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Abstract
Counterfactual explanations have emerged as an effective method of explaining machine learning models.
These explanations elucidate how to tweak the model input in order to flip its output. Generative
approaches serve as a tool for creating meaningful counterfactuals for complex problems, where other
methods fail or require too much computation. This work presents an overview of generative approaches
and their applications in the generation of counterfactual explanations. We highlight the prevailing
challenges, such as diversity and distinction from adversarial examples, and identify open questions with
future research directions, such as ensuring the stability of counterfactuals and automatic reasoning
with counterfactual explanations.

Keywords
Counterfactual Explanations, Generative Models, Explainable AI

1. Introduction

Counterfactual explanations clarify complex system decisions by answering "what if" scenarios,
showing how minimal input changes can lead to different outcomes [1]. This is crucial in
Machine Learning (ML), where understanding the rationale of a model is as important as the
decision itself [2]. By examining hypothetical alternatives, counterfactual explanations make
ML models’ decision-making more transparent and comprehensible.

Despite growing interest in counterfactual explanations, there is a gap in the literature on
the generative methods used to create them. Variational Autoencoders (VAEs) [3], Generative
Adversarial Networks (GANs) [4], and Denoising Diffusion Probabilistic Models (DDPMs)
[5] are notable for generating counterfactuals, especially for complex data modalities such as
images, where tweaking uninterpretable features fall short. However, existing surveys often
overlook the generative aspects or high-dimensional data scenarios [6, 7, 8]. Our work addresses
this gap by focusing on generative models for counterfactual explanations in complex data,
offering a comprehensive understanding of their capabilities and limitations.

In this paper, we explore the common use cases of generative models for counterfactual
explanations and highlight primary challenges. We categorize methods by their generative
techniques and examine modifications to standard processes to meet counterfactual require-
ments. Our discussion aims to stimulate further research by identifying key challenges and
potential directions for advancing generative methods in counterfactual explanations. While
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Figure 1: The figure illustrates the prevalent use cases of VAE (red), GAN (green), and DDPM (blue) in
generating a counterfactual 𝑥cf from a given query sample 𝑥q. The VAE approach employs an encoder
to approximate 𝑞𝜑(𝑧|𝑥q), from which 𝑧 is sampled. Subsequent modifications yield 𝑧cf, and the decoder
then generates 𝑥cf from 𝑝𝜃(𝑥|𝑧cf). In contrast, GAN leverages a generator, trained using adversarial
loss, that inputs a latent noise vector 𝑧, the original sample 𝑥q, and a target label 𝑦 to synthesize 𝑥cf.
DDPM integrates a trained score function∇𝑥 log 𝑝(𝑥) with a classifier into a conditional score function
∇𝑥 log 𝑝(𝑥|𝑦). This function facilitates the transition from 𝑥q to 𝑥cf through iterative noise injections
and denoising steps.

counterfactual generation is often seen through the lens of causal generative modeling [9], we
focus on noncausal approaches.

2. Counterfactual Explanations

Counterfactual explanations are essential for explainability in machine learning [6, 1]. Formally,
given a dataset 𝑋 with corresponding labels 𝑌 , a counterfactual for a query sample 𝑥q ∈ 𝑋 is an
alternative sample 𝑥cf ∈ 𝑋 that results in a different outcome 𝑦 ∈ 𝑌 under a predictive model
𝑓 : 𝑋 → 𝑌 , providing insight into model behavior. The quality of a counterfactual explanation
depends on several conditions [1]. Proximity and validity require a counterfactual to be as
similar as possible to the query sample 𝑥q but lead to a different desired outcome. Meanwhile,
plausibility and actionability demand that the suggested modifications be meaningful and
practical to users. For example, suggesting a reduction in age is impractical, as age cannot be
reversed.

Counterfactuals and adversarial examples. To further understand counterfactual expla-
nations, it is useful to compare them with adversarial examples, since both involve modifying
the original samples to change the output of a model. Counterfactual explanations and adver-
sarial examples modify the original samples to change the output of a model but differ in their
objectives. Counterfactuals introduce semantically reasonable changes to provide meaningful
insights, while adversarial examples use subtle, imperceptible perturbations to mislead the
model. Distinguishing between them is challenging. Thus, it is crucially important for counter-
factual approaches to ensure modifications that are perceptible and semantically significant
[10, 11].
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Figure 2: The taxonomy of considered approaches. We consider three of the most popular generative
approaches and categorize them based on the types of modifications made to the standard sampling
process to ensure counterfactual properties.

Counterfactuals and generative models. While most counterfactual explanation methods
are developed for tabular data with interpretable features, extending them to high-dimensional
domains like images or time-series is challenging. In tabular data, ensuring properties like va-
lidity and feasibility is straightforward. However, high-dimensional data with non-interpretable
features poses significant difficulties. Generative models capable of approximating data distribu-
tions offer a promising solution. Figure 1 illustrates common uses of VAEs, GANs, and DDPMs
for counterfactual generation. These models can satisfy counterfactual conditions through
specific modifications and regularizations, such as incorporating distance metrics for validity or
controllable generation techniques for actionability.

3. Variational Autoencoders

VAEs are useful for counterfactual generation by approximating data density 𝑝𝜃(𝑥|𝑧), ensuring
modifications remain within the data distribution (see the Appendix A for details). Since VAEs
can produce interpretable latent factors, they are useful for counterfactual explanations. Our
taxonomy for VAE-based counterfactual generation methods includes optimization methods,
which employ optimization of an expression defining a good counterfactual while using VAE to
stay in the data manifold; latent perturbations, which encode a sample into a latent space,
modify it, and decode to obtain a counterfactual; we also mention some modality-specific
VAEs to highlight the versatility of this approach.

Optimization methods. This is the most common approach to use density approximation for
counterfactual explanations [1, 6]. They optimize an expression involving a classifier 𝑓 , desired
outcome 𝑦, classifier loss ℓ, and a cost function 𝑐 that enforces desired properties, balanced by 𝜆:

ℒcf = ℓ
(︁
𝑓
(︀
𝑝𝜃(𝑥|𝑧)

)︀
, 𝑦
)︁
+ 𝜆𝑐

(︀
𝑥q, 𝑝𝜃(𝑥|𝑧)

)︀
, 𝑧cf = argmin

𝑧
ℒcf (1)



The counterfactual explanation is derived by 𝑥cf ∼ 𝑝𝜃(𝑥|𝑧cf). Despite using the learnable
posterior 𝑝𝜃(𝑥|𝑧), stochastic optimization process can result in 𝑧 being outside the prior 𝑝(𝑧),
making generating actionable counterfactuals a challenge.

Latent perturbations. [12] introduced a conditional VAE with factorized encoder and
decoder. It uses mixture priors for clustering in the latent space. Counterfactuals are generated
by small perturbations to the latent representation and reconstruction through the decoder,
ensuring proximity and high-density data alignment. [13] proposed an approach to generate
non-trivial, diverse explanations by varying less influential latent factors.

Modality-specific VAEs. [14] presented a framework for counterfactual explanations for
graph ML models using a conditional graph VAE. It handles graph data challenges and generalizes
to out-of-distribution graphs. [15] focused on anomaly detection in multivariate time-series,
segmenting the latent space into general and salient components with supervised contrastive
loss. Counterfactuals replace the salient component with a healthy latent prototype, estimated
using kernel density estimation.

4. Generative Adversarial Networks

The capability of GANs to generate high-quality samples makes them useful for realistic coun-
terfactuals. However, they face challenges with unstable training and mode collapse, limiting
diversity [4, 16, 17, 18]. We categorize GAN-based approaches into four groups: Conditional
GANs, where the generator 𝐺 combines latent noise 𝑧, encoded features from the original
sample 𝑥q, and the class label 𝑦 to generate counterfactuals: 𝑥cf = 𝐺(𝑧,𝑥q, 𝑦); Semantic
decomposition, which involves segmenting original images into meaningful regions and
treating each region individually during generation, these approaches utilize the individual
editing of semantically distinct regions to enhance actionability; Cycle-consistency GANs,
which produce a counterfactual and its reversal (as a counterfactual with respect to the counter-
factual), aligning the reversal with the original sample; and StyleGAN modifications, which
use StyleGAN modifications for detailed and high-quality counterfactuals.

Conditional GANs. [19] introduced a GAN-based approach for counterfactual generation
by finding the latent encoding of a query image and using a class-conditional GAN to produce
three instances: a reconstructed original, a modified image, and a change mask. The final
counterfactual blends the original and modified images based on the predicted mask. [20] used
typical conditional GAN training with additional constraints to ensure validity and counterfac-
tual properties. [21] modified the GAN architecture, training the generator to output residuals
instead of complete data points. [22] used an external classifier as a discriminator to improve
robustness against adversarial attacks.

Semantic decomposition. [23] decomposed counterfactual generation into three compo-
nents: background, foreground, and object mask, using a conditional GAN for each. [24] used



semantic maps and embeddings to generate counterfactuals. [25] combined conditional GANs
with saliency maps to target specific regions for modification.

Cycle-consistency GANs. [26] used cycle-consistency loss to ensure coherence and re-
versibility of counterfactual changes. [27] added latent concept vectors for disentangled
concept learning. [28] enforced cycle-consistency between original and counterfactual latent
embeddings.

StyleGAN modifications. StyleGAN [29] uses latent style vectors for image generation. [30]
combined StyleGAN vectors with classifier outputs for counterfactuals. [31] integrated a style
vector with a CLIP [32] embedding to allow user-defined modifications in natural language.

5. Denoising Diffusion Probabilistic Models

DDPMs have emerged as the state-of-the-art generative approach, particularly useful for coun-
terfactual generation (see the Appendix C for details). We classify these approaches into two
main groups: explicit guidance and textual inversion methods. Explicit guidance meth-
ods exploit an external differentiable classifier 𝑝(𝑦|𝑦) to replace the original score function
∇𝑥 log 𝑝(𝑥) with a conditional one ∇𝑥 log 𝑝(𝑥|𝑦) to generate specific counterfactuals. Textual
inversion is a technique used in text-conditioned generative models, where unique trainable
embeddings are assigned to images that share common concepts. These embeddings are opti-
mized so that, when used as conditioning inputs, the generative model produces images that
are similar to the original ones, effectively capturing and reproducing the shared concepts.
Counterfactual generation here involves modifications of the original concept embedding.

Explicit guidance. Advances in DDPMs have led to innovative applications in counterfactual
generation, such as DiME [33] and DVCE [34]. These methods use classifier-guidance during
the diffusion process. Since diffusion models operate with noised samples, DVCE employs a
one-step denoising approximation, while DiME uses multiple iterations. [35] emphasized the
significance of techniques for handling noised samples, such as gradient cone projections and
intermediate denoising steps. [36] introduced a two-stage approach using classifier feedback
for initial image modifications, followed by iterative denoising with DDPM. [37] utilized the
latent diffusion method from [38], known for computational efficiency by operating in a lower-
dimensional latent space. The introduced consensus guidance mechanism filters gradients to
ensure plausible counterfactual changes.
DDPMs gained wide application in medical image processing. One significant task addressed
with counterfactual generation is the medical anomaly detection, which involves identifying
disease-specific regions within samples. [39] and [40] used reverse diffusion with classifier
guidance to generate healthy counterparts of pathological images. [41] combined DDIM [42],
DDPM, and saliency maps for precisely targeted modifications. [43] explores counterfactual
generation for fMRI data, using a transformer-only model for long-range dependencies and a
modified diffusion sampling process for enhanced efficiency.



Textual inversion. Textual inversion [44] learns distinctive tokens for specific classes or
concepts, enabling refined control over the generation process. [45] used this technique for
counterfactual generation by combining learned concept tokens with additional counterfactual
shift. [46] applied textual inversion to visual counterfactuals by learning concept embeddings
and prompts for predefined objects or classes. In contrast to the previous approaches, this
method implemented counterfactual modifications as transitions between concepts.

6. Challenges, open questions, and future directions

6.1. Challenges

Dealing with adversarial perturbations. All methods for counterfactual explanations
vary significantly in their approach to ensuring semantically reasonable modifications. Some
strategies use discriminative models that are adversarially resilient [34]. Other approaches
apply changes within a structured latent space [37, 28, 13], resulting in more feasible and
meaningful modifications. Another promising method involves the use of a structured latent
space with representations of concepts as individual entities present in a sample [47, 48], learned
with or without supervision [46, 45, 27].

Diversity of generated explanations. In high-dimensional data, generating diverse counter-
factual explanations is crucial but rarely addressed [13]. Multiple plausible changes can lead to
the same desired outcome, making it a complex task to consider all possible directions. However,
too many diverse explanations can overwhelm users and hinder decision-making, requiring a
balance between variety and interpretability. The challenge is to combine potential alterations,
identify the most reasonable and relevant ones, and allow users to choose specific directions
of change without being inundated. This diversity of counterfactuals, vital for comprehensive
explainability, remains an open area for research and development. However, providing users
with multiple diverse explanations can invoke problems related to the Rashomon Effect [49],
where different potentially contradictory explanations may cause potentially contradictory
interpretations of the same phenomena.

6.2. Open questions

Are counterfactuals stable? The stability of counterfactuals — ensuring minimal changes
in the input sample do not lead to disproportionate changes in the output—remains a critical
challenge. Research in tabular data has revealed vulnerabilities, where slight manipulations in
the input can drastically alter the counterfactual [50]. This raises the question of whether gen-
erative approaches, increasingly used for counterfactual explanations, exhibit similar instability
or offer more robust solutions. Understanding and improving the stability of these models is
crucial for their reliability and trustworthiness in practical applications.

How to evaluate generated counterfactuals? Evaluating counterfactual explanations in
AI is challenging due to a disconnect between theoretical metrics and real-world applicability.
Traditional metrics, focusing on conditions such as proximity to factual instances or diversity,



do not necessarily translate to practical utility for end-users [51]. Research [52] has shown
that while counterfactual explanations may satisfy theoretical criteria, their impact on user
trust and understanding is inconsistent. To address this, recent approaches integrate users
and domain experts into the evaluation process [34, 53]. This expert-in-the-loop methodology
aligns theoretical constructs with practical realities, especially in critical areas like healthcare,
providing a more comprehensive evaluation of counterfactual explanations’ utility. However, a
universal benchmark for comparing different methods is still missing.

6.3. Future directions

Modalities and multimodal counterfactual explanations. Much of the current research
on counterfactual explanations focuses on image data. Extending these methodologies to other
modalities, such as graphs, time-series, audio, and video is an important challenge. In addition,
there is a gap in methods capable of handling multimodal data, which is increasingly prevalent in
practical applications. Developing techniques that can generate counterfactuals across various
modalities, or even within multimodal contexts, is a critical area for future exploration.

Grounding and reasoning in counterfactual explanations. The typical process of gener-
ating counterfactuals often lacks detailed explanations for why certain changes lead to specific
outcomes, leaving users to interpret these changes on their own, which can lead to misunder-
standings. Recent advances in Large Language Models (LLMs) with multimodal capabilities
offer a promising solution to this issue [54]. Integrating advanced LLMs with counterfactual
generation can enhance user comprehension by providing reasoning for suggested changes.
This aligns with the concept of Evaluative AI [55]. Efforts like [56] highlight the versatility of
LLMs in improving model explainability, especially with tabular data. Combining various forms
of explanations, including semi-factuals [57], with multimodal LLMs conditioned on specific
scenarios, could lead to more comprehensive and transparent AI systems.

7. Conclusion

This work highlights the crucial role of generative models in producing counterfactual expla-
nations for high-dimensional data. We emphasize the need for semantically rich, intuitive
explanations and robust user-centered evaluation describing existing approaches. We discussed
future research directions, which include application of counterfactuals across diverse data
modalities and integrating them with LLMs and other explanatory methods.
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A. VAE Background

Introduced by [3], VAE has become a significant tool in deep learning for training latent variable
models through variational inference. A VAE comprises an encoder and a decoder, with its
primary objective typically being the minimization of the reconstruction error of data samples.
The encoder, parameterized by trainable parameters 𝜑, approximates a variational distribution
𝑞𝜑(𝑧|𝑥), where 𝑧 is a latent variable with a prior distribution 𝑝𝜃(𝑧), often chosen as the standard
Gaussian distribution 𝒩 (0, 𝐼). The decoder models 𝑝𝜃(𝑥|𝑧). VAEs are trained by maximizing
the Evidence Lower Bound (ELBO), a variational lower bound of the exact log-likelihood:

log 𝑝𝜃(𝑥) ≥ ELBO = E𝑞𝜑(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)]−𝐷𝐾𝐿

(︀
𝑞𝜑(𝑧|𝑥) ‖ 𝑝𝜃(𝑧)

)︀
, (2)

where 𝐷𝐾𝐿 is Kullback–Leibler divergence.

B. GAN Background

In contrast to VAEs, GANs [4] operate on a different principle, as they do not explicitly learn
the likelihood of data samples. Instead, GANs employ two neural networks: a generator 𝐺 and
a discriminator 𝐷. The generator 𝐺 maps input noise, sampled from a distribution 𝑝(𝑧) =
𝒩 (0, 𝐼), to the data space with the objective of learning the distribution of the generator 𝑝𝑔 on
the data samples. The discriminator 𝐷, on the other hand, aims to estimate the probability that a
given data sample 𝑥 originated from the actual data distribution 𝑝data. The training of 𝐷 involves
distinguishing real samples drawn from 𝑝data and generated samples from 𝑝𝑔 . Concurrently, 𝐺 is
trained to maximize the probability of its generated samples being misclassified by 𝐷, effectively
minimizing log(1−𝐷(𝐺(𝑧))). This training process sets up a minimax zero-sum game between
𝐺 and 𝐷, where each network continuously improves its performance in response to the other,
leading to the generation of increasingly realistic samples:

min
𝐺

max
𝐷

(︁
E𝑥∼𝑝data(𝑥)[log𝐷(𝑥)] + E𝑧∼𝑝(𝑧)[log(1−𝐷(𝐺(𝑧)))]

)︁
. (3)

Compared to VAEs, GANs sample the latent code 𝑧 from the same prior distribution during
both training and inference, and are capable of generating more complex and high-fidelity data
samples [29].

C. DDPM Background

In recent years, Denoising Diffusion Probabilistic Models (DDPMs) have solidified their position
as a leading framework in generative modeling [5]. The central component of DDPMs is an
iterative process where noise is incrementally added to a data sample 𝑥0, transforming it into a
complete noise sample 𝑥𝑇 ∼ 𝑝(𝑥𝑇 ) = 𝒩 (0, 𝐼):

𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩 (
√︀

1− 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐼), (4)



where {𝛽1, . . . , 𝛽𝑇 } is a predefined variance schedule. This is coupled with a learned reversal
of this process:

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = 𝒩
(︀
𝜇𝜃(𝑥𝑡, 𝑡),Σ𝜃(𝑥𝑡, 𝑡)

)︀
, (5)

where 𝜇𝜃(𝑥𝑡, 𝑡) and Σ𝜃(𝑥𝑡, 𝑡) are predicted by models parameterized with learnable parameters
𝜃. Since DDPMs, similar to VAEs, represent latent variable models, they are trained by optimizing
the following variational lower bound:

log 𝑝𝜃(𝑥0) ≥ − log
𝑞(𝑥1:𝑇 |𝑥0)

𝑝𝜃(𝑥0:𝑇 )
, (6)

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏︁
𝑡=1

𝑞(𝑥𝑡|𝑥𝑡−1), (7)

𝑝𝜃(𝑥0:𝑇 ) = 𝑝(𝑥𝑇 )
𝑇∏︁
𝑡=1

𝑝𝜃(𝑥𝑡−1|𝑥𝑡). (8)

This procedure results in training a so-called score function ∇𝑥 log 𝑝(𝑥). The resultant sampling
procedure is executed by initial sampling of 𝑥𝑇 ∼ 𝒩 (0, 𝐼), followed by a sequence of 𝑥𝑡−1 ∼
𝑝𝜃(𝑥𝑡−1|𝑥𝑡) until the final 𝑥0 ∼ 𝑝𝜃(𝑥0|𝑥1). This technique, involving multiple trainable
denoising iterations, empowers DDPMs to produce outputs that are both highly detailed and
diverse, setting them apart in the generative modeling arena.

A notable feature of DDPMs, with significant potential for counterfactual generation, is the
development of a classifier guidance mechanism [5]. This approach diverges from traditional
generative models, which typically necessitate explicit conditioning during the training phase.
Guided diffusion introduces a paradigm where an unconditional generative model is first trained.
Subsequently, this model is adapted for conditional sampling via the integration of an auxiliary
classifier model by replacing 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) with

𝑝𝜃,𝜑(𝑥𝑡−1|𝑥𝑡, 𝑦) ∝ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡)𝑝𝜑(𝑦|𝑥𝑡, 𝑡), (9)

where 𝑝𝜑(𝑦|𝑥𝑡, 𝑡) is an external model to be explained. This strategy provides remarkable
flexibility in conditional generation but introduces a pivotal challenge: the classifier must be
either trained on noise-augmented samples to align with the DDPM’s intermediate stages, or a
denoising mechanism should be applied prior to classifier usage.
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