researchers propose different course rec-
ommendation systems building Markov chains [2] or deep
learning models [3, 4] to analyze students’ course enroll-
ment data and student-course interactions. Besides, natural
language processing (NLP) approaches analyze the topics
and vocabulary available in course descriptions to under-
stand the relationship of different courses [5, 6] and capture
the students’ preferences by inspecting student-course in-
teractions [7].

The fast development of large language models (LLMs)
and their chatbot prototypes like ChatGPT3.5 and Chat-
GPT4 has increased the potential to use NLP approaches for
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solving different real-world problems. After the release of
ChatGPT3.5 in November 2022, generative artificial intel-
ligence (GenAI) has been widely used in different aspects
of life. For example, according to recent articles, 45% job
seekers using GenAI to polish, update, and improve their re-
sumes [8], students feel more comfortable asking an LLM for
explanations rather than talking to a professor or teaching
assistant [9], companies improve their customers’ experi-
ences by providing personalized feedback [10], etc. For the
task of recommendation, different prompting strategies in
LLMs have been investigated to recommend relevant prod-
ucts [11, 12]. The use of ChatGPT has been proposed for
tasks within the educational data mining (EDM) domain, as
well. ChatGPT has been explored for generating mathemat-
ics assessment questions [13], programming learning [14],
fixing programming bugs [15], and major recommendation
to students [16]. To the best of our knowledge, no one
has explored the potential of utilizing ChatGPT for course
recommendation tasks.

In particular, we explore different ways to use LLMs for
the task of course recommendation. We start by using sim-
ple, offline, pre-trained models directly for course recom-
mendation. Next, we consider fine-tuning strategies for
simpler LLMs to enrich the knowledge base with student en-
rolment data. Next, inspired by the association rule mining
technique introduced in [17, 18] for course recommendation,
we explore a rule-based approach where LLMs assist us in
forming rules which will then be used for recommendation.
In our proposed ChatGPT-assisted course recommen-
dation (GPTaCR) system, we generate sets of courses that
are frequently taken together by students. By providing
these sets of courses and different contexts (course names,
acronyms, descriptions), we ask ChatGPT4 to offer us a set of
courses well-suited for students to take next. In this way, we
form rules and use them to generate recommendations for
the students, based on their prior course registration history.
We use real-world data from a US public university. Our
experimental results indicate that ChatGPT understands the
association and relationship of courses by analyzing the
provided prompts. It manages to offer meaningful recom-
mendations with minimal context provided, so it can be a
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useful and practical tool to recommend courses efficiently
and accurately.

2. Related Work

2.1. Course Recommendation
Researchers propose different course recommendation sys-
tems (CRS) for university students by collecting historical
course enrollment data from warehouses [17, 19], course de-
scriptions from departments and collecting students’ inter-
ests, learning goals, and skills by conducting surveys [20, 21].
Numerous CRS have also been proposed to recommend on-
line courses to the users of online course platforms like
Moodle, edX, and Coursera, etc. [22, 23, 24].

For course recommendation in university environments
using enrollment data, an association rule mining algorithm
(Apriori) has been proposed to capture the association of
all courses taken by each student [17, 18]. The idea is to
treat courses as items and generate confident rules. When
a student’s prior courses match the left-hand side of a rule,
the rule is activated, and the consequent courses are used
for recommendation. Matrix factorization models are intro-
duced to recommend courses considering similar students’
preferences for one course over another one [25]. Markov
chain and deep learning models (i.e., long short-term mem-
ory networks) have been used to capture the sequential
transitions of courses taken semester-by-semester [3, 4, 2].

Whereas, NLP approaches focus more on textual infor-
mation (e.g., course descriptions) to calculate similarities
between courses by analyzing the topics and knowledge
components each course covers. Term Frequency–Inverse
Document Frequency (TF–IDF) is the most common tech-
nique to analyze course descriptions and find similar courses
by analyzing how many times a word appears in the docu-
ment of each course [5, 6]. On the other hand, Shao et al. pro-
pose an NLP-based PlanBERT model to recommend courses
for multiple consecutive semesters by considering each stu-
dent’s course history as a sentence where each course is
a word [7]. Since NLP-based tools are more advanced af-
ter the introduction of LLMs and different applications of
conversational modeling, we explore the use of ChatGPT
with different contexts (course names, acronyms, descrip-
tions) to provide personalized course recommendations to
undergraduate students.

2.2. LLMs in Education
Language models have been applied and explored in educa-
tion settings for different topics such as providing personal-
ized feedback and assistance to students [26, 27, 16], generat-
ing course concepts [28], automatic hint generation [29], au-
tomated assessment process [30], grading open-ended ques-
tions [31], generating feedback for programming errors [32],
detecting student talk moves [33], training teachers [34],
nursing training [35], and sentiment analysis task [36], etc.
While many applications provide positive insights and find-
ings, there are some limitations of ChatGPT for doing each
specific task and outcomes are not as good as the results
when humans complete the tasks like feedback generation
and assessments. For example, Botelho et al. observe that
the range of variations that teachers see while giving stu-
dents feedback is not captured by ChatGPT by encoding
students’ responses for comparison [30]. Markel et al. find

Figure 1: Example of the instruction and input format to get
recommendations from the pre-trained Llama-3 model.

that there are limitations in the realism of scenarios when
teaching assistants get training from the chat system [34].
Lekan et al. cannot provide major recommendations to
transfer students using ChatGPT [16]. Moreover, notable
privacy, equity, safety, and ethical concerns surface when
LLMs are used in educational contexts [37].

3. Proposed Approaches

3.1. Direct Use of LLMs - CRwLLM
First, we use an open-source pre-trained base LLM model
to generate recommendations. In this approach, we use the
Llama-3-8B-Instruct model1 provided by hugging face2 to
get inference for our data. Here, we do not use any historical
course enrollment data for re-training or fine-tuning the
model. We just provide all the course codes with course
names and prior course registration history of a student
as one instance (input) and ask the Llama3 model (offline
prompting running codes) to recommend a set of courses
(output) by analyzing the provided information. An example
of the instruction and input format for a target student is
depicted in Figure 1.

We cannot generate recommendations from the open-
source GPT2 [38] model because the input describing an in-
stance (course codes, course names, student’s prior courses)
exceeds the maximum sequence length for this model.

3.2. Fine-tuning LLMs - CRwFine
Alternatively, we can fine-tune LLMs to enrich their knowl-
edge with historical data relevant to our specific task at
hand. A similar approach has also been proposed for item
recommendation [12]. We fine-tune two open-source mod-
els, Llama-3-8B [39] and GPT2 [38] denoting them as CR-
wFine(Llama) and CRwFine(GPT), respectively. We opted
for these LLMs since we can download and easily use them
for free. Alternatively, we could use the APIs offered for fine-
tuning, but that involved uploading training data, which we
did not want to do. By performing the fine-tuning process
completely locally, we do not risk the privacy of student data.
Supervised fine-tuning of an LLM includes the following
steps.
Data preparation: Following the prior work for item

recommendation [12], we use the course registration history
of the students to fine-tune an LLM so that it captures the
historical enrollment patterns. An example of a training
instance we preprocess is illustrated in Figure 2. We use
<|user|> and <|assistant|> tokens to indicate input and output
in each training instance3 where input is the prior course
list of a student and output is the courses taken in the target

1https://ai.meta.com/blog/meta-llama-3/
2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
3https://huggingface.co/blog/llama3
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Figure 2: Example of a training instance for fine-tuning an LLM.

(last) semester. We also provide course descriptions as input
to fine-tune the model to capture the semantic similarity of
courses as described in [40] where there is no output (empty
string) for those texts.

Environmental set-up: We use the transformer library
of hugging face4 to access the base pre-trained language
models (Llama-3-8B and GPT2-1.5B). We use Autotokenizer
to tokenize each word to fine-tune the Llama3 model and
GPT2tokenizer for the GPT2 model. We use BitsandBytes
and parameter-efficient fine-tuning (PEFT) libraries for fine-
tuning efficiently by reducing computing requirements.
PEFT library provides LoraConfig to use QLoRa [41] which
stands for Quantization and Low-Rank adapters. Quantiza-
tion shrinks the size of a base LLM model by saving 8 or
4 bits per parameter (we save 4 bits per parameter). Using
the QLoRa method, we freeze the existing base LLM model
and add some parameter weights (low-rank adapters) to
the model to train which requires less memory and GPU
support.

Train model and inferenceWe define SFTTrainer with
training arguments that include which layers of the base
model to apply the adapters (we choose the attention layer
becausewewant to generate attention scores for each course
to recommend and update the parameters accordingly) and
different hyperparameters like number of epochs, learning
rate, etc. Then we train the base model with our dataset
and use the fine-tuned LLM model for inference. From val-
idation and test sets, we provide a target student’s prior
courses as input, keep the output empty, and then gener-
ate recommended course list as output from the fine-tuned
model.

3.3. Indirect Rule-Based Approach -
GPTaCR

The next step we could explore is to use a more recent and
powerful LLM, e.g., ChatGPT4. However, we cannot enter
students’ registration history in ChatGPT4, as that would
violate student privacy, so we introduce two alternative ap-
proaches. Inspired by the association rule mining (ARM)
approaches for course recommendation, we want to gen-
erate rules in the form of 𝑋 → 𝑌, where 𝑋 represents a
prior course or frequent sets of courses (course sets) and 𝑌
represents the output collected by ChatGPT4 when asked
to suggest future courses for a student that has taken the
courses in𝑋. Based on the overlap of𝑋with the past courses
that a student has taken, we generate the recommendations
in a similar manner as in ARM. Our GPTaCR model and its
steps are illustrated in Figure 3.

In theGPTaCR-1C approach, we provide one course as a
prior course of a student and ask ChatGPT4 to suggest a set
of courses that are relevant to this course by analyzing pro-
vided contexts (course names, acronyms, and descriptions).
In this way, we generate suggestions for all the available

4https://huggingface.co/docs/transformers/en/index

Figure 3: Proposed GPTaCR-1C and GPTaCR-FCS models

courses which means we get 618 rules for 618 courses in
our dataset.

For theGPTaCR-FCSmodel, we use the students’ course
registration history to generate frequent course sets. We
consider courses to be the items, and each student’s course
history over all the semesters is one transaction. Based on
all transactions in the training data, we use the concept
of ARM to generate frequent itemsets (FI), i.e., the course
sets with support greater or equal to a minimum support
threshold. Here, each FI consists of one or more courses
frequently taken together. We also generate and tested the
maximal frequent itemsets (MFI) where all the subsets of a
frequent itemset are removed (i.e., if {c1, c2, c3} is a MFI, we
do not consider its subsets, i.e., {c1, c2}, {c2, c3}).

While the number of FI (or even of MFI) that we get from
the previous step can be quite high, we need to reduce them
and make it more practical for us to test those course sets
with ChatGPT. At the same time, it is desirable for the course
sets to cover as many unique courses as possible. As a result,
we cannot simply use a higher minimum support threshold
to get fewer FI, as in this case, the coverage of courses will
be very poor. What we do is randomly sample course sets
from FI or MFI to use them as input in ChatGPT4 prompts.
While sampling, we have almost as many unique courses as
in the sampled frequent itemsets and the average length of
itemsets remains similar to FI or MFI.
Prompt ChatGPT and form rules: For each possible

course set 𝑋 of the previous step, we use ChatGPT4 [42] to
generate suggestions for courses to take next after taking
the courses in 𝑋. We use a zero-shot prompting strategy
whichmeanswe provide different contexts (i.e., course codes
and names, different acronyms of courses, and course de-
scriptions) and a course set 𝑋 and ask ChatGPT4 to suggest
new and diverse sets of courses (𝑌) that a student could
take without provide any examples from the training data.
We ask for an estimate of its confidence (∈ [0, 1]) for each
instance. By collecting ChatGPT’s output, 𝑌, we form the
rules 𝑋 → 𝑌 where prior courses of a student are on the
antecedent part and the suggested courses from ChatGPT4
are on the consequent part.

A rule gets activated if its antecedent part is matched
(using a % of match threshold) by a student’s prior courses.
From each activated rule, we examine two possibilities re-
garding courses that we could recommend: first, consider
only the courses in consequent sides 𝑌 of the activated rules,
or secondly, also consider the unmatched courses in an-
tecedent part 𝑋 of the activated rules.
Scoring rules: We use three different ways to calculate

the score of a course to recommend. (i) We use the confi-
dence values estimated by ChatGPT4 for a rule to compute
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the recommendation score for each course of the activated
rules. (ii) We count how many times an unmatched course
appears on any side of the activated rules and the total count
is the recommendation score for that course. We denote this
scoring rule as the baseline-counting. (iii) We use the match-
ing ratio and a parameter (𝛽) to indicate from which side
of the activated rule an unmatched course is recommended
to compute the recommendation score of that course. The
formula for calculating the score of a recommended course
from any side of the rule is as follows:

Score (𝑐) = {
𝛼 +match ratio ∗ 𝛽 if 𝑐 ∈ RHS
𝛼 +match ratio ∗ (1 − 𝛽) if 𝑐 ∈ LHS

(1)

where 𝑐 is the unmatched course in an activated rule, 𝛼 ∈
[0, 1] and 𝛽 ∈ [0, 1] are hyperparameters. 𝛼 captures a course
score that should always be added for courses in activated
rules. If 𝛽 is small, then gives a higher score for unmatched
courses in the LHS. We sum up the scores of each course
over all the activated rules to get the final recommendation
score of each candidate course.

Rule-based course recommendation: After using any
of the scoring methods, we have a recommendation score
for each course. We finally recommend the courses with the
highest recommendation scores. If no rule gets activated
for a student, we recommend popular courses which were
not been taken by that student before.

In ChatGPT4, we create a customized GPT4 chat, write
instructions, and examine two cases when providing dif-
ferent contextual information, as shown in 4. In the first
case, CNames, we provide only the available list of courses
from our training data (i.e., course codes and their names)
as context, and ask for suggestions. In the second case,
CNames+Desc, we provide additional context by uploading
separate files in the knowledge part: the available list of
courses, definitions of different acronyms of courses, and
available course descriptions. In both methods, we provide
15 students’ information at a time, generate suggestions for
them and collect the rules. Under additional chat settings in
ChatGPT4, there is an option to use conversational data to
improve the model which we unselect, as recommendations
for later students may get biased and ambiguous by previous
course sets and suggested courses from ChatGPT4.

4. Experimental Evaluation

4.1. Dataset
We collected a real-world dataset from Florida International
University, a public university in the US, that includes the
course enrollment history of undergraduate students of the
Computer Science Department for nearly nine years. As
our recommendation should represent good practices, we
solely take into account the information of students who
have earned a degree, and we eliminate instances where a
student had a grade lower than a C in a course. We also elim-
inate any dropped courses from students’ histories. Courses
that show up in our dataset fewer than three times are elim-
inated. Following preprocessing, we have 3328 students’
course enrollment histories and 647 distinct courses. Then,
we split the dataset into 3 sets: training, validation, and
test sets, with 2973, 1231, 657 students and 618, 540, 494
unique courses, respectively. For testing, we use the last
three semesters and the preceding three semesters are used
for validation andmodel selection. The remaining semesters

Figure 4: Provided prompts in ChatGTP4.

are retained in the training set. In the validation and test
sets, we eliminate the courses that are not available in the
training set because some models can not recommend these
new courses. Moreover, we eliminate any students who
took courses in less than three semesters, as we require
the records from at least the last two semesters in order
to produce recommendations for a student. Finally, there
are 618 unique courses retained in training, validation, and
test sets. Each student may be associated with more than
one instance, one for each potential target semester with
a prior history length of at least 2 semesters. Additionally,
we collect course names, descriptions, and definitions of
acronyms for each course in our dataset from the univer-
sity’s undergraduate catalogs.

4.2. Experimental Setup
For fine-tuned LLM models, we follow the experimental
setup as described in the Subsection 3.2. The CRwLLM and
CRwFine methods did not have any external hyperparame-
ters that we needed to tune.

For the GPTaCR-1C model, we explore different numbers
of suggested courses from ChatGPT4 = [3, 4, 5], recommend
from only the consequent part (because we have just one
course in the antecedent part that is matched with a stu-
dent’s prior course history to activate a rule) and different
prior course histories = [all, last 2 semesters, last 1 semester]
of each student. We also use two different scoring rules: 1)
baseline-counting as described for the GPTaCR-FCS model
and 2) calculating the score based on the semester at which
the matched course was taken by the student. In this case,
we provide higher priority (more weight) if the course was
taken in a recent semester.

For the GPTaCR-FCS model, we repeat our experiments
three times and report the average statistics and measures in

4
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Table 1
Statistics of frequent itemsets and maximal frequent itemsets
for different support values. Here, min supp: minimum support,
#c: number of unique courses, and avg len: average length of
itemsets.

min
supp

FI MFI
#sets #c avg len #sets #c avg len

0.05 2080934 71 9.2 ± 2.1 5572 71 9.4 ± 3.0
0.1 128918 48 7.3 ± 1.9 1515 48 7.3 ± 2.4
0.15 23572 43 6.3 ± 1.7 517 43 6.6 ± 2.4
0.2 4212 35 4.7 ± 1.4 276 35 5.5 ± 1.7
0.25 919 28 3.7 ± 1.2 119 28 4.4 ± 1.2
0.3 330 21 3.4 ± 1.3 43 21 3.8 ± 1.6

Table 2
Statistics of average number of frequent itemsets and maximal
frequent itemsets after random sampling (minimum support =
0.1). Here, #c: number of unique courses.

#samples
FI MFI

#c
avg
length

#c
avg
length

700 43.0 7.3 ± 2.0 45.7 7.3 ± 2.4
600 42.3 7.3 ± 2.0 45.3 7.4 ± 2.4
500 42.0 7.3 ± 2.0 45.0 7.3 ± 2.4
400 41.0 7.3 ± 2.0 45.7 7.4 ± 2.4
300 40.3 7.3 ± 2.0 44.7 7.3 ± 2.5

this paper, as we use sampling to limit the number of course
sets. We do so to capture any variability of the results caused
by the sampling and to ensure that the results are accurate
and representative.

For our first step, we apply the Apriori algorithm for
frequent itemset generation from mlxtend [43] based on a
minimum support threshold. The statistics of FI and MFI
for different threshold values are presented in Table 1. We
notice that even with the lowest threshold of 0.05 which
results, only 71 (out of the 618) courses are present in two
million itemsets. Moving forward, we set the minimum
support threshold to 0.1, as it manages to cover 48 courses
with 1/16 of the itemsets. During the sampling step, we
randomly select from 300 to 700 samples from either FI or
MFI. The sampled course sets from FI might be shorter and
less specific, allowing their easier activation from students’
past histories. On the other hand, MFI will consist of the
longest possible frequent sets of courses, so there will be
no potential for overlap between the rules sampled. Statis-
tics of the FI and MFI (with minimum support = 0.1) after
sampling are presented in Table 2. We notice that for 700
samples, the average length of the course sets is similar
for all the sets and the sampled ones. However, there are
5 and 2 fewer courses present in the FI and MFI samples,
respectively. Next, for each course set, we ask ChatGPT4 to
suggest {2, 3, 4, 5} courses.

In the last step, using the rules, we generate recommen-
dations and we explore different parameters that affect the
process. We test the percentage of match threshold = [20, 30,
40, 50, 60, 70] to activate a rule based on the prior course his-
tory of each student when considering 1) all prior semesters,
2) the last two semesters, and 3) only the last semester.
After that, we recommend new courses from 1) only the
consequent part, and 2) the consequent and unmatched an-

tecedent parts of the activated rule. For the third type of
scoring rule that depends on matching ratio and sides of
the activated rules, we have explored different values of 𝛼 =
[0, 0.001, 0.01, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45] and 𝛽 =
[0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6].
Course recommendation: For all the models, we rec-

ommend the courses with higher recommendation scores
for the target semester. Following prior work [4, 2], we use
a post-processing step where we remove any courses that
the student has taken in the past or that are not offered for
the target semester. Then, we recommend top 𝑘 courses to
each student where 𝑘 is the number of courses the student
wants to take in the target semester.

4.3. Evaluation Metrics
As in prior work [3, 4, 2], our primary evaluation metric is
the Recall@𝑘 score, where 𝑘 is the number of courses a stu-
dent wants to take in the target semester. Recall computes
the fraction of the target semester’s courses that we recom-
mended correctly. Since we recommend as many courses
as a student plans to take in the target semester, recall and
precision scores are equal in our case. Additionally, we com-
pute the percentage of students to whom we can provide
at least one relevant recommendation, %1+ rel [2]. Finally,
we also present the number of instances for which students’
history did not activate any rules, as in those cases, we
can not generate personalized recommendations, so we just
recommend the most popular courses.

4.4. Competing Approaches
We evaluate our models compared to other baselines and
competing approaches that similarly use relevant data. For
example, we do not consider methods that might use grading
information. We particularly focus on comparing competing
approaches that process the textual information in some
form.

PopInTerm We implement a popularity-based approach
as the baseline for course recommendation [44]. We use
the students’ course enrollment history available in training
data to build this model. For each student, we start from
the first semester and count how many students take a
specific course in the first semester of their studies and do
the counting for courses taken in the second semester and
so on. The courses with the highest frequencies at the 𝑡-th
semester are recommended for a student’s 𝑡-th semester.

Association Rule Mining (ARM) As described in prior
work [17, 18, 23], we implement an ARM approach, but we
do not cluster the students based on their grades in prior
courses, as we do not use grade information anywhere else.
We consider each student’s course history as one transaction.
We implement the Apriori algorithm using scikit-learn [45]
to generate high-confidence rules. For the recommendation
part, we use the same process as described in our proposed
approach, utilizing the confidence values generated by the
Apriori algorithm for each rule. We explore minimum sup-
port = [0.10, 0.15, 0.20, 0.25] to generate itemsets, confidence
threshold = [0.3, 0.4, 0.5, 0.6] to consider a rule, % of match
threshold = [40, 50, 60, 70] to activate a rule matching with
all prior courses of a target student. Similar to our work,
we also explore recommending new courses from the conse-
quent only and from both sides of an activated rule, which
is not proposed in prior work.

5
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TF-IDFWe implement the TF-IDFmodel using the course
descriptions for all courses to recommend similar and rel-
evant courses [5, 6]. Each course description undergoes
preprocessing, which involves converting text to lowercase,
removing patterns and special characters, tokenizing the
text into words, removing stopwords, and then lemmatizing
the words to their base forms using nltk [46]. This step is
critical for cleaning the text and reducing it to its essential
content. Next, the course descriptions are transformed into
numerical representations using TF-IDF, which captures the
importance of each term within the course descriptions rel-
ative to their frequency across all descriptions. To compute
the recommendation score of each course, we average over
the cosine similarity between that course and prior courses
taken in 1) all prior semesters, 2) the last two semesters, and
3) only the last semester of the target student.
PLANBERT We re-implement the PLANBERT model

which is also a language model proposed in [7]. In this
model, we do not use any future reference courses like the
proposed model, only use the course enrollment data to
train the model to capture historical course enrollment pat-
terns. We make one sentence with all the courses taken by a
student to prepare each instance of the training data. Then,
we use the pre-trained DistilBERT model from the Hugging
Face5 and fine-tune it with our data. Using the data collator
for Language Modeling6, we tokenize the words including
some masked tokens where 𝛼 = [15, 20, 25] percent tokens
(randomly chosen) are masked in each batch of data. Then
we fine-tune the model with the training data where the
masked tokens are the tokens to be predicted. To recom-
mend, we use each student’s previous courses to construct a
single sentence and at the end of each sentence, we include
a masked token. The fine-tuned PLANBERT model predicts
and generates a score for each candidate course to be rec-
ommended for the upcoming semester. The courses with
higher scores are recommended to each student.

5. Results

5.1. Performance Comparison
Table 3 presents the performance comparison between
CRwLLM, CRwFine, GPTaCR models, and other existing
approaches. Our proposed GPTaCR-FCS model (which
uses the CNames+Desc context) outperforms the other ap-
proaches in all the metrics. It utilizes the power of ChatGPT
for textual analysis. GPTaCR-FCS also performs better than
the ARM and PLANBERT models for the test data provid-
ing slightly better recall (0.298) and %1+ rel scores (58.14%).
ARM is already a well-established algorithm that captures
all the associations among items present in the historical
data since it considers all the high-confidence rules. In our
approach, we partially and indirectly consider student en-
rollment data (only through the frequent course sets used).
The method takes into account enrollment patterns. We can
recommend the unmatched courses from the left-hand side
of the rule, which includes the frequent course sets.

We observe a fine-tuned LLMmodel, CRwFine(llama) pro-
vides a better validation recall score than the GPTaCRmodel
whenwe use only course enrollment data to re-train the base
model. However, at the same time, the test performance

5https://huggingface.co/learn/nlpcourse/chapter7/3?fw=tf
6https://huggingface.co/docs/transformers/main_classes
/data_collator#transformers.default_data_collator

Table 3
Performance comparison of the proposed GPTaCR approach, fine-
tuned LLMs, and competing approaches in terms of Recall@𝑘
and %1+ rel scores. CEnrol: Course enrollment, CDesc: Course
descriptions, CNames: Course names, bothEN: CEnrol+CNames,
bothND: CNames+CDesc, all: CEnrol+CNames+CDesc.

Model Data used
Recall@𝑘

%1+ rel
Valid Test

PopInTerm CEnrol 0.160 0.104 26.21
TFIDF CDesc 0.047 0.058 15.65
PLANBERT CEnrol 0.341 0.273 55.60
ARM CEnrol 0.358 0.292 56.31
CRwLLM bothEN 0.049 0.043 11.83
CRwFine(Llama) CEnrol 0.354 0.266 52.74
CRwFine(Llama) all 0.323 0.250 51.87
CRwFine(GPT) CEnrol 0.345 0.258 51.87
CRwFine(GPT) all 0.339 0.254 48.93
GPTaCR-1C bothND 0.151 0.135 33.36
GPTaCR-FCS all 0.342 0.298 58.14

Table 4
Effects of different hyperparameters in GPTaCR-1C model. Here,
RHS = right-hand side of a rule. The second row corresponds to
the best overall model, while the other rows have the best model
for the listed parameter.

RHS
size

History
used

Scoring
rule

Recall@𝑘
%1+ rel

Valid Test

4 all
course-
taking

semester
0.151 0.135 33.36

5 0.134 0.100 24.15
3 0.101 0.100 24.63

last 2 0.155 0.133 32.65
last 1 0.143 0.113 27.40

baseline-
counting 0.155 0.133 32.65

is significantly lower, indicating that the fine-tuned recom-
mendations do not generalize well for unseen instances.
Interestingly, when we use both course enrollment and de-
scription data in the fine-tuning process, the performance of
both fine-tuned models degrades. This happens because for
each instance, we havemuchmore text, and themodel might
have trouble focusing on the most relevant information.

Overall, while we partially use student enrolment data
and provide limited course information, ChatGPT4 can build
reasonable recommendations by taking advantage of its vast
knowledge base. Fine-tuning an LLM is a potential solution
to utilize all the course enrollment data by using them of-
fline preserving the privacy of students but we might need
more powerful LLMs to handle all the relevant informa-
tion. The performance of our proposed models serves as a
proof of concept and a first look into LLM’s capabilities in
recommendation tasks in education.

5.2. Effects of Hyperparameters in GPTaCR
Since the GPTaCRmodels perform the best, we further delve
into how they are affected by different hyperparameters. We
present the effect of different hyperparameters of GPTaCR-
1C model in Table 4. We observe best test Recall@𝑘 and
%1+ rel scores by asking ChatGPT4 to suggest 4 courses,
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Table 5
Effects of different hyperparameters in GPTaCR-FCS model. Here, RHS = suggested courses from ChatGPT in the consequent
part of a rule. The second row corresponds to the best overall model, while the other rows have the best model for the listed
parameter.

Provided
Context

Sample
size

RHS
size

% of
match

History
used

Rules’
side
used

Scoring
Recall@𝑘

%1+ rel

Cases
not

covered
Valid Test Valid Test

CNames+
Desc 600 3 30 all both matching

ratio 0.342 0.298 58.14 12.7 2.0

CNames 0.332 0.290 56.90 16.0 3.7
700 0.343 0.293 55.53 12.3 2.0
500 0.336 0.294 57.72 15.7 2.7
400 0.340 0.294 57.61 22.7 4.3
300 0.332 0.296 57.72 32.0 6.0

5 0.338 0.290 57.29 14.0 2.0
4 0.331 0.292 56.9 57.3 9.0
2 0.336 0.298 57.82 19.3 3.3

20 0.340 0.288 56.45 31.7 23.0
40 0.338 0.294 57.53 36.7 7.3
50 0.329 0.289 56.74 82.0 13.0
60 0.296 0.269 54.01 227.0 24.7
70 0.280 0.250 51.92 332.3 50.0

last 2 sem 0.340 0.288 56.45 31.7 23.0
last 1 sem 0.303 0.240 49.11 206.0 156.0

RHS 0.086 0.101 24.91 426.0 65.7
ChatGPT 0.335 0.295 57.61 14.3 3.0
baseline-
counting 0.337 0.294 57.61 12.3 2.0

using all the history of a student to match with the one prior
course (LHS) of a rule and scoring based on course-taking
semester. We observe the biggest variability for the size
of the right-hand side, while the scoring method does not
dramatically change the results.

We present the effects of different hyperparameters of
the GPTaCR-FCS model in Table 5. In the second row, we
present the best set of hyperparameters for whom we get
the best Recall@𝑘 and %1+ rel scores. The performance
observed refers to the case when we use FI samples rather
than MFI samples. In the latter case, we get test recall 0.277
and %1+ rel 54.83%. One reason is that students manage to
activate more rules in FI samples rather than in MFI, result-
ing in more reliable recommendations in the end. Moving
forward, wewill only present results and discuss approaches
that sample from FI.

In the other rows of Table 5, we present the best scores for
each parameter value where empty cells indicate the best
possible hyperparameters for the parameter noted in that
row. First, we can see that we get the best scores when we
use more contexts (course names, acronyms, and descrip-
tions) than only using course names. The improvement in
performance though is quite limited, indicating that Chat-
GPT4 uses its existing knowledge to infer the topics covered
by only using the course names. As a result, when we add
the course descriptions, we do not get a significant improve-
ment.

Second, we observe better performance when we use
more samples (best validation recall using 700 samples and
best test recall using 600 samples). It is understandable that
if we use fewer samples (and consequently, fewer rules), we
get more instances with few or no activated rules, leading to
unreliable recommendations. Third, we get the best scores
with 3 courses suggested by ChatGPT4, while the other
values have similar performance. A total of 3 courses in a

semester are also commonly taken by the students of our
dataset. When we ask ChatGPT4 to suggest more than
3 courses, it may suggest some less relevant courses and
overall recall scores become lower.

Fourth, we can see better performance when using the
lower percentage of thresholds (20, 30, 40) of matching the
antecedents of the rules with the students’ prior courses.
One possible reason could be that the more we increase
the match threshold, the fewer rules activated, resulting in
diminished recommendation performance. Fifth, we also ex-
amine the best performance achieved when we consider all,
the last 2, or only the last semester of a student’s registration
history to match it to the rules. The results indicate that the
more history we use, the better results we will get. When
we use all history, we manage to match more rules, result-
ing in better performance and a lower number of instances
for which we cannot offer personalized recommendations.
Sixth, we get much better results when we use both sides of
the activated rules to recommend courses to a student, i.e.,
both the consequent courses and any unmatched courses
in the antecedent that the student has not taken yet. This
indicates that the frequent course sets capture important
historical trends in the enrolment data about which courses
are commonly taken together. This is an indirect way of
taking into account student-course interactions.

5.3. Discussion and Limitations
We need to acknowledge some limitations existing when
using ChatGPT to build a recommendation system for uni-
versity students. Firstly, we need to be very careful when
using sensitive student data. As mentioned before, we can-
not directly put real-world student-course interactions to
ChatGPT4 due to privacy concerns about students’ data. Sec-
ondly, it might be tricky to track what part of the provided
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information ChatGPT4 uses to generate the recommenda-
tion. These tools have a particular limit on the length of text
that they can process, and it can be hard to track this when
interacting with the tool. If someone is not careful, Chat-
GPT might return suggestions while forgetting information
provided earlier, resulting in meaningless output. That is
even more common when using ChatGPT3.5. Additionally,
LLMs suffer from hallucinations sometimes, which in our
case could mean suggesting invalid course codes. In our
experiments, we noticed this phenomenon only when our
prompts had too long input character length. Once we took
care of that, we checked but did not notice any hallucina-
tions again. In general, someone should validate the output
to ensure the outcomes are meaningful.

Third, for the confidence scores provided by ChatGPT4,
we do not have a clear idea about how they are calculated,
so they are not very reliable, as shown by our results (since
the other scoring methods perform better). Finally, LLMs
do not offer reliable recommendations when provided with
just course content and one student’s registration history.
This serves as a warning for the students who might try to
directly use an LLM with their own data.

6. Conclusion
Our goal is to explore ways to utilize LLMs for the task of
course recommendation. ChatGPT4 can understand con-
versational text data and analyze the provided context to
suggest relevant courses. We evaluate direct methods for
recommendation, where we directly offer information to the
model and request recommendations for the next courses
a student should take. We also introduce a novel frame-
work that uses ChatGPT4 to create rules between prior and
future courses. We also explore providing different con-
texts (course names, acronyms, and course descriptions) to
ChatGPT4 so that it can find relevant and related courses.
Our results highlight that when using directly ChatGPT4,
we might not have relevant recommendations, but our pro-
posed approach manages to better capture semantic infor-
mation on course information and the insights provided by
historical enrollment data. Based on our work, we believe
more research is needed to explore the LLM capabilities in
course recommendation. We hope to inspire other EDM
researchers to consider LLMs for different problems in edu-
cational settings.
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