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Abstract
The widespread deployment of deep nets in practical applications has lead to a growing desire to under-
stand how andwhy such black-boxmethods perform prediction. Muchwork has focused on understand-
ing what part of the input pattern (an image, say) is responsible for a particular class being predicted,
and how the input may be manipulated to predict a different class. We focus instead on understanding
what internal features computed by the neural net are responsible for a particular class. We achieve this
by mimicking part of the net with a decision tree having sparse weight vectors at the nodes. We are
able to learn trees that are both highly accurate and interpretable, so they can provide insights into the
deep net black box. Further, we show we can easily manipulate the neural net features in order to make
the net predict, or not predict, a given class, thus showing that it is possible to carry out adversarial
attacks at the level of the features. We demonstrate this robustly in MNIST and ImageNet with LeNet5
and VGG networks.
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1. Introduction

Deep neural nets are accurate black-box models. They are highly successful in terms of pre-
dictive performance but remarkably difficult to understand in terms of how exactly they come
up with a prediction. These issues have been known to researchers and practitioners for many
years, but it is in the 2010s that deep learning has achieved a wild, unexpected success that has
attractedwidespread attention beyond computer science. Thus making it urgent to understand
the behavior of these models in explanatory terms.

Much work in this regard seeks to understand what a specific neuron in a deep net does.
This includes work on finding input patterns that invert the activation of a neuron [2, 3, 4]
or maximally activate it [5, 6, 7]; and work that finds input patterns, or parts of them (such
as image regions) that have an important effect on the output class, essentially a sensitivity
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analysis via gradients or other measure of saliency [6, 8, 7, 9, 10, 11].
Other work seeks to replace a deep net with a simpler, interpretable model that can then be

inspected, such as a decision tree, a set of rules or a (sparse) linear model. This can be done
locally around an instance [12] or globally for all instances—which is much harder since an
interpretable model like decision trees cannot generally approach the accuracy of the deep net
[13, 14, 15, 16, 17, 18, 19, 20]. The fundamental problemwith these approaches is that traditional
decision tree learning algorithms such as CART [21] or C4.5 [22] are unable to learn small yet
accurate enough trees to be useful mimicks of a neural net except in very small problems.

Our paper has two contributions that can improve our ability to explain and manipulate
trained deep nets. Firstly, we propose decision trees as a tool to understand deep nets. As
mentioned above this is by itself not a new idea. What is new is the specific, novel type of tree
we use, and how we apply it to a given deep net. Traditional tree learning algorithms typically
construct treeswhere each decision node thresholds a single input feature. Although such trees
are considered among the most interpretable models, this is only true if the tree is relatively
small. Unfortunately, such trees often produce too low accuracy, and are wholly inadequate
for high-dimensional complex inputs such as pixels of an image or neural net features. We cap-
italize on a recently proposed Tree Alternating Optimization (TAO) algorithm [23, 24] which
can learn far more accurate trees that remain small and very interpretable because each deci-
sion node operates on a small, learnable subset of features. It has been shown to outperform
existing tree algorithms such as CART [21] or C4.5 [22] by a large margin [25], and to improve
forest [26, 27].

Second, we apply the tree to an internal layer of the deep net, hence mimicking its remaining
(classifier) layers, rather than attempting to mimick the entire deep net. This allows us to study
the relation between deep net features (neuron activations) and output classes (unlike the work cited

in the second paragraph, which studies the relation between input features and neuron activations).
As a subproduct, inspection of the tree allows us to construct a new kind of adversarial attacks
where we manipulate the deep net features via a mask to block a specific set of neurons. This
gives us surprising control on what class the deep net will output. Among other possibilities,
we can make it output the same, desired class for all dataset instances; or make it never output
a given class; or make it misclassify certain pairs of classes.

Next, we describe how we use trees to understand and manipulate deep net features (sec-
tion 2), and demonstrate this in MNIST and ImageNet [28] with LeNet5 and VGG16 [29] deep
nets (section 4).

2. Sparse oblique trees as a tool to observe a deep neural net

Our overall approach is as follows (see fig. 3 in the appendix). Assume we have a trained deep
net classifier y = f(x), where input x ∈ R

D and y ∈ R
K . We can write f as: f(x) =

g(F(x)), where F represents the features-extraction part (z = F(x) ∈ R
F ), and g represents

the classifier part (y = g(z)). Then:

1. Train a sparse oblique tree y = T (z)with TAO (see details in [23, 24]) on the training set
{(F(xn), yn)}

N
n=1 ⊂ R

F ×{1, . . . ,K}. Choose the sparsity hyperparameter λ ∈ [0,∞)
such that, T have close to highest validation accuracy and is as sparse as possible.
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Figure 1: Tree having one leaf per class (λ = 33). At each decision node we show its weight vector,
node index and bias (always zero). At each leaf we show their index, class label, an image of from their
class and class description in the format: class description (class label). We plot the weight vector, of
dimension 8 192, as a 91×91 square (the last pixels are unused), with features in the original order in
VGG16 (which is determined during training and arbitrary, hence the random aspect of the images),
and colored according to their sign and magnitude (positive, negative and zero values are blue, red and
white, respectively).
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Figure 2: Confusion matrices for VGG (test set). Top le� : ground-truth vs deep net, and deep net vs
tree. Top middle: deep net vs deep net with only the features selected by the tree. Top right : All class
k1 to class k2 (selected examples). Middle: None to class k. Bottom: All to class k.The confusion
matrices for the training set (not shown) are very similar.

2. Inspect the tree to find interesting patterns about the deep net.

Our goal is to achieve a tree that both mimicks well the deep net and is as simple as possible.
Step 2 is purposely vague. There is probably a wealth of information in the tree regarding the
features’ meaning and effect on the classification, both at the level of a specific input instance



or more globally. Here, we focus on one specific pattern described next.

3. Manipulating the features of a deep net to alter its

classification behavior

Our overall objective is to control the network prediction by manipulating the value of the
deep net features z ∈ R

F . We do not alter the network weights, i.e., F and g remain the same.
We just alter z into a masked z = µ(z) = µ

× ⊙ z + µ
+ via a multiplicative and an additive

mask µ
×,µ+ ∈ R

F , respectively (where “⊙” means elementwise multiplication).

Original net: y = f(x) = g(F(x)) (1)

Original features: z = F(x) (2)

Masked net: y = f(x) = g(µ(F(x))) (3)

Masked features: z = µ(F(x)) = µ(z) (4)

In the simplest, most intuitive version of the mask, we just need a binary multiplicativemask
z = µ

× ⊙ z where µ× ∈ {0, 1}F . Using an additive mask and real-valued masks makes the
manipulation’s effect more robust and harder to detect. We will construct a mask by inspecting
the tree, specifically by observing the weight of each feature in each decision node. By selec-
tively zeroing some features we can guarantee that any instance will follow a specific child in
a given node and hence direct instances towards a target leaf.

3.1. All instances to one child

We define decision rule at a decision node i as: “ifwT

i
z+ bi ≥ 0 then go to right child, else go

to left child”, wherewi ∈ R
F is the weight vector and bi ∈ R is the bias 1 . We also describe a

mask for node i, that divert all instances to one child, we call it Node-Mask = {µ×,µ+}.
Node-Mask works as follows. Write w and z as w = (w0 w− w+) and z = (z0 z− z+),

wherew0 = 0,w− < 0 andw+ > 0 contain the zero, negative and positive weights inw, and
z ≥ 0 2 is arranged according to that. Call S0, S− and S+ the corresponding sets of indices in
w. Then wT z + b = wT

−z− + wT
+z+ with wT

−z− ≤ 0 and wT
+z+ ≥ 0. So if z− = 0 then

wT z+ b ≥ 0 and z would go to the right child and if z+ = 0 thenwT z+ b < 0 and z would
go to the left child. Hence, Node-Mask defined as follows: to go left, µ× ∈ {0, 1}F is a binary
vector containing ones at S−, zeros at S+ and ∗ (meaning any value) at S0; and µ

+ ≥ 0 is a
vector containing small positive values at S− and zero elsewhere. To go right, exchange “−”
and “+” in the procedure.

1The bias (bi) at each decision node i of the tree is zero. This holds very well in the trees we trained, specifically
|bi| ≪ ‖wi‖ at each decision node.

2We assume the deep net features are nonnegative: z = F(x) ≥ 0. This is true for ReLUs, which are used in most
deep nets at present.



3.2. Masks

We now show how to construct masks that effect a certain class outcome. For each case, we
state the desired goal and the corresponding mask. In the manipulations below we may use
Node-Mask repeatedly over several nodes to construct the mask (which is applied to the fea-
ture vector and hence applies globally to each node). In that case, we will only use the multi-
plicative mask produced by Node-Mask at each node, and create the additive mask at the end
given the final multiplicative mask.

All class k1 to class k2: let k1 6= k2 ∈ {1, . . . ,K}. For any instance originally classified as

k1, classify it as k2. For any other instance, do not alter its classification. This case only works if
the classes k1 and k2 are leaf siblings (have the same parent). Class k2 may be represented by
multiple leaves since we only need to deal with one of them (the sibling of k1). Mask: simply
apply Node-Mask to the parent of the leaves of k1 and k2. For instance, if class k1 is left child,
then final multiplicative mask µ

× will contain ones at S+, zeros at S− and ∗ (meaning any
value) at S0.

None to class k: let k ∈ {1, . . . ,K}. For any instance originally classified as k, classify

it as any other class. For any other instance, do not alter its classification. Mask: simply apply
Node-Mask to the parent of each leaf of k and combine the resulting multiplicative masks as
extended-AND (defined below). Finally, add the additive mask.

All to class k: let k ∈ {1, . . . ,K}. Classify all instances x as class k. Mask: find the path
from the root to the leaf of class k. At each node i in the path, apply Node-Mask (to divert
instances along the path) and keep the multiplicative mask only. The final multiplicative mask,
elementwise, has a 0 where any of the node masks has a 0, a 1 where all node masks have no
0s but at least one 1, and ∗ elsewhere. This masks out all the “undesired” features that might
divert us from the path. Equivalently, this is the logical extended-AND of all the multiplicative
masks along the path (where we extend AND to mean AND(∗, 0) = 0, AND(∗, 1) = 1 and
AND(∗, ∗) = ∗).

4. Experiments

We have evaluated our masks thoroughly on two deep nets. 1) VGG16 [29] in a subset of 16
classes of ImageNet [28], for which we select the F = 8 192 neurons from its last convolutional
layer. 2) LeNet5 in MNIST on 10 digit classes [30], for which we select the F = 800 neurons
at layer conv2 as features. For both of them, we can train trees that accurately mimick the
deep net classifier g. The trees give remarkable insight in the relation of deep net features to
classes and allow us to construct masks that indeed work as intended in the deep net for most
instances. Here, we focus on VGG16.

Our VGG16 net achieves an error of 0.2% (training) and 6.79% (test). To train the tree, we use
as initial tree a deep enough, complete binary tree with random parameters, and run TAO for a
range of increasing λ values. From there, we pick a tree with accuracy close to that of the deep
net but as sparse as possible, which we will use as mimick. This tree (λ = 1) has an error of 0%
(training) and 7.90% (test); it has 39 nodes and uses just 1 366 features (17% of the total 8 192).
We normalize the final tree so each node weight vector has norm 1. We also discuss a tree of
somewhat lower accuracy but which has exactly one leaf per class (fig. 1). This tree (λ = 33)



has an error of 1.79% (training) and 9.56% (test); it has 31 nodes and uses just 408 features (5%
of the total 8 192).

4.1. Manipulating the deep net features via masks

We derive masks using the mimick tree (λ = 1). Fig. 2 shows confusion matrices for VGG16,
over test instances (see fig. 5 in the appendix for training instances). As shown in the confusion
matrix for deep net vs tree prediction (secondmatrix in the top left), bothmodels have the same
prediction for almost all instances, showing the tree mimick the network really well. This was
expected as the tree have training and test errors close to those of VGG16. The interesting
confusion matrix is the original network vs network with only the feature selected by the
tree (top middle). Here, even after using only 17% of the features, the network has the same
prediction as to the original one. It suggests that 83% of the features and hence neurons and
weights of the net are practically redundant, or perhaps code for properties that are useful for
only a few specific instances. This is not surprising if one notes that deep nets (at least, as
presently designed) seem to be vastly overparameterized and can be significantly compressed.

Generally, the masks affect the deep net classification in the same way as the tree. This is
to be expected since the tree has a very similar error and confusion matrix as the net, but it is
still surprising in how well it works in most cases, like for classifying all instances as class k
mask (bottom row). This also indicates that certain deep net neurons (those critically involved
in the masks) play a well-defined role in the classification. The number of features that a mask
critically needs to perform its job is very small, around 200 (out of 8 192); for MNIST (see fig. 6
and 7 in the appendix) it is much smaller, around 40 (out of 800). Misclassifying class k1 as k2
(where k1 must have a single leaf which is a sibling of k2) works well too (top right), although a
few instances from other classes are sometimes classified as k2. Not classifying any instance as
class k (middle row) works also well but fails with some instances, which remain as class k. The
confusion matrices for MNIST (not shown) are very similar. We also demonstrate this masking
operation on an image which is not in the dataset for the VGG16 network in the appendix.

4.2. Inspecting the sparse oblique trees

Fig. 1 shows a very interesting tree, obtained for a larger λ value so that there is exactly one
leaf per class (the smallest number of leaves possibly unless we ignore classes). This tree has
very few nonzero weights yet its test error is reasonable, so it probably extracts features that
robustly classify most images. Also, its structure remains unchanged for a wide range of λ.
Inspecting it shows an intuitive hierarchy of classes that seem primarily related to the background

or surroundings of the main object in the image. Its leftmost subtree {warplane, airliner, school bus,
fire engine, sports car} consists of man-made objects often found on roads. However, {container
ship, speedboat} (man-made objects found on the sea) appears in the rightmost subtree, together
with {killer whale, bald eagle, coral reef}, all of which are also typically found on the sea or on
the air. Yet {goldfish} appears in a single subtree quite separate from all other classes: indeed,
this fish is found on fishbowls (not the sea) in the training images. A subtree in the middle
contains animals in land natural environments (forest, snow, grass, etc.): {tiger cat, white wolf,
goose, Siberian husky, lion}. And so on. This is consistent with previous works that have found



that, in some specific cases, the reason why a deep net classifies an object as a certain class is
caused by the background or more generally by some confounding variables [12, 31]. It points
to a possible vulnerability of the net, in that it may misclassify an object that happens to appear
in an unusual background (say, a bald eagle standing on a road).

5. Conclusion

Our paper demonstrates the use of sparse oblique decision trees as a powerful “microscope” to
investigate the behavior of deep nets, by learning interpretable yet accurate trees that mimick
the classifier part of a deep net. Using the TAO algorithm is critical for this to succeed. The
resulting tree gives insights about the relation between neurons and classes, and enables the
design of simple manipulations of the neuron activations that can, for any training or test
instance, change the class predicted in various, controllable ways (thus making adversarial
attacks possible at the level of the deep net features).
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A. Classifier mimicking

x

D input
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K output
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entire neural net

z = F(x),
F neural net features

y = g(z),
classifier part
(mimicked
by tree)

Figure 3: Mimicking part of a neural net with a decision tree. The figure shows the neural net
y = f(x) = g(F(x)), considered as the composition of a feature extraction part z = F(x) and a
classifier part y = g(z). For example, for the LeNet5 neural net of [30] in the diagram, this corre-
sponds to the first 4 layers (convolutional and subsampling) followed by the last 2, fully-connected
layers, respectively. The “neural net feature” vector z consists of the activations (outputs) of F neurons,
and can be considered as features extracted by the neural net from the original features x (pixel values,
for LeNet5). We use a sparse oblique tree to mimic the classifier part y = g(z), by training the tree
using as input the neural net features z and as output the corresponding ground-truth labels.



B. Tree to mimic LeNet5 features
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Figure 4: Tree selected as mimic for LeNet5 features (λ = 20). At each decision node we show weight
vector and average of training instances at each leaf; we show the node index, bias (always zero) and,
for leaves, their label. We plot the weight vector, of dimension 800, as a 29×29 square (the last pixels
are unused), with features in the original order in LeNet5 (which is determined during training and
arbitrary, hence the random aspect of the images), and colored according to their sign and magnitude
(positive, negative and zero values are blue, red and white, respectively). You may need to zoom in
the plot.For MNIST, our LeNet5 architecture achieves an error of 0.00545% (training) and 0.61% (test).
We selected as mimick the tree for λ = 20, with depth 5 and only 27 nodes. It has an error of 1.28%
(training) and 1.67% (test), which is very close to that of LeNet5.



C. Confusion matrices
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Figure 5: Like fig. 2 but for the training set.
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Figure 6: Confusion matrices for LeNet5 (test set). Top le� : ground-truth vs deep net, and deep net vs
tree. Top middle: deep net vs deep net with only the features selected by the tree. Top right : All class
k1 to class k2 (selected examples). Middle: None to class k. Bottom: All to class k.
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Figure 7: Like fig. 6 but for the training set.



D. Illustration of the masks with an actual image

Fig. 8 illustrates the mask behavior in an image not in the dataset. The middle column his-
tograms show the deep net features (grouped by class). In each row, the top histogram shows
the feature values, and the bottom histogram shows the number of features selected for each
class. Next, we show how masking the features drastically alters in a controlled way the soft-
max output. In row 2, when we apply the All to class “Siberian husky” mask, the network
now classifies the image as “siberian husky”. Similarly, in row 5, when we apply the All to
class “bald Eagle” mask, the network now classifies the original image as “bald eagle” with
large confidence, compared to row 1, where without the mask the softmax value for “bald
eagle” is close to zero. We also show how the mask correlates with superpixels (perceptual
groups of pixels obtained by oversegmentation) in the image, either manually cropped (row 3)
or optimized to invert the desired deep net features (row 4).

To obtain results like those above, the general procedure is as follows. Firstly (in an offline
phase), we train the tree mimic and construct a subset of features Sk for each class k, using
the All to class k mask. This defines a score for an input image x as sk(x) =

∑
i∈Sk

Fi(x),
where Fi(x) is the feature i computed by the deep neural net for x. We can then discard the
tree and the classifier part of the deep net. All we need is the feature-extraction part of the
deep net and the class sets S1, . . . ,SK .

Then (in an online phase), given an input image and a target class k, we split the image into
superpixels (using some oversegmentation algorithm), compute the score for each superpixel,
and report the superpixels with lowest score (most salient).
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Figure 8: Illustration of masks for a particular image (VGG16 network on ImageNet subset). Column
1 shows the image masks (when available). Column 2 summarizes the 8 192 feature values as two
histograms: on the upper panel, the number of features in each class group (listed in the X axis as 0–F,
where “∗” means features not used by the tree); on the lower panels, the average feature value (neuron
activation) per class group. Column 3 shows the histogram of corresponding so�max values. Row 1
shows the original image. Row 2 shows a mask in feature space to classify it as “Siberian husky”. Row
3 shows a mask manually cropped in the image, whose features resemble those of row 2. Row 4 shows
a mask in feature space obtained by finding the top-3 superpixels whose features most resemble those
of the masked features of row 2. Row 5 shows a mask in feature space to classify the image as “bald
eagle”.
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