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Abstract
Counterfactual explanations are a common approach to providing recourse to data subjects. However,
current methodology can produce counterfactuals that cannot be achieved by the subject, making the use
of counterfactuals for recourse difficult to justify in practice. Though there is agreement that plausibility
is an important quality when using counterfactuals for algorithmic recourse, ground truth plausibility
continues to be difficult to quantify. In this paper, we propose using longitudinal data to assess and
improve plausibility in counterfactuals. In particular, we develop a metric that compares longitudinal
differences to counterfactual differences, allowing us to evaluate how similar a counterfactual is to prior
observed changes. Furthermore, we use this metric to generate plausible counterfactuals. Finally, we
discuss some of the inherent difficulties of using counterfactuals for recourse.
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1. Introduction

Over the past two decades, machine learning and artificial intelligence have become intertwined
with broad swaths of society, from education to criminal justice to consumer finance. Through-
out this transition away from human decision-makers and towards algorithmic decision-makers,
researchers, practitioners, and advocates have emphasized the need for explainability and trans-
parency. Approaches to explainability have varied widely, from creating novel ’glass-box’ model
architectures to developing post-hoc local explainability techniques [1] [2]. Of particular interest
in the past five years are counterfactual explanations, which explain an individual prediction by
finding an, in some sense, small change to achieve a desired prediction[3]. In contrast to most
explainability techniques, counterfactual explanations seek to explain algorithmic decisions to
data subjects.

Although there has been substantial work in the domain of machine learning explainability,
significant gaps exist regarding the utility of explanations to data subjects. Unlike concepts
such as accuracy or sparsity, subject utility has neither a simple nor agreed upon mathematical
definition. Consequently, counterfactual explanation methods optimize subject utility using
disparate approaches [4] [5]. Terms such as plausibility, validity, and actionability are used to
describe different aspects of the utility of counterfactuals. Plausibility, the main focus of this
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paper, requires that a counterfactual is a possible state of being [6]. Nonetheless, generating
plausible counterfactuals is not a simple task. Substantial effort has been devoted to developing
methods for plausible counterfactuals, but there are no agreed upon approaches or even metrics
for plausibility. Additional effort has gone into using counterfactuals to provide recourse to
data subjects [7]. Recourse is a stricter goal, requiring that a counterfactual be useful to a data
subject in pursuing a desired decision. Therefore, plausibility is necessary for counterfactuals
to be used for recourse.

This paper proposes a novel approach to evaluating plausibility using longitudinal data. We
begin by briefly reviewing approaches to improving plausibility in counterfactuals, discussing in
particular persistent pitfalls. We then introduce a longitudinal distance metric for counterfactual
explanations. In introducing our metric, we bring forth the benefits of using longitudinal data
as a proxy for plausibility and mention some limitations. Next, we perform experiments with
our metric to evaluate the use of longitudinal data for plausibility. We also explore some of the
consequences of requiring plausibility. Finally, we discuss the implications of our results in the
broader context of providing recourse through counterfactual explanations.

2. Offering Recourse Through Counterfactuals

A common motivation for counterfactual explanations is to provide data subjects with a path to
recourse. Counterfactuals are unique in their ability to not only explain algorithmic decisions
to a lay audience, but also explain how someone could receive a desired decision. That is, a
counterfactual informs a subject not only why they received a decision, but what to change
and how much to change. Therefore, counterfactuals have the potential to greatly increase
transparency and accountability in algorithmic decision-making.

However, persistent gaps exist between the ideal scenario and counterfactuals in practice.
Centrally, current methodology fails to consistently produce plausible or achievable explanations.
Here, we use the terms plausible and achievable to refer to objective and subjective perspectives
of the difficulty of pursuing a given counterfactual. A counterfactual is plausible if it respects
constraints on reality, for example, not changing ethnicity or decreasing age. On the other hand,
a counterfactual is achievable if the relevant subject can achieve it. It is generally plausible for
someone to increase their level of education, but it may not be achievable for a given individual.
These definitions themselves elucidate the difficulty of offering recourse through counterfactual
explanations; how do we know if a data subject can act on a particular recommendation?

Existing counterfactual explanation methods use proxies for plausibility and achievability in
an attempt to avoid implausible recommendations. Two proxies are most common: relying on
user constraints and leveraging structure in data[5] [8] [4] [9] [10] [7]. Users (i.e. the person
using counterfactuals to explain an algorithm) often have domain expertise on how data subjects
can change. However, relying solely on users risks introducing social bias to explanations.
Data offer some opportunity to craft constraints objectively, but existing methods to enforce
plausibility using data are insufficient. Current data-based plausibility constraints either assume
individuals are interchangeable or require causal modeling. The former approach does not
reflect the complexities of recommending changes to people, and the latter requires significant
(and often unavailable) knowledge on the part of the user.



Ultimately, proxies are needed to produce plausible or achievable counterfactuals at scale. We
may not know what an individual can or cannot achieve, or we may have incomplete information
of relationships between the features in our model. However, existing methodologies often use
proxies that insufficiently penalize implausible explanations.

3. Longitudinal Data as a Proxy for Plausibility

As discussed in 2, counterfactual explanations often are motivated by the goal of offering
recourse to data subjects, though there are persistent issues that prevent most methods from
providing recourse. If we view counterfactual explanations as potential paths to recourse, then
we can conceptualize them as recommendations for algorithmic subjects. Specifically, we can
view counterfactuals as recommendations for changes that a data subject can make to receive
a desired decision at some point in the future. Conceptualizing counterfactuals as potential
states of being forward in time naturally leads to considering longitudinal likelihoods. That is,
when making recommendations for the future, we should consider prior observed changes over
time. This perspective leads us to the primary goal of this paper: leveraging longitudinal data
to assess and improve plausibility in counterfactual explanations.

We introduce a distance metric that compares prior observed changes to proposed changes
in the form of counterfactual explanations. Let 𝐴,𝐵 ∈ R𝑛×𝑑 be 𝑛 observations of 𝑑 features
across two different points in time. Subsequently, let 𝐷 = 𝐵 − 𝐴, that is the change in the
observed features over time. Now we define our distance metric

𝐿(𝑥, 𝑒;𝐷, 𝑠) = min
|ℐ|=𝑠

1

𝑠

∑︁
𝑖∈ℐ
‖(𝑒− 𝑥)−𝐷𝑖‖ (1)

where ℐ is an index set for prior observed changes, 𝑠 is the desired size of the index set, 𝑥 is the
example to be explained, and 𝑒 is the counterfactual explanation. In summary, we compare a
proposed difference to the 𝑠 closest differences and average them. By increasing 𝑠, we require
that the proposed difference is similar to a larger number of observed differences.

We can justify and augment our approach in the following ways:

• Since there are likely a large variety in observed trajectories, we average the 𝑠 most
similar. This allows room for heterogeneity across trajectories without allowing a single
rare trajectory to dominate our metric.

• In the likely chance that our data contains heterogeneous features, we can normalize
our distance metric across features. Here, we consider dividing features by a metric for
the dispersion of their observed differences. Our experiments use the median absolute
deviation (MAD) or average absolute deviation (AAD), but other approaches can be
implemented.

• For categorical features, several options can be exercised. For binary features, the average
absolute deviation can be appropriate. For multi-class features, we normalize by the rate
at which changes are observed in the longitudinal data.

• Normalization can empower discovery of implausible counterfactual explanations. If our
feature has a high normalization value (e.g. 1 over the MAD), then changes to that feature
are rarely seen.



Our proposed metric is flexible in its use; we can use it both during and after generating
counterfactuals. Post-generation, the longitudinal distance metric can be used to evaluate
and rank the plausibility of explanations. During generation, the distance metric can be used
to further constrain the search space. Notice that in comparing proposed changes to those
observed in longitudinal data, we not only re-weight distances on a per-feature basis, but we also
incorporate dependencies between feature changes; ruling out a requirement to, for example,
both change profession and increase the length of tenure in your current job.

A first approach to incorporating our longitudinal metric is to re-score a proposed collection
of counterfactuals. Stochastic search algorithms used in [5] and [9] return a set of possible
counterfactual explanations, usually incorporating a geometric distance metric; these can then
be examined or prioritized by longitudinal distance. We generate counterfactuals using the
methods in [5], and then score them by plausibility. This two-step approach allows us to use the
more regular geometric distance for optimization, providing a more efficient search of feature
space. In this paper, it also allows us to examine the baseline plausibility of counterfactuals
generated with a geometric distance. In the appendix, we offer one simple way to generate
counterfactuals using our longitudinal metric.

4. Ranking Explanations from DiCE and MIMIC-III

To ground our approach, we consider an example from healthcare. Suppose a predictive model
is being used to assess patient risk for a disease. Counterfactuals may be useful to doctors
by explaining individual predictions and showing potential paths to decreased risk. In this
experiment, we use MIMIC-III, an electronic health records (EHR) dataset, to predict acute
respiratory failure (ARF) within four hours of admission [11] [12]. Specifically, we use a version
of MIMIC-III that has been preprocessed by FIDDLE, an EHR data processing pipeline [13]
[14]. Our longitudinal data consists of measurements when the patient is admitted and repeat
measurements four hours after admission. We train a random forests model to predict ARF
using only the first time step of data, and use DiCE ([5]) to generate ten counterfactuals for
individuals in the test set who are predicted to have ARF. Our dataset contains 1350 features to
train our model, twenty of which are derivations from vital signs.

To rank counterfactuals, we use the longitudinal differences between the first and fourth
hour of data. We normalize our metric using the AAD of the longitudinal differences, and we
add a small tolerance (10−5) to prevent division by zero. Finally, we conduct this experiment in
two different settings: allowing all features to be changed (ALL) and allowing only vital signs to
be changed (VITAL). These two settings should show us how our longitudinal distance metric
can help assess plausibility, both when we know what features can be changed and when we
may be unsure how to constrain the counterfactual search space. With this experiment, we seek
to assess the discriminatory ability of our distance metric and subsequently evaluate plausibility
for counterfactual explanations.

4.1. Results

We begin by looking at the relationship between the geometric distance and longitudinal
distance. Figure 1 B and C plot the L1 distance compared to the longitudinal distance for



Figure 1: A shows the proportion of individuals with explanations below each threshold of longitudinal
distance (x-axis). The solid lines represent the proportion of individuals with at least once explanation
below the threshold, and the dotted line is the average proportion of explanations below the threshold.
The vertical dotted line shows the distance value we would expect a feature to have if we observed it
changing for one individual. B and C compare the Geometric and Longitudinal distances between an
input and a counterfactual. In all plots, blue refers to VITAL and orange refers to ALL.

explanations using only vital signs and all features respectively. Overall, our metric is loosely
correlated with the L1 distance, but there are significant deviations based on which features are
changed. In the case of explanations that can only change vital signs, there is a noticeable linear
relationship. Vital signs in our dataset generally change at a similar rate, so the cost of changing
one or the other is similar. Therefore, the L1 distance is closely related to the longitudinal
distance.

Looking at explanations that consider all features, the relationship is much more tenuous.
Some features rarely change, leading to significant jumps in our distance metric even when only
one feature is changed. Additionally, about half of the explanations change some immutable
feature, such as Hospital Ward or Religion. Some explanations also change features that are
mutable in theory, but not observed to have changed. Since the AAD is zero for some features,
changing those features results in a large distance value. The resulting distance is above 105,
that is 1

𝐴𝐴𝐷+𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 105. Moreover, changing features without observed changes is not a
rare occurrence. When we allowed any feature to be changed, 74 percent of the counterfactuals



generated had a longitudinal distance value above 105. This is in stark contrast VITAL, where
there are no explanations with a longitudinal distance value above 20.

Next, we consider plausibility at the individual level. Each individual receives ten counterfac-
tuals, but our metric will help us see how many plausible counterfactuals an individual receives
on average. Figure 1 A shows the proportion of explanations below a threshold, and the vertical
line represents the distance value of a change that has occurred once in our train set. For the
purposes of this experiment, we consider counterfactuals below that threshold to be plausible.
We can see that not only are explanations less plausible on average in ALL, the proportion of
individuals with plausible explanations is significantly lower. Consequently, the vast majority
of individuals in our test set do not receive a plausible counterfactual if we consider changing
all features. Constraining to vital signs, however, leads to only plausible counterfactuals.

Though we have seen that constraints can improve plausibility, it is important to consider
the effect constraints have on validity. We consider a counterfactual ’valid’ if it has the desired
prediction (i.e. not at risk of ARF). Notably, constraints may prevent the generation of valid
counterfactuals by not allowing changes to predictive features. While we were able to generate
counterfactuals for all 229 individuals in the test set with ALL, we only generated counterfactuals
for 120 individuals with VITAL. This disparity raises concerns around the tension between
plausibility and validity; we can improve plausibility by constraining our search space, but we
may constrain counterfactuals in a way that degrades validity.

In summary, our experiment elucidates the following:

• Longitudinal data allows us to detect and penalize unobserved changes in counterfactuals
• Constraints can improve plausibility
• Plausibility and validity are in tension with each other

4.1.1. Supplementary Results

In the supplement to this paper, we provide further results, specifically regarding the use of our
metric to generate counterfactuals.

5. Future Work

In this paper, we only consider a longitudinal distance metric. Future work should explore
modeling longitudinal data to further improve plausibility constraints. Future work should also
consider implementing intermediate steps across time, and modeling plausiblity in terms of
the subject’s current features. Additionally, our approach is computationally complex due to
row-wise comparison of matrices. Further work can investigate decreasing this complexity,
potentially using prototypes or other clustering methods.
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A. Genetic Longitudinal Counterfactuals

In addition to using our metric after generating counterfactuals, we present a method that
leverages longitudinal data for generating counterfactuals using genetic algorithm. In the genetic
algorithm, largely borrowed from [5] and [8], we begin by generating a random population of
the desired class. Then, we assess the fitness of the population relative to our input and rank the
population by fitness. The top half of the population is then mated (i.e. features are randomly
chosen between two individuals). The next generation in the algorithm is made up of the top
half of the current generation and their offspring. We repeat this cycle until the best fitness
does not change substantially.

Algorithm 1 provides pseudocode for the above description. This algorithm is flexible enough
to allow for a variety of fitness metrics, and in this paper we use our longitudinal metric to
generate counterfactuals constrained by longitudinal distances. 2 and 3 show two metrics that
are used in [5] to generate counterfactuals.

Algorithm 1 Genetic Counterfactuals
Input: (subject input 𝑥, desired outcome 𝑧, model 𝑀 )
POP← IntialPopulation(𝑥, 𝑧)
currentBest←∞
repeat

prevBest← currentBest
mostFit← SelectFittest(𝑥, 𝑧,𝑀 )
currnetBest← BestFitness(mostFit)
POP←Mate(mostFit)

until currentBest ≈ prevBest
return POP

𝐿𝑝𝑟𝑜𝑥(𝑥, 𝑒) =

(︃ ∑︁
𝑖∈𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

1

𝑀𝐴𝐷(𝑋𝑖)
|𝑥𝑖 − 𝑒𝑖|

)︃
+

⎛⎝ ∑︁
𝑖∈𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙

(𝑥𝑖 ̸= 𝑒𝑖)

⎞⎠ (2)

𝐿𝑠𝑝𝑎𝑟𝑠𝑒(𝑥, 𝑒) =
∑︁
𝑖

(𝑥𝑖 ̸= 𝑒𝑖) (3)

A.1. Experiment with Adult-Income Dataset

We performed an experiment to compare counterfactuals generated with and without our
longitudinal metric. In the ’Default’ algorithm, we optimize sparsity and proximity, and in the
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’Longitudinal’ algorithm, we optimize proximity and longitudinal distance.
We use Adult-Income, a common dataset used in fairness and explainability research [15]

[16]. The task is to use an individual’s demographic and economic information to predict if
their income is above 50k. To augment our experiment, we also consider a threshold of 30k.
Having two different thresholds should help us understand how plausibility interacts with
the rarity of a desired decision. In Adult-Income, 24 percent of individuals have an income
above 50k, compared to 44 percent who have an income above 30k. We expect that the lower
threshold will lead to more plausible counterfactuals and higher validity for both the ’Default’
and ’Longitudinal’ methods.

Though the dataset does not contain any longitudinal data, it is simple enough to reason about
what data subjects might look like over time. Therefore, we conduct a simple simulation to
generate longitudinal data: we randomly allow some individuals to swap careers with someone
else in their education class. We also allow some individuals to increase their level of education
before moving to a new career. When swapping careers, all non-demographic variables are
swapped (hours-per-week, occupation, and capital loss/gain). Finally, the simulation increases
age randomly between one and ten years. This simulation shows some of the ways people can
change their economic conditions without allowing any changes on immutable features, such
as race or nationality. However, some features we do not include, such as marital status, can
change in practice. We focus on allowing changes to features that could potentially be included
in a recommendation.

Metrics for validity are presented in Table 1. Example counterfactuals are presented in Table
2. Overall, we find that the ’Longitudinal’ algorithms produces fewer valid counterfactuals, but
also fewer counterfactuals with impossible changes.

30k 50k
Metric Default Longitudinal Default Longitudinal

Mean Validity 0.96 0.90 0.93 0.53
% validity=0 0 3 2 22
% validity=1 75 65 72 31
% immutable 73 0 84 0

Table 1
Metrics for ’Default’ and ’Longitudinal’ methods across both thresholds. Validity refers to whether or not
a counterfactual is of the desired class. Since each individual in the test set receives ten counterfactuals,
we calculate the mean validity across the those individuals. The last three rows refer to the percent
of individuals who have no valid counterfactuals, the percent who have ten counterfactuals, and the
percent of counterfactuals that change an immutable feature.
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