
Towards Fast Visual Explanations of Local Path
Planning with LIME and GAN
Amar Halilović1, Senka Krivić2

1Institute of Artificial Intelligence, Ulm University
2Faculty of Electrical Engineering, University of Sarajevo

Abstract
As robots become a more significant part of humans’ daily lives, bridging the gap between robot actions
and human understanding of what robots do and how they make their decisions becomes challenging.
We present an approach to local navigation explanation based on Local Interpretable Model-agnostic
Explanations (LIME), a popular approach from the Explainable Artificial Intelligence (XAI) community
for explaining individual predictions of black-box models. We show how LIME can be applied to a robot’s
local path planner. Moreover, we show how the General Adversarial Network (GAN) can be trained and
used for fast explanation generation. We also analyze the quality and runtime of GAN explanations and
present a tool for visualizing these explanations online as the robot navigates.

Keywords
Robotics, Path Planning, Explainable Artificial Intelligence, Explainability, Interpretability

1. Introduction

Robots in social environments raise the requirement for explainability of robot behavior [1]. As
the tendency of robots’ presence in society grows, this requirement becomes more pronounced.
The introduction of the “Right to explanation” [2] in the European Union as a part of the General
Data Protection Regulation (GDPR) [3] underlines the human right to explanation in the face of
machines making decisions that affect humans. Current decision-making methods in robotics
largely lack explainability and thus limit the faster adoption of robots in important tasks. A
lack of explainability can also become a safety issue when robots behave unexpectedly, putting
humans in highly sensitive environments at risk.

We address explainability in robotics by focusing on explainable robot navigation in social
environments: Imagine a robot navigating in a known environment with the possibility of
encountering humans and obstacles. Local path planners allow robots to follow a global path
plan while dynamically reacting to unexpected occurrences. Some of the robot’s decisions
may require abrupt stops or changes of direction and path deviations, thus surprising people
in the neighborhood or even scaring them. This can lead to trust loss, which needs to be
mitigated [4]. One mitigation strategy is explanation. We want to mitigate trust loss by
enabling robots to explain their navigational choices. Using Local Interpretable Model-agnostic
Explanations (LIME) [5], an established method from Explainable Artificial Intelligence (XAI)

HI-AI@KDD, Human-Interpretable AI Workshop at the KDD 2024, 26𝑡ℎ of August 2024, Barcelona, Spain
$ amar.halilovic@uni-ulm.de (A. Halilović); senka.krivic@etf.unsa.ba (S. Krivić)
� 0000-0002-2354-986X (A. Halilović); 0000-0001-8045-427X (S. Krivić)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:amar.halilovic@uni-ulm.de
mailto:senka.krivic@etf.unsa.ba
https://orcid.org/0000-0002-2354-986X
https://orcid.org/0000-0001-8045-427X
https://creativecommons.org/licenses/by/4.0


[6], we demonstrate how a robot can generate visual explanations of its local decision-making
in path planning and obstacle avoidance. To approach explanation generation in real-time, we
train a Generative Adversarial Network (GAN) [7] model on a dataset produced by LIME. We
demonstrate how the trained GAN model generates visual explanations of local path plans.

2. Technical background

2.1. Local Interpretable Model-agnostic Explanations (LIME)

LIME [5] is a model-agnostic local XAI technique that explains predictions of a black-box model
by learning an interpretable model around the instance of interest. The instance of interest can
be anything that is an input to an AI model, be it text, numerical data, or images. We focus
on visual explanations and use an image (viz., the local costmap, see below) as the instance of
interest. LIME for images1 takes the input image and partitions it into segments – superpixels,
thereby creating interpretable features. Then, it perturbs interpretable features, turning them
off to generate perturbed samples (perturbations) in the neighborhood of the instance of interest.
For every perturbation, LIME queries the black-box model and thereby generates a local data
set of (perturbed) neighbor images and the respective black-box model’s predictions. On this
new dataset, LIME trains an interpretable model, viz., a weighted linear regression model.
The explanation is obtained by interpreting the coefficients of the trained linear model: The
importance of each segment in the image for the behavior of the black-box model is represented
by one coefficient in the linear model. Depending on the sign of the coefficient, the interpretable
feature (viz., the segment in the image) positively or negatively affects the black-box model’s
prediction. That said, applying LIME to explain local navigation visually, one needs to provide
a suitable method for computing a segmentation of a local costmap (viz., the interpretable
features). Moreover, the output of the local planner has to be interpreted as the prediction of
some black-box model.

2.2. Generative Adversarial Networks (GANs)

GANs were introduced by Ian Goodfellow et al. [7] as a deep learning framework for the
estimation of generative models. Estimation is done by an adversarial process where a generative
model, Generator (G), and a discriminative model, Discriminator (D), are trained concurrently.
G generates new samples by learning the training data distribution, while D estimates whether
the provided sample is from the training data or is produced by G. Mehdi and Osindero [8]
introduced conditional GAN (cGAN), where G and D are conditioned on some information. Isola
and colleagues [9] show how cGAN can be used for image-to-image translation by conditioning
on images. G is trained to learn translation between input and output images and fool D, while
D learns to classify output images as real (coming from the training dataset) or fake (generated
by G). In our work, we employ their pix2pix cGAN architecture2 to achieve a fast explanation
generation of local navigation decisions. D is trained by minimizing the negative log-likelihood
of identifying real and fake images conditioned on input images, while G is trained using the

1https://github.com/marcotcr/lime
2shorturl.at/giFUX

https://github.com/marcotcr/lime
shorturl.at/giFUX


adversarial loss of D (whether it fools the discriminator or not) and L1 loss (mean absolute
per pixel difference between real and fake images) which are combined into a composite loss
function. We condition G and D on local costmaps (see Fig. 1b,1f,1j) as inputs and explanation
images (LIME outputs) (see Fig. 1c,1g,1k) as outputs. Both input and output images include
(besides obstacle information) the robot’s location, the local plan, and the global plan.

3. Experiment I: Explanations with LIME

3.1. Technical Set-Up

Our set-up is situated in the context of the ROS navigation stack [10]. A global path planner
has generated a global path plan for the robot to navigate to a specified goal position. For path
following and obstacle avoidance, a local path planner takes the local costmap and the global
path as input and outputs a local path (in terms of a velocity vector) for the robot to execute.
For LIME to be applicable, the black-box behavior needs to be deterministic. Therefore, we
do not employ sampling-based planners, such as DWA or RRT, but instead, employ the TEB
planner [11]. To use LIME for generating visual explanations of local path plans in terms of
obstacles in the local neighborhood of the robot, we use the local costmap as an instance of
interest and the TEB planner as the black box that takes that costmap as input and outputs some
local path. LIME first segments the local costmap into obstacles as interpretable features. The
SLIC [12] segmentation algorithm is used to get obstacle segments. As the second step, LIME
obtains perturbations of the segmented costmap by turning off segments by replacing them with
free space. The perturbed local costmap, together with the global plan, the robot’s footprint,
and its current velocities, form the input to the TEB, which then outputs a local plan for the
perturbation at hand. The deviation of the so-calculated local plan from the global plan is taken
as a target for the interpretable model and is calculated as a sum of the minimal point-to-point
L2 differences between the local and the global plan.

We get an explanation image for each local navigation decision by coloring segments based
on their LIME coefficients. The sign of the coefficient dictates the color: Positive-weighted
segments are colored green, and negative-weighted segments are colored red. A green-colored
segment contributed positively to the deviation; that is, green indicates “without that segment, the
local plan would deviate less from the global plan”. Conversely, a red-colored segment indicates
“without that segment, the local plan would deviate more from the global plan”. Color intensity is
set proportional to the coefficient with intensities in the range [0, 255] in RGB color space.

3.2. Qualitative results

Figures 1a, 1e, and 1i show three characteristic local navigation cases (C1, C2, and C3) in our
lab. The robot (a TIAGo from PAL robotics) tries to follow the global plan that leads it through
the doorway. Figure 1b, 1f, and 1j show the local costmaps for three local navigation cases with
black obstacles, white robot’s location, and grey free space. In C1, the local plan (yellow dots)
mostly coincides with the global plan (blue dots), while in C2, the starting and ending points
of the local plan could not be connected into a joint trajectory. In C3, the local plan deviates



(a) C1: robot (b) C1: costmap (c) C1: LIME expl. (d) C1: GAN expl.

(e) C2: robot (f) C2: costmap (g) C2: LIME expl. (h) C2: GAN expl.

(i) C3: robot (j) C3: costmap (k) C3: LIME expl. (l) C3: GAN expl.

Figure 1: C1: A free doorway allows TIAGo to follow the initial trajectory and move through the
doorway. Because TIAGo is too close to the right wall, it has to adjust its position and proceed through
the doorway. C2: The same doorway is blocked with a chair, so TIAGo cannot progress through the
doorway. It stops and rotates in place to try to go left. C3: A table, box, and wall form two doorways
where the right doorway through which TIAGo should go is suddenly blocked by the trash can. The
robot must deviate from the initial trajectory, traversing through the free doorway.

from the global plan. The LIME explanation explains how obstacles and/or parts of obstacles
contribute to the deviation. From the explanation images 1c, 1g, and 1k we have:

• C1: “The right (green) wall segment increases deviation, while the left (red) wall segment
decreases it, squeezing it to the doorway.”

• C2: “The (green) obstacle increases the deviation because if it were not there, the robot
would follow the global plan. If the wall (red) were not there, the local path planner could
create the connected local plan and deviate from the global plan.”

• C3: “Both obstacles increase the deviation, but the round one does so more significantly.
If it were not there, the robot would follow the global plan. If the rectangular obstacle
were not there, the robot would still deviate, but less.”



3.3. Quantitative Results

We analyze explanation runtime. LIME’s runtime is generally high and increases linearly in the
number of perturbations as shown in Fig. 2a, where the runtimes of the most important parts of
the LIME are plotted. Planner total time takes the biggest part of the total explanation runtime
and includes the preparation of input data for the planner (TEB), the planner calculation time
of all the paths for each perturbation, and the collection of the planner’s outputs. The planner
calculation time takes the biggest part of the planner total time. Both runtimes increase relative
to the increase in the number of perturbations. As segmentation only needs to be done once for
each explanation, its runtime is unaffected by the number of perturbations.

(a) Runtime (b) Visualization

Figure 2: a) Total runtimes of different parts of the explanation method. b) Visualization of the visual
explanations in Rviz in real-time as generated by the GAN: TIAGo is adapting its initial trajectory,
deviating from the global plan, which would lead to the collision with the wall.

LIME has clear limitations in that this method alone cannot be used for real-time explanations.
Fast-changing and socially complex environments like streets or places with people might
require real-time explanations. Even when using a small number of perturbations (which affects
the explanation quality), not every TEB call (every 200ms) can be explained in real time.

4. Experiment II: LIME Explanations with GAN

The first experiment showed that LIME can be used to generate meaningful visual explanations
but that the generation procedure is too slow for online usage. To approach explanation
generation in real time, we utilize GAN as an explanation method. Our main idea is to use LIME
only offline to generate a dataset of pairs of local costmaps and respective explanations. With
this dataset, we train GAN for image-to-image translation. This way, explanation generation
becomes independent of the number of samples.

We have trained an image-to-image GAN for 200 epochs with 240 training image pairs, 60
validation image pairs, and 60 test image pairs. The image-pairs dataset was generated using
LIME with the configuration as outlined in the description of our first experiment; see Section
3.1. Of the important GAN settings, resnet_9blocks is used as Generator architecture. Other



settings are kept as in the pix2pix standard implementation. The trained GAN model generates
an explanation image by taking a local costmap with a plotted robot’s position and local and
global plans as input. In the following, we refer to the trained GAN model simply as GAN.

4.1. Results

We assess the quality of the visual explanations generated by the GAN by human visual
examination. This is a recommended practice [13, 14]. Figures 1d, 1h, and 1l show GAN
explanations for the use-cases C1, C2, and C3, respectively. One can see distortions in the GAN
explanations, which, however, do not do any harm to the conveyed meaning. In C1, one can
see that the colors of colored segments are not as sharp as in LIME, but the explanation does
not suffer qualitatively. GAN’s explanation for C2 has similar properties, with even somewhat
different coloring of less important segments on the right wall. Still, this does not hamper the
explanation very much, as the main contributors are still clearly distinguished. In the GAN
explanation for C3, the green color is somewhat duller and blurred compared to LIME, but the
contributions of the segments are still visible. We report a mean GAN calculation runtime of
0.25 seconds and a mean GAN model loading runtime of 0.36 seconds. Hence, once the GAN
model is loaded, it can output four explanations per second.

4.2. Demonstrator: Visual Explanations with RViz

We demonstrate how GAN explanations can be visualized in Rviz in real-time in Fig. 2b. The
GAN output is published as PointCloud2 and overlayed over the map view in RViz as a local
explanation layer. The GAN model is loaded once at the beginning of navigation and called
periodically with every new local plan produced by TEB, allowing for the local explanation
layer refresh frequency of 4Hz. This tool thus enables humans to observe which parts of the
environment the robot considers important for its navigational decisions. We envision the tool
to be used for inspection and debugging, teaching path planning, and demonstrating the robot’s
internal reasoning processes to interested laymen.

4.3. Discussion

GAN achieves huge runtime savings compared to LIME and approaches the upper real-time
performance limit of 200 ms. Most importantly, explanations generated by GAN do not depend
on any image segmentation preprocessing, and the performance-hungry process of replanning
the local path for every input image perturbation is no longer needed. This translates to the
possibility of achieving explanations in near real-time even when many obstacles are considered
potential explanations. This allows for explanation generation in highly dynamic environments.

One drawback of the GAN model is some distortions in the visual explanation. However,
these are not too harmful as they are local and do not significantly affect the color and shade
of color. A limitation of our work is that we have not systematically analyzed how well the
GAN explanations generalize to very complex environments. The GAN explanation procedure
does not make assumptions about the robot platform and its kino-dynamic constraints. It also
does not assume a specific underlying local planner. It generates the explanation only based on
an image containing the local obstacles along with the local plan and the global plan. Thus, it



may turn out that the GAN has to be retrained for every robotic platform. Another limitation is
that our explanation approach relies on the underlying local planner to be deterministic. This
is necessary because the procedure must be certain that a variation in the local path is due to
the obstacles in the surroundings rather than random fluctuations. In the future, we will also
investigate how non-deterministic path planners could be explained.

References

[1] M. Lomas, R. Chevalier, E. V. Cross, R. C. Garrett, J. Hoare, M. Kopack, Explaining robot
actions, in: Proceedings of the seventh annual ACM/IEEE international conference on
Human-Robot Interaction, 2012, pp. 187–188.

[2] M. E. Kaminski, The right to explanation, explained, Berkeley Tech. LJ 34 (2019) 189.
[3] P. Voigt, A. Von dem Bussche, The eu general data protection regulation (gdpr), A Practical

Guide, 1st Ed., Cham: Springer International Publishing 10 (2017) 10–5555.
[4] S. Tolmeijer, A. Weiss, M. Hanheide, F. Lindner, T. Powers, C. Dixon, M. Tielman, Taxonomy

of trust-relevant failures and mitigation strategies, in: Proceedings of HRI 2020, 2020.
[5] M. T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?” explaining the predictions

of any classifier, in: Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, 2016, pp. 1135–1144.

[6] T. Miller, Explanation in artificial intelligence: Insights from the social sciences, Artificial
intelligence (2019) 1–38.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
Y. Bengio, Generative adversarial nets, Advances in neural information processing systems
27 (2014).

[8] M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv preprint
arXiv:1411.1784 (2014).

[9] P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, Image-to-image translation with conditional
adversarial networks, in: IEEE Conference on Computer Vision and Pattern Recognition,
2017.

[10] R. L. Guimarães, A. S. de Oliveira, J. A. Fabro, T. Becker, V. A. Brenner, Ros navigation:
Concepts and tutorial, Robot Operating System (ROS) The Complete Reference (Volume
1) (2016) 121–160.

[11] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, T. Bertram, Trajectory modification
considering dynamic constraints of autonomous robots, in: ROBOTIK 2012; 7th German
Conference on Robotics, VDE, 2012, pp. 1–6.

[12] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, Slic superpixels compared
to state-of-the-art superpixel methods, IEEE transactions on pattern analysis and machine
intelligence 34 (2012) 2274–2282.

[13] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, Improved
techniques for training gans, Advances in neural information processing systems 29
(2016).

[14] A. Borji, Pros and cons of gan evaluation measures, Computer Vision and Image Under-
standing 179 (2019) 41–65.


	1 Introduction
	2 Technical background
	2.1 Local Interpretable Model-agnostic Explanations (LIME)
	2.2 Generative Adversarial Networks (GANs)

	3 Experiment I: Explanations with LIME
	3.1 Technical Set-Up
	3.2 Qualitative results
	3.3 Quantitative Results

	4 Experiment II: LIME Explanations with GAN
	4.1 Results
	4.2 Demonstrator: Visual Explanations with RViz
	4.3 Discussion


