CEUR-WS.org/Vol-3840/L3MNGET24_paper5.pdf

C

CEUR

Workshop
Proceedings

Learning from Teaching Assistants to Formulate Subgoals for
Programming Tasks: Exploring the Potential for Al Teaching
Assistants

Changyoon Lee*", Junho Myung®*, Jieun Han®*, Jiho Jin™* and Alice Oh’

'Korea Advanced Institute of Science Technology (KAIST), 291 Daehak-ro, Yuseong District, Daejeon, South Korea

Abstract

Active formulation of subgoals in problem-solving is an effective learning strategy for programming learners, allowing the transfer
of knowledge across similar problems. Although proper guidance and feedback for learners are crucial to correct mistakes and
misconceptions during subgoal formulation, providing them at scale is challenging and costly. With recent advances in generative Al,
we investigate the practicality of using generative Al as TAs in programming education by examining their effectiveness in a subgoal
learning environment. We explore whether programming learners can distinguish AI TAs from humans. In a long-term study, we
explore whether the subgoal learning workflow with AI TAs yields learning gains and assess their capability to assist in coding the
subgoals into executable programs. Our study shows that learners can distinguish AI TAs from human TAs based on response length
and accuracy. Learners show learning gains over learning sessions with Al TAs in formulating subgoals and can produce code solutions
faster with comparable satisfaction scores with AI TAs as human TAs.

Keywords

Generative Al, CS Education, Human-Al Interaction, Subgoal Learning

1. Introduction

Students taking introductory programming courses are ex-
pected to learn various programming concepts such as de-
bugging, designing algorithms, techniques in programming,
and computational thinking [1, 2]. Having to learn these
new concepts in a single course presents difficulties to the
learners [3], and if they are not appropriately alleviated,
learners may lose motivation and even drop out of the course
[4, 5]. Teaching assistants (TAs) play a crucial role in al-
leviating these difficulties by correcting learners’ miscon-
ceptions and fixing errors in their code, enhancing their
overall learning gain [6, 7, 8]. With a sufficient number of
TAs, learners can receive individual care by getting help
in solving programming tasks and clarifying programming
concepts [9, 10], but TAs are costly.

With recent advances in generative Al and Large Lan-
guage Models (LLMs), the educational field has discovered
some exciting opportunities for assisting learners. In the
context of programming education, recent large generative
models such as ChatGPT!, LLaMA [11], and Bard? show
a remarkable ability to understand, generate, and explain
code, making them strong candidates for TAs in program-
ming courses [12]. They can fix and explain errors present
in the code and discuss possible approaches to solve var-
ious programming tasks. AI coding assistants have been
shown to relieve the cognitive load and struggles of learn-
ers, allowing them to perform better and faster in solving
programming tasks [13].

We introduce the concept of subgoal learning to novice
programming learners with the aid of AI TAs. Subgoal
learning is well known to be an effective learning strategy in

Educational Datamining "24 Human-Centric eXplainable Al in Education
and Leveraging Large Language Models for Next-Generation Educational
Technologies Workshop Joint Proceedings, July 13, 2024, Atlanta, GA

*“Corresponding author.

"These authors contributed equally.

& changyoon lee@kaist.ac.kr (C. Lee); i.tiddi@vu.nl (J. Myung);

jieun\protect\TU_han@kaist.ac.kr (J. Han); jinjh0123@kaist.ac.kr

(J. Jin); alice.oh@kaist.edu (A. Oh)

Atrion 30 mcrmatondy (0 By g0y < Permied under Creahe Commons Licnse
https://chat.openai.com/

*https://bard.google.com/

the STEM domain by helping students break down complex
problems into smaller counterparts [14], which remains
important for a programmer even with the aid of generative
Al to code. Through a series of experiments, we observe
the effect of our learning workflow and investigate how
learners perceive and interact with the AI TAs.

We first determine how learners embrace AI TAs when
they divide the task into subgoals, through which learners
are expected to develop computational thinking skills. We
observe learners’ expectations of Al and human TAs and
how learners differentiate them. In a month-long study
where learners formulate subgoals for programming tasks
with the help of Al TAs, we investigate the learning effect
of AI TAs during the subgoal formulation exercise. Finally,
we compare the Al and human TAs in a between-subject
study with 20 novice programming learners. Learners solve
4 programming tasks with the aid of either an AI TA or a
human TA. We assess AI’s ability to help plan an algorithm
and write the code for it within our learning workflow. We
examine learners’ perceptions of conversation satisfaction
with the TA.

Although learners’ expectations of the TAs’ response time
vary, they correctly anticipate that the Al may be occasion-
ally inaccurate and produce lengthy responses. This allows
nearly all learners to differentiate between Al and human
TAs accurately. Al TAs show the capability to help learners
produce more accurate and detailed subgoals over time and
to review learner-generated subgoals in comparison to the
correct subgoals. Learners assisted by the AI TA demon-
strated faster problem-solving and attempted more tasks,
achieving comparable scores for the assigned tasks. In the
survey, learners reported that Al TA’s replies were prompt,
sufficiently detailed, and helpful throughout the workflow.
Moreover, learners were satisfied with the conversation with
the Al and perceived that it was generally uncomplicated
and helpful for learning programming. However, the AT’s
tendency to offer answers and occasionally break down calls
for careful consideration before its deployment.

mailto:changyoon.lee@kaist.ac.kr
mailto:i.tiddi@vu.nl
mailto:jieun\protect \TU _han@kaist.ac.kr
mailto:jinjh0123@kaist.ac.kr
mailto:alice.oh@kaist.edu
https://creativecommons.org/licenses/by/4.0/deed.en

Changyoon Lee et al. CEUR Workshop Proceedings

2. Related Works

2.1. Subgoal Learning

Subgoal learning is a method designed to assist students in
breaking down complex problem-solving procedures into
smaller structural components within the STEM domain
[14]. In the context of programming education, subgoal
learning is known to help reduce the extraneous cogni-
tive load of the learners, thereby enhancing their problem-
solving performance [15, 16].

The effectiveness of subgoal learning is further ampli-
fied when implemented as an active learning strategy. The
passive learning approach was found to be less effective
compared to self-directed learning methods, which involve
self-reflection and explanation of the hierarchical structure
of the solutions [17, 18]. Yet, proper guidance or feedback
is necessary to correct learners’ misconceptions of the con-
cept when creating subgoals by themselves [18, 19]. With
the advances of Al models, guiding learners in the process
of self-labeling subgoal tasks with Al has become possible.
However, no previous work has explored such applications.

2.2. Generative Al for Programming
Education

Generative Al exhibits remarkable performance in various
programming tasks, such as code summarization [20], code
generation [21, 22], and even code explanation [23]. This
recent advancement in generative Al opens up numerous
opportunities to support programming education. Novice
learners can gain a deeper understanding of basic program-
ming concepts with line-by-line code explanations gener-
ated by LLMs [24]. They can also receive feedback and
detect bugs before they submit their assignments for grad-
ing [25]. The nearly instantaneous provision of feedback
and explanations makes generative Als more accessible and
convenient for learners than human instructors. Yet, to the
best of our knowledge, examining the performance of LLM
compared to human TA has been underexplored, and exist-
ing literature exploring how to optimally leverage LLMs as
TAs is only emerging, especially in programming education.

3. Methods

While generative Al can nearly produce perfect code for a
program given its descriptions [21, 22], learning computa-
tional thinking, designing the solution, and understanding
and debugging code remain important for a programmer [1].
Thus, we design a learning workflow that focuses on help-
ing learners practice computational thinking and planning
out the solution to a programming task with the help of an
AITA.

In our learning workflow, novice learners with little to no
programming experience break down a programming task
into smaller and more manageable subgoals with the aid of
a TA via a chatting interface. Learners are provided with the
task description that includes the task requirements, sample
inputs, and sample outputs. Learners converse freely with
the TA to develop subgoals for the task. After they formu-
late the subgoals, they review their subgoals by comparing
them with the model answers for the subgoals. Within this
learning workflow, we conduct three sets of experiments to
answer three research questions:

1. How do learners embrace the AI TA and what are
their expectations of Al and human TAs?

2. Can the AI TA help learners achieve learning gains
in subgoal learning tasks?

3. How does the AI TA compare to the human TA in
helping to formulate subgoals and solve program-
ming tasks?

3.1. Participants

We recruited participants in their 20s and 30s who reside
in Korea with little to no experience in programming by
posting advertisements in online university communities.
Participants self-reported their proficiency in programming
on a 5-point Likert scale. We selected participants with re-
ported proficiency levels of 3 and below for our experiments
for research questions 2 and 3, which measure learners’ abil-
ities in solving programming tasks. All participants used
Korean for communication.

3.2. Generative Al-powered TA

We used the latest ChatGPT at the time of the experiment
(gpt-3.5-turbo-1106 for experiments 1 and 2, and gpt-3.5-
turbo-0613 for experiment 3) as the model behind the AI
TA since ChatGPT can handle conversational text data and
performs better on programming when prompted in non-
English language compared to other models such as Codex
[26]. The default temperature of 1.0 was used. In all the
experiments, the task description was provided to the model,
and the model was prompted not to directly provide answers,
i.e. the correct subgoals or code, as it can interfere with
learning by removing the opportunity for the learners to
practice producing the answers independently. The full
prompt texts can be found in Appendix ??

3.3. Experiment 1: Learners’ Expectations of
Al and Human TAs

It is important to understand if learners can distinguish Al
TAs and how they respond differently to TAs when using
AI TAs for education. We explore if learners can distinguish
between Al and human TA in the subgoal formulation activ-
ity based on their expectations of each TA’s behavior, and if
they can, what characteristics separate the two. We recruit
12 learners who formulate subgoals for six programming
problems with the help of either a human or AI TA, unaware
of which TA is aiding them. Half of the learners are assigned
to AI TA, while the other half are assigned to human TA.
The recruited human TA has four years of experience as
TAs in computer science courses. The TAs are instructed
to help the learners create subgoals by providing hints, reit-
erating the subgoals, and giving feedback on the subgoals.
To ensure the distinction between the AI and human TA
isn’t too obvious, we instruct the human TA to respond with
only one message at a time, and we add a 500-millisecond
delay per word for the AI TA’s response. The one-message
restriction is designed to impose as little restriction as pos-
sible on the human TA while preventing the students from
distinguishing the two types of TAs simply by the number
of messages. After the subgoal formulation activity, learn-
ers participate in a survey that asks which TA they think
helped them, which of the speed, length, accuracy, style of
the response, or another factor leads them to their choice,
and the explanation for their choice.

Changyoon Lee et al. CEUR Workshop Proceedings

Category (Score) | Definition

Prestructural (1)

Subgoals are copies of the task description or represent incorrect interpretations of the task.

Unistructural (2)

Subgoals represent the correct approach to the task, but include significant errors or major details are missing.

Multistructural (3)
the program structure.

Subgoals can form correct solution to the task, but includes minor errors or unnecessary steps that disturbs

Relational (4)

Subgoals form nearly correct solution without error and the structure is solid, but small details are missing.

Extended (5)

Subgoals are perfect and detailed, and represents programming concepts such as loops and conditionals.

Table 1

Adaptation of SOLO taxonomy to computing education. Definitions are adapted to fit subgoal formulation for problem solving.

3.4. Experiment 2: Learning Gains from
Subgoal Learning Workflow with Al TA

We conduct a four-week experiment to assess the AI TA’s
efficacy in assisting learners to generate a more compre-
hensive and accurate set of subgoals within our learning
workflow. We recruit 20 novice learners who are given
three programming tasks per session over 8 sessions. In
each session, learners formulate subgoals for the given task
with the aid of the AI TA. We design the experiment such
that the programming tasks extracted from a crowdsourcing
platform® increase in difficulty from the first session to the
subsequent sessions to present challenges to the learners
over time.

The AI'TA is directed to offer hints to the learner, compile
learner-generated subgoals in each response, and correct in-
accuracies until the subgoals are deemed sufficient to solve
the task and meet the learner’s satisfaction. We create model
answers for the subgoals by instructing ChatGPT to formu-
late the subgoals for the programming tasks. The authors
review and revise the generated subgoals to ensure accu-
racy and consistent formatting. ChatGPT’s performance in
generating the subgoals is decent, and the authors mainly
only had to split long subgoals into smaller ones and add
subgoals that will benefit learning for 5 out of 24 problems.
These subgoals are provided to the AI TA in the second step,
where the Al TA reviews the learner-generated subgoals by
describing why subgoals in the answer are necessary and
comparing them to the learner-generated subgoals. The
second step shows the correct answers to the learners and
revise their own answers.

Four authors grade all learner-generated subgoals on a
scale of 1 to 5 based on our adaptation of the SOLO taxon-
omy for subgoal labels in CS1 which allows for a deeper
evaluation of the subgoals in terms of completeness and
understanding of the relevant concepts [27]. The rubrics for
grading the subgoals are provided in Table 1. The scores for
the subgoals are compared as the learners progress through
the sessions.

3.5. Experiment 3: Comparison between Al
and Human TA for Solving
Programming Tasks

We conduct a between-subject experiment with novice pro-
gramming learners to compare the learning effects gained
with the AI TA and human TA. We recruit 20 learners of
which 10 participants have a self-reported proficiency of 1
and have not taken any computer science course (Group
1). The remaining 10 participants have a self-reported pro-
ficiency of 2 and have taken only introductory courses in
computer science (Group 2).

We randomly assign 5 participants in each proficiency
level to solve the programming tasks with the help of the

*https://solved.ac/

AI TA and assign the remaining 5 participants to solve with
the help of a human TA. Four human TAs participate in the
experiment. Learners solve each programming task in three
steps: 1) Subgoal Formulation step, where learners break
down the task into smaller and more manageable goals, 2)
Subsolution Generation step, where learners tackle each
of the subgoals they have formulated and implement a so-
lution for them, and 3) Solution Generation step where
learners combine their subsolutions into a single code that
solves the programming task. The subgoal formulation step
drives learners to understand and organize the task and
devise a plan for the final solution. The subsolution gener-
ation step helps learners focus on a subgoal at a time and
progressively write the program. The solution generation
step allows learners to review their subsolutions and debug
them.

Out of all participants, 19 participants completed both
sessions. One participant who is assigned to the AI TA and
has a self-reported proficiency of 2 dropped out of the study
and only participated in the first session. We collect the time
learners take to complete each task, the number of tasks
they attempted, and the scores for the tasks. The scores are
calculated by counting the number of test cases the learner’s
code successfully passes.

In an online survey, learners are asked to rate their ex-
perience with the TA and the helpfulness of the learning
workflow and the system. All survey questions are rated
using a 7-point Likert scale (1: strongly disagree, 7: strongly
agree) followed by an open-ended question asking the rea-
son behind the choice.

4. Results

4.1. Experiment 1

Of the 12 learners, 11 correctly identified which TA helped
them in the subgoal formulation task. One learner mistook
the human TA for the AI TA and suspected a system where
the human TA and the AI TA take turns answering the
questions. All learners who correctly identified the human
TA picked the accuracy of the response as the deciding
factor of the TA’s identity. Learners expected the human
TA to always answer the learners’ questions accurately,
even when the question does not directly address the task.
This shows that learners expect human TAs to be able to
understand the learner’s status and respond in context. The
learner who mistook human TA as AI TA also thought so
because the learner thought the TA gave wrong feedback to
the learner’s subgoals. There was no significant difference
in the interaction and the conversation style for this learner,
possibly because the learner thought a human TA was taking
turns to reply.

The main reason learners thought they were talking with
an Al TA was the tone of the TA’s responses. The AI TA’s
responses were generally longer and carefully formatted,

Changyoon Lee et al. CEUR Workshop Proceedings

4.5

B Sessions 1-4

4.0

3.5

N
v

Average Score
N
o

=
U

1.0

0.5

0.0

P1 P2 P3 P4 P5 P6 P7 P8

mmm Sessions 5-8

P10 P11 P12 P13 P14 P15 P16 P17 P18

Figure 1: Mean scores of subgoals for each learner in sessions 1 to 4 and sessions 5 to 8. Learners are numbered from P1 to
P18. All learners except P11, P12, and P18 formulated higher-scoring subgoals during the second half of the sessions.

which learners expected as the characteristics of generative
Al Additionally, the AI TA sometimes failed to catch the
intention of the learner’s question and responded out of
context. Learners expect Al TA to be imperfect and have
a formal tone in its response. Learners, on the other hand,
had a divided opinion on the response speed. One learner
assigned to the human TA and three learners assigned to the
AI TA identified the slow response time as a reason for their
choice. One other learner assigned to the AI TA identified
the AI TA based on its fast response time. This shows that
learners have varying expectations of the human and Al
TAs’ response speed.

4.2. Experiment 2

Among 20 learners, 18 participated in all eight sessions
in the experiment. We only report the scores for those
learners in the results. The authors underwent a grade
norming session for the subgoals learners generated in the
first session to increase consistency in grading the subgoals.
The authors then independently graded all subgoals based
on our adaptation of the SOLO taxonomy. The mean value of
the scores authors gave for each set of subgoals was taken
as the final score for the task. Figure 1 shows the mean
scores of the subgoals each learner formulated for sessions
1to 4 and sessions 5 to 8. The results show that all but three
learners had higher scores for the second half of the sessions
compared to the first half. The learners learned to formulate
more structured and detailed subgoals over time with the
AITA, even when the difficulties of the programming tasks
increased across the session.

In a post-experiment survey, learners also indicated an
average score of 5.7 on a 7-point Likert scale in response
to a question assessing the perceived helpfulness of the Al
TA in learning programming. Learners reported that the Al
TA’s hints and thorough explanations allowed them to get
used to the subgoal learning process and learn about new
approaches to solving the task.

4.3. Experiment 3
4.3.1. Performance Measures

We first compare the task completion rate, which we define
as the percentage of tasks a learner attempted and produced

a code solution within 3 hours. The completion rates for
each task for Groups 1 and 2 are shown in Figure 2.

Learners in both groups produced code solutions for most
of the programming tasks. Learners who solved the tasks
with the AT TA showed higher or equal completion rates for
all the tasks across the two groups, although there was no
statistical significance from an independent samples t-test
with an alpha level of 0.05. Learners who solved the tasks
with a human TA showed a sharp decrease in completion
rates for the later tasks in a session.

We report the average time taken to finish each task in
Figure 3 for learners in Groups 1 and 2. Results show that
the learners completed the tasks faster with the AI TA than
with the human TA. The difference is more evident with
Group 1 learners who had no experience in programming
before. The average time taken to finish solving a task for
Group 1 learners was 31.5 minutes for those with AI TA
and 59.8 minutes for those with human TA. The time taken
for Group 2 learners to finish solving the tasks was 21.5
minutes for those with AI TA and 38.9 minutes for those
with human TA. The difference in the average time taken
between the two types of TAs in both Group 1 and Group
2 is statistically significant from a t-test, with P-values of
0.000096 and 0.0044, respectively.

We test the correctness of the learners’ solution code for
each programming task by comparing its output for 10 test
cases with the correct answer. Figure 4 shows the average
score for each task in the percentage of test cases passed.

Learners who solved the task with AI TA showed higher
or equal scores than those with human TA in the first ses-
sion of the user study for both proficiency groups, although
the differences did not reach statistical significance. The
scores in the second session show mixed results. The av-
erage score for all tasks for learners was 59.5 with the Al
TA and 50.25 with the human TA for Group 1. The aver-
age score for all tasks for learners was 71 with the AT TA
and 53 with the human TA for Group 2. The differences
did not reach statistical significance. Both the Al and the
human TAs helped the learners achieve similar scores for
the programming tasks over the two sessions of user study.

4.3.2. Perception of the TAs

The learners’ responses to the survey questions are summa-
rized in Figure 5 in the Appendix.

Changyoon Lee et al. CEUR Workshop Proceedings

100100 100100

100100 100100 100

Completion Rate (%)
()}
o

100100 100100 100

100 100

80

Completion Rate (%)
& (=)}
o o

N
o

PL P2 P32 P4 P5 P6 P7 P8
group?2

Figure 2: Mean completion rate for programming tasks. P1 to P4 are tasks given in the first session and P5 to P8 are tasks

40
20
0
PL P2 P3 P4 P5 P6 P7 P8
groupl
given in the second session.
. Al
100

Time (min)

P1 P2 P3 P4 P5 P6 P7 P8
groupl

@ Human

100

80

60

Time (min)

40

20

PL P2 P32 P4 P5 P6 P7 P8
group2

Figure 3: Average time taken to complete solving the programming tasks for the two groups of learners. Tasks with significant
differences between the TA types are indicated with the asterisk (*). Group 1 learners took 31.5 minutes with Al TA and 59.8
minutes with human TA on average. Group 2 learners took 21.5 minutes with Al TA and 38.9 minutes with human TA on

average.

Learners in both groups were generally satisfied with
the promptness of the TA’s replies regardless of the TA
type. There was no statistically significant difference in the
learners’ perception of TA’s promptness between the TA
types. However, one learner mentioned that the human
TA’s replies were too slow.

Learners generally rated the usefulness of both TAs’

Al

100

80

60

Score (%)

40

20

PL P2 P3 P4 P5 P6 P7 P8
groupl

replies positively in all of the three steps of the user study.
However, some negative remarks in the subgoal formulation
stage mentioned that the AI TA did not provide detailed
explanations for the difference between the subgoals and
dismissed a subgoal that the learner felt was appropriate as
unnecessary.

Learners perceived that the TAs effectively assisted them

W Human

100

80

60

Score (%)

40

20

PL P2 P3 P4 P5 P6 P7 P8
group2

Figure 4: Scores for the programming tasks for the two groups of learners. Group 1 learners had a score of 59.5 with Al TA
and 50.25 with human TA on average. Group 2 learners had a score of 71 with Al TA and 53 with human TA on average.

Changyoon Lee et al. CEUR Workshop Proceedings 1-9
group 1 group 2
A A Human Human [
Response time from TA was appropriate. Al _

TA's response was sufficiently specific.

Conversation with TA regarding Human [. Human [. e
subgoal formulation was useful. A N [] Al . s
Conversation with TA regarding ruman - [Human [
subsolution generation was Useful » »
Conversation with TA regarding ruman | ruman [l . .
final solution generation was useful. AN Al
| had difficulty communicating with TA. . -
~ B
sted wi cation wi - Horor [I
| was satisfied with overall communication with TA. ~ D ~
o . . oo 1
TA was helpful in learning programming. ~ B ~ I
I would use this platform again Human [ruman [
when learning programming. Al D Al

(Disagree)1 2 3 4 5 6 7(Agree)

(Disagree)1 2 3 4 5 6 7(Agree)

Figure 5: Summary of the survey results on the perception of the TAs. Scores for questions that show a statistically significant

difference between the two types of TAs are marked with the asterisk ().

in translating subgoals into subsolutions. Learners men-
tioned that the AI TA explained the necessary functions
with examples thoroughly, provided detailed feedback, and
debugged the code even when the question was vague. The
human TA was also helpful for debugging.

Interacting with TAs, whether Al or human, was gener-
ally effortless for learners. However, some learners felt that
the conversation could be improved. Learners encountered
difficulty communicating with the human TA due to a lack
of familiarity with basic programming syntax. Some felt in-
timidated, fearing they were posing what they perceived as
‘stupid’ questions. On the other hand, when talking to an Al
TA, the AI TA often produced unexpected responses unre-
lated to the question, demonstrating a lack of understanding
of the learners’ inquiries.

Group 1 learners with the AI TA reported that without
basic programming knowledge, the AI TA allowed the learn-
ers to solve the tasks, but they were unsure whether they
had picked up knowledge in the process. Group 2 learners
felt that the AI TA was helpful, as the TA taught the learners
new ways to solve the problem and how to write concise
code. Some learners appreciated the freedom to learn with-
out time constraints when using Al Others reported that
having a TA enhanced efficiency and made the learning
experience enjoyable.

4.4. Chat Log Analysis

There were slightly more learner utterances with the human
TA than with the AI TA. In experiment 3, learners had, on
average, 2.3 and 12.60 utterances with the human TA in
the subgoal formulation and subsolution generation steps,
respectively. Learners had, on average, 2.71 and 8.60 utter-
ances with the AI TA in the same steps. Learners mostly
asked questions in the subsolution generation step where
they had to write working programs. In the subgoal for-
mulation step, learners mostly only clarified their subgoals
with the TAs.

The ideal role of the TA in subgoal formulation involves

offering feedback on the learner’s subgoals, including re-
fining abstract subgoals into more concrete and executable
ones. We observed that the AI TA provides more feedback
for the subgoals with more detail to the learners. In contrast,
human TAs preferred allowing learners to formulate sub-
goals independently, opting to provide feedback during the
subsolution generation step. The AI TA sometimes provided
the full set of subgoals voluntarily, while no such case was
observed for the human TAs.

The AI TA also proactively offers the answer code more
frequently than the human TA. In experiment 3, human TAs
provided answer codes on only 10 occasions, whereas the
AI TA provided answer codes on 40 occasions. Human TAs
provided the code voluntarily only when the learner was
stuck at a step for an extended duration. Also, they offered
the code when the programming concept was difficult to ex-
plain only in words, such as when explaining the formatted
printing statement.

Learners asked for the code more often with the AI TA
(135 occasions) than with the human TA (46 occasions). Hu-
man TAs often refused to provide the answer code directly
when the learner asked for help; they tried to explain the
syntax or algorithm in words first, allowing the learner to
develop the code independently. The Al TA, on the other
hand, provided the code nearly always on the learner’s re-
quest. Therefore, learners with the AI TA might have been
more inclined to ask for the answer code to solve the tasks
faster.

5. Discussion

5.1. Feasibility of Using Generative Al as a
TA

Our results show that generative Al is capable of assisting as
TAs in teaching introductory programming with subgoals.
Learners can discern when assisted by an AI TA, yet the
interaction with the AI TA is generally satisfactory for the
majority of learners. Learners demonstrate the ability to

Changyoon Lee et al. CEUR Workshop Proceedings

formulate subgoals and write code for programming tasks
with comparable proficiency when assisted by the AI and
human TAs. Learners exhibit learning gains in subgoal
formulation when working with the AI TA, demonstrating
an improvement in the quality of their subgoals over a 4-
week period. Nearly all learners formulated higher-quality
subgoals in the second half of the experiment, even though
the tasks were more difficult.

Learners’ perception of the AI TA is generally positive
and on par with that of the human TA in several aspects.
Learners feel that the AI TA’s responses are fast and detailed
enough to help them solve the programming tasks. Group 2
learners show a more positive perception of the AI TA com-
pared to Group 1 learners, even exceeding the perception
of the human TAs by the learners in the same group. This
shows that the AI TA is better suited for programming learn-
ers who already possess some prior programming knowl-
edge, while absolute beginners find it more challenging to
communicate and learn with an AI TA.

5.2. Strengths and Weaknesses of Al TA and
Usage Guidelines

An evident strength of the AI TA lies in its capacity to
furnish detailed responses to learners’ questions, offering
a substantial amount of information when compared to
the human TA. The AI TA leaves thorough feedback on
individual subgoals, providing the reason why the subgoal is
essential within the context of the task. The AI TA’s replies
are more structured, reiterating the learner’s question and
providing the answer with an explanation for the answer.
Such structured replies can be beneficial for learning as the
learner is reminded of the full context of the problem and
how to solve it.

However, the Al frequently fixates on a single mistake in
a conversation, persistently highlighting it even when the
learner addresses and corrects the error, leading to repeated
responses. This often made the learners frustrated and the
learners had to complete the task on their own.

The main weakness of Al TA in the educational field lies
in providing excessive information to the learners. The Al
TA seems to be oriented to help the learner solve a task
rather than focus on the educational benefits of the learners.
While assistance is valuable, providing too many hints or
code can impede the learning process by depriving learners
of the opportunity to solve the problem on their own. This
aligns with the perception of Group 1 learners who find
the TA less helpful in learning programming; the AI TA’s
tendency to offer the answer code too frequently may hinder
independent coding engagement for learners.

This behavior could have influenced the learners’ inter-
action patterns with the TAs. With the human TA, learners
asked questions about the code indirectly by describing is-
sues in their code and stating their intentions. In contrast,
learners ask for code assistance from the AI TA directly by
asking for explanations about their code issues and how to
address them. As the AI TA provides more direct assistance
close to the answer, learners with the AI TA might have
completed the tasks faster, consequently resulting in higher
completion rates compared to the learners with the human
TA.

One way to prevent this is to append an additional text at
the end of every learner’s prompt that explicitly requests
the Al not to provide the answer unless it is absolutely

necessary. However, completely prohibiting the AI TA from
providing some form of solution might lead to learner’s
frustration.

For complete beginners in programming, human TAs can
be better suited to guide them in solving programming tasks.
The human TA is better able to understand the learner’s
struggles and is more attentive to the small details in pro-
gramming that beginners have to pay attention to. When
testing the code, human TAs are better at catching the edge
cases and removing rare errors in the code. In our experi-
ment, human TAs ensured that learners passed all the test
cases by guiding them attentively to produce the correct
solution and debugging the code. Although AI TAs could
help learners achieve high scores for most tasks, they were
insufficient to help learners achieve perfect scores.

5.3. Ethical Considerations and Limitations

All experiments involving human subjects were reviewed
and approved by the institute’s Institutional Review Board.
All participants in the experiment were paid a reasonable
amount meeting the minimum wage requirements as com-
pensation.

Despite the authors’ best attempts to measure learning
gains with the AI TA by analyzing scores and survey re-
sponses, the positive results might be a direct result of the ex-
plicit help of the TAs and do not necessarily represent long-
term learning gains. Future work could explore whether
learners are able to solve new tasks without the help of the
TAs after the learning sessions.

6. Conclusion

The advances in generative Al have opened the opportunity
for Als to take the role of teaching assistants in program-
ming. We explore the potential for Al teaching assistants
in a subgoal-learning environment to teach computational
thinking and writing code to a programming novice and
how the learners interact and perceive the Al as teaching
assistants. Our findings indicate positive learning gains in
subgoal formulation when learners engage with AI TAs.
AI TAs can assist learners in achieving comparable perfor-
mance in scores and task completion time as human TAs by
offering exceptionally detailed explanations. Learner’s per-
ception of the AI TA is positive, especially for learners with
some previous experience in programming. Nevertheless,
the AI TA’s tendency to readily provide answers may lead
to reduced educational benefits for learners. The Al also
occasionally becomes fixated on a specific point in the con-
versation, entering an irrecoverable state and consequently
leaving the learner to struggle with the task in isolation.
While the AI TA demonstrates its value in programming ed-
ucation, integrating it into a real-world educational setting
demands thoughtful consideration and control, extending
beyond its out-of-the-box application.

Acknowledgments

This work was supported by Elice.

Changyoon Lee et al. CEUR Workshop Proceedings

References

(1]

(11]

B. A. Becker, T. Fitzpatrick, What do cs1 syllabi reveal
about our expectations of introductory programming
students?, in: Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, SIGCSE
’19, Association for Computing Machinery, New York,
NY, USA, 2019, p. 1011-1017.

J. M. Wing, Computational thinking, Communications
of the ACM 49 (2006) 33-35.

M. Konecki, Problems in programming education and
means of their improvement, DAAAM international
scientific book 2014 (2014) 459-470.

N. Rountree, J. Rountree, A. Robins, Predictors of
success and failure in a cs1 course, SIGCSE Bull. 34
(2002) 121-124.

P. Kinnunen, L. Malmi, Why students drop out cs1
course?, ICER ’06, Association for Computing Machin-
ery, New York, NY, USA, 2006, p. 97-108.

A. T. Corbett, J. R. Anderson, Locus of feedback con-
trol in computer-based tutoring: Impact on learning
rate, achievement and attitudes, in: Proceedings of
the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’01, Association for Computing
Machinery, New York, NY, USA, 2001, p. 245-252.

L. Gusukuma, A. C. Bart, D. Kafura, J. Ernst,
Misconception-driven feedback: Results from an ex-
perimental study, in: Proceedings of the 2018 ACM
Conference on International Computing Education
Research, ICER ’18, Association for Computing Ma-
chinery, New York, NY, USA, 2018, p. 160-168.
S.Marwan, G. Gao, S. Fisk, T. W. Price, T. Barnes, Adap-
tive immediate feedback can improve novice program-
ming engagement and intention to persist in computer
science, in: Proceedings of the 2020 ACM Conference
on International Computing Education Research, ICER
’20, Association for Computing Machinery, New York,
NY, USA, 2020, p. 194-203.

D. Mirza, P. T. Conrad, C. Lloyd, Z. Matni, A. Gatin,
Undergraduate teaching assistants in computer sci-
ence: A systematic literature review, in: Proceedings
of the 2019 ACM Conference on International Com-
puting Education Research, ICER 19, Association for
Computing Machinery, New York, NY, USA, 2019, p.
31-40.

E. Riese, M. Loras, M. Ukrop, T. Effenberger, Chal-
lenges faced by teaching assistants in computer sci-
ence education across europe, in: Proceedings of the
26th ACM Conference on Innovation and Technology
in Computer Science Education V. 1, ITiCSE °21, As-
sociation for Computing Machinery, New York, NY,
USA, 2021, p. 547-553.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Roziére, N. Goyal, E. Hambro,
F. Azhar, A. Rodriguez, A. Joulin, E. Grave, G. Lam-
ple, Llama: Open and efficient foundation language
models, 2023. arXiv:2302.13971.

J. Savelka, A. Agarwal, M. An, C. Bogart, M. Sakr,
Thrilled by your progress! large language models (gpt-
4) no longer struggle to pass assessments in higher
education programming courses, arXiv preprint
arXiv:2306.10073 (2023).

M. Kazemitabaar, J. Chow, C. K. T. Ma, B. J. Ericson,
D. Weintrop, T. Grossman, Studying the effect of ai
code generators on supporting novice learners in in-

[21]

[22]

(23]

(25]

troductory programming, in: Proceedings of the 2023
CHI Conference on Human Factors in Computing Sys-
tems, CHI ’23, Association for Computing Machin-
ery, New York, NY, USA, 2023. doi:10.1145/3544548.
3580919.

R. Catrambone, K. Holyoak, Learning subgoals and
methods for solving probability problems, Mem-
ory & cognition 18 (1990) 593-603. doi:10.3758/
BF03197102.

L. E. Margulieux, M. Guzdial, R. Catrambone, Subgoal-
labeled instructional material improves performance
and transfer in learning to develop mobile applications,
ICER ’12, Association for Computing Machinery, New
York, NY, USA, 2012, p. 71-78. doi:10.1145/2361276.
2361291.

R. K. Atkinson, S. J. Derry, A. Renkl, D. Wortham,
Learning from examples: Instructional principles from
the worked examples research, Review of educational
research 70 (2000) 181-214.

B. B. Morrison, L. E. Margulieux, M. Guzdial, Subgoals,
context, and worked examples in learning computing
problem solving, in: Proceedings of the Eleventh An-
nual International Conference on International Com-
puting Education Research, ICER ’15, Association for
Computing Machinery, New York, NY, USA, 2015, p.
21-29.doi:10.1145/2787622.2787733.

L. E. Margulieux, R. Catrambone, Finding
the best types of guidance for constructing
self-explanations of subgoals in programming,
Journal of the Learning Sciences 28 (2019)
108-151. d0i:10.1080/10508406.2018.1491852.

arXiv:https://doi.org/10.1080/10508406.2018.

H. Jin, M. Chang, J. Kim, Solvedeep: A system for
supporting subgoal learning in online math problem
solving, in: Extended abstracts of the 2019 CHI con-
ference on human factors in computing systems, 2019,
pp. 1-6.

T. Ahmed, P. Devanbu, Few-shot training llms for
project-specific code-summarization, in: Proceedings
of the 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022, pp. 1-5.

S. Chakraborty, T. Ahmed, Y. Ding, P. T. Devanbu,
B. Ray, Natgen: generative pre-training by “natural-
izing” source code, in: Proceedings of the 30th ACM
Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, 2022, pp. 18-30.

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy,
A. Blanco, C. Clement, D. Drain, D. Jiang, D. Tang,
et al, Codexglue: A machine learning benchmark
dataset for code understanding and generation, arXiv
preprint arXiv:2102.04664 (2021).

E. Chen, R. Huang, H.-S. Chen, Y.-H. Tseng, L.-Y. Li,
Gptutor: a chatgpt-powered programming tool for
code explanation, arXiv preprint arXiv:2305.01863
(2023).

S. MacNeil, A. Tran, A. Hellas, J. Kim, S. Sarsa,
P. Denny, S. Bernstein, J. Leinonen, Experiences from
using code explanations generated by large language
models in a web software development e-book, in: Pro-
ceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1, SIGCSE 2023, Asso-
ciation for Computing Machinery, New York, NY, USA,
2023, p. 931-937. doi:10.1145/3545945.3569785.

S. Sarsa, P. Denny, A. Hellas, J. Leinonen, Automatic

1491852.

http://arxiv.org/abs/2302.13971
http://dx.doi.org/10.1145/3544548.3580919
http://dx.doi.org/10.1145/3544548.3580919
http://dx.doi.org/10.3758/BF03197102
http://dx.doi.org/10.3758/BF03197102
http://dx.doi.org/10.1145/2361276.2361291
http://dx.doi.org/10.1145/2361276.2361291
http://dx.doi.org/10.1145/2787622.2787733
http://dx.doi.org/10.1080/10508406.2018.1491852
http://arxiv.org/abs/https://doi.org/10.1080/10508406.2018.1491852
http://dx.doi.org/10.1145/3545945.3569785

Changyoon Lee et al. CEUR Workshop Proceedings

(27]

generation of programming exercises and code expla-
nations using large language models, in: Proceed-
ings of the 2022 ACM Conference on International
Computing Education Research - Volume 1, ACM,
2022. URL: https://doi.org/10.1145%2F3501385.3543957.
doi:10.1145/3501385.3543957.

A. Hellas, J. Leinonen, S. Sarsa, C. Koutcheme, L. Ku-
janpaa, J. Sorva, Exploring the responses of large lan-
guage models to beginner programmers’ help requests,
in: Proceedings of the 2023 ACM Conference on In-
ternational Computing Education Research V.1, ACM,
2023. URL: https://doi.org/10.1145%2F3568813.3600139.
doi:10.1145/3568813.3600139.

A. Decker, L. E. Margulieux, B. B. Morrison, Using
the solo taxonomy to understand subgoal labels ef-
fect in cs1, in: Proceedings of the 2019 ACM Con-
ference on International Computing Education Re-
search, ICER ’19, Association for Computing Machin-
ery, New York, NY, USA, 2019, p. 209-217. doi:10.
1145/3291279.3339405.

https://doi.org/10.1145%2F3501385.3543957
http://dx.doi.org/10.1145/3501385.3543957
https://doi.org/10.1145%2F3568813.3600139
http://dx.doi.org/10.1145/3568813.3600139
http://dx.doi.org/10.1145/3291279.3339405
http://dx.doi.org/10.1145/3291279.3339405

	1 Introduction
	2 Related Works
	2.1 Subgoal Learning
	2.2 Generative AI for Programming Education

	3 Methods
	3.1 Participants
	3.2 Generative AI-powered TA
	3.3 Experiment 1: Learners' Expectations of AI and Human TAs
	3.4 Experiment 2: Learning Gains from Subgoal Learning Workflow with AI TA
	3.5 Experiment 3: Comparison between AI and Human TA for Solving Programming Tasks

	4 Results
	4.1 Experiment 1
	4.2 Experiment 2
	4.3 Experiment 3
	4.3.1 Performance Measures
	4.3.2 Perception of the TAs

	4.4 Chat Log Analysis

	5 Discussion
	5.1 Feasibility of Using Generative AI as a TA
	5.2 Strengths and Weaknesses of AI TA and Usage Guidelines
	5.3 Ethical Considerations and Limitations

	6 Conclusion

