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Abstract
Malware detection is a challenging application due to the rapid evolution of attack techniques, and
traditional signature-based approaches struggle with the high volume of malware samples. Machine
learning approaches face such limitation, but lack a clear interpretability, whereas interpretable models
often underperform. This paper proposes to use Logic Explained Networks (LENs), a recently proposed
class of interpretable neural networks that provide explanations using First-Order Logic rules, for malware
detection. Applied to the EMBER dataset, LENs show robustness superior to traditional interpretable
methods and performance comparable to black-box models. Additionally, we introduce a tailored LEN
version improving the fidelity of logic-based explanations.
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1. Introduction

Malware detection is crucial in cybersecurity due to the rapid evolution of attack techniques, and
traditional signature-based methods from companies like Comodo, Kaspersky, and Symantec
struggle to keep up with the millions of new malware samples each year [1, 2, 3]. Machine
learning, particularly Deep Neural Networks (DNN), offers robust solutions by recognizing
complex patterns, handling large datasets, and detecting zero-day attacks. However, these
methods often lack explainability, limiting their trustworthiness in safety-critical applications.

Recently, Logic Explained Networks (LENs) [4] have been proposed as an explainable-by-
design class of neural networks. LENs use human-understandable predicates and provide
explanations through First-Order Logic (FOL) formulas, balancing accuracy and interpretability.
Although LENs have shown success in various domains [5] and to different kind of data, such as
images [6], textual information [7] and graphs [8], their effectiveness on large datasets like the
EMBER malware dataset [9] (800,000 samples with thousands of features) remains unexplored.
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This paper demonstrates that LENs can form a robust malware detection framework with
competitive performance against black-box models and superior to other interpretable methods.
Additionally, we introduce an innovative approach to enhance the fidelity of LENs’ explanations,
making them more accurate and meaningful.

This paper makes three main contributions: (i) it shows that Logic Explained Networks are
effective for malware detection, providing meaningful explanations and predictive performance
comparable to state-of-the-art black box models while outperforming other interpretable models,
(ii) it introduces an improved rule extraction process for LENs, enhancing scalability, fidelity,
complexity, and predictive accuracy, and (iii) it offers an in-depth analysis of the extracted rules,
evaluating their fidelity, complexity, and accuracy as input feature size increases.

2. Related Work

Machine Learning Approaches. Machine learning techniques are commonly used to train
malware detectors and uncover complex patterns in malicious software [10, 11, 12]. While deep
learning shows promising results due to its ability to learn from large datasets and generalize to
unknown samples [13], several limitations remain, including low generalization performance
for unseen malware samples. Moreover, classical machine learning models act as black-boxes,
hindering explainability. In security-critical domains, interpretability is crucial for trust and legal
compliance [14, 15, 16, 17]. Indeed, cybersecurity experts need insights into model decisions to
enhance system trustworthiness.

Interpretable AI Models. Interpretable models (e.g., linear regression, decision trees) offer
explanations, but struggle with complex features [18]. These methods prioritize interpretabil-
ity over performance, unlike deep neural networks [19]. To address this trade-off, various
techniques have been proposed. One such method is permutation feature importance, which in-
terprets a wide range of machine learning models but comes with high computational costs [20].
Additionally, surrogate model methods like LIME [21] and SHAP [22] approximate the target
model using interpretable models. However, their expressive ability may not match that of the
complex target model, leading to inaccurate interpretations [23]. For the malware detection
task, Švec et al. [24] explored interpretable concept learning algorithms all implemented in
DL-Learner: OCEL (OWL Class Expression Learner), CELOE (Class Expression Learning for
Ontology Engineering), PARCEL (Parallel Class Expression Learner), and SPARCEL (Symmet-
ric Parallel Class Expression Learner). Their approach provided clear explanations but faced
computational challenges and low performance.

3. Background on Logic Explained Networks

Logic Explained Networks [4] combine the advantages of black-boxes and transparent models
by providing promptly interpretable neural networks in First-Order Logic (FOL). LENs take
human-understandable predicates as inputs, such as tabular data or concepts extracted from raw
data, and express explanations in FOL rules involving these predicates. Thanks to their complex
neural processing, LENs achieve high-level performance while being easily interpretable.



(a) Local explanation for single sample (b) Class-level explanation

Figure 1: Illustration of LENs’ local and class-level explanations for malware samples.

Formally, a LEN 𝑓 can be defined as a map from 𝒞 = [0, 1]𝑑-valued input concepts to
𝒴 = [0, 1]𝑟 output classes, which can be used to directly classify samples and provide meaningful
local and/or global explanations (cf. Figure 1).

As a special case, in malware detection we have 𝑟 = 2 classes, i.e. {malware, benign}. In
general, for each sample 𝑥, with 𝑖 ∈ {1, . . . , 𝑟}, a prediction 𝑓𝑖(𝑥) = 1 is locally explained
by the conjunction of the most relevant input features 𝜑𝐿

𝑖 (𝑥) =
⋀︀

𝑗∈𝐴(𝑖)(¬)𝑥𝑗 , where 𝑥𝑗 is
a logic predicate associated with the 𝑗-th input feature, and 𝐴(𝑖) is the set of relevant input
features for the 𝑖-th task. Notice that each 𝑥𝑗 can occur as a positive 𝑥𝑗 or negative ¬𝑥𝑗 literal,
according to a given threshold (e.g. 0.5). The most representative local explanations can be
aggregated to get a global explanation 𝜑𝐺

𝑖 =
⋁︀

𝜑𝐿
𝑖 (𝑥)∈𝐵(𝑖) 𝜑

𝐿
𝑖 (𝑥), where 𝐵(𝑖) collects the 𝑘-most

frequent local explanations for the class 𝑖 in the training set. We will refer later to such global
explanations as raw LEN explanations. To prevent too complex global explanations, Gabriele
et al. [4] suggests a top-(k) strategy, which focuses on aggregating only the most accurate local
explanations. This method, we will refer to as standard LEN explanations, only includes local
explanations that contribute to an improvement in validation accuracy, thus ensuring that the
generalization of the rules is effective when applied to new data sets. However, even with this
strategy, the complexity can remain high for large datasets with many samples and features.

4. Tailored-LENs’ Explanations

Standard LEN explanations are more accessible than raw ones but still have some drawbacks,
such as (i) determining the optimal 𝑘-value can be computationally intensive, (ii) selecting
top-𝑘 local explanations based on their individual accuracy tends to select explanations that
increase false positives rate, due to favoring high recall over precision, which is not preferable
to construct a robust discrimination against malware. To enhance global LEN explanations
for malware detection, this paper introduces what we call the Tailored-LEN explanation
method, which uses a line search optimization to find the best threshold for choosing the
right combination of local explanations, and removing terms from outlier samples to improve
explanation quality. More specifically, we used a precision threshold to aggregate the local
explanations, aiming to reduce false positives and avoid misrepresenting the model. Then,



Table 1
Comparison of LENs against black-box models. LEN𝑛𝑓 indicates that the model uses only 𝑛 features.

Model XAI Accuracy Precision Recall FP-Rate F1-Score

LGBM[27] No 0.9363 0.9244 0.9504 0.0605 0.9372
ANN/DNN[27] No 0.95 0.96 0.94 0.0478 0.95
Improved DNN[28] No 0.9404 0.9014 0.8885 0.1571 0.8866
FFN[29] No - 0.97 0.97 - 0.97
CNN[29] No - 0.95 0.95 - 0.95
MalConv w/ GCG[30] No 0.9329 - - - -

𝐿𝐸𝑁10𝑓 Yes 0.8014 0.7766 0.8475 0.2449 0.8105
𝐿𝐸𝑁100𝑓 Yes 0.92074 0.9124 0.9313 0.0898 0.9217
𝐿𝐸𝑁1000𝑓 Yes 0.9232 0.9335 0.9117 0.0652 0.9224
𝐿𝐸𝑁2000𝑓 Yes 0.9227 0.9257 0.9196 0.0742 0.9227
𝐿𝐸𝑁𝑎𝑙𝑙_𝑓 Yes 0.8695 0.8783 0.8568 0.1179 0.8674

an optimization process iteratively adjusts this threshold to find an optimal balance between
precision and recall. The best solution is a simplified formula that improves validation accuracy,
and only beneficial local explanations are included in the final Tailored-LEN global explanation.
The details of this method can be found in Algorithm 1 in the Appendix.

5. Experiments

All the experiments carried out in this section are based on the EMBER dataset [9], a well-known
dataset for malware detection with 800, 000 labelled (400, 000 benign and 400, 000 malicious)
and 300, 000 unlabelled samples, respectively. For our experimental analysis we utilized the
version with derived features, as defined by Mojžiš and Kenyeres [25], which represent a
variation of the ontology realized by Švec et al. [26]. More details about the experimental
settings can be found in Appendix A.1. The experiments aim to demonstrate that: (i) LENs
perform similarly to black-box models while offering explanations; (ii) LENs surpass previously
used interpretable machine learning models; (iii) Tailored-LENs explanations provide a better
trade-off in terms of complexity vs accuracy vs fidelity wrt standard and raw LEN explanations.

Comparison against black-box models. We compare LENs with black-box models using
the full EMBER dataset, with 600k samples allocated for training and 200k samples for testing. We
also evaluated the performances of LENs varying different subsets’ size of the most informative
features, ranging from 10 to 2000 features, to observe the impact on the model’s results.
Results. Table 1 shows that LENs have high performances in malware detection, achieving
an accuracy of at least 92.07% and an F1-score of 92.17% with a minimum of 100 features. The
performances are slightly lower with the full feature set, possibly due to the feature binarization
process, which increases the feature dimensionality and potentially introduces noise. Despite
this, LENs closely match the best deep-learning black-box models, with less than a 5% difference
in most metrics. Notably, LENs are competitive even with a small feature set and maintain high
generalization capabilities with larger feature sizes. In addition, the key advantage of LENs over



Figure 2: Accuracy, highest is the best. LEN vs 3 decision tree models, five different feature sizes counts.

black-box models is their interpretability, which provides insights into the decision-making
process.

Table 2
Performance comparison of LEN against explainable approaches.

Comparison with concept learning approaches
Model Accuracy Precision Recall FP rate F1
PARCEL(0/✓/X /20)[24] 0.68 ± 0.01 0.80 ± 0.02 0.49 ± 0.03 0.12 ± 0.01 0.60 ± 0.03
PARCEL(0/X /X /5) [24] 0.62 ± 0.04 0.90 ± 0.02 0.29 ± 0.09 0.03 ± 0.00 0.43 ± 0.12
PARCEL(1/✓/X /10)[24] 0.72 ± 0.01 0.71 ± 0.01 0.72 ± 0.02 0.28 ± 0.01 0.72 ± 0.01
PARCEL(1/X /X /5)[24] 0.70 ± 0.02 0.81 ± 0.01 0.52 ± 0.04 0.12 ± 0.00 0.63 ± 0.04
SPARCEL(1/✓/X /20)[24] 0.72 ± 0.01 0.72 ± 0.00 0.73 ± 0.02 0.27 ± 0.00 0.72 ± 0.01
SPARCEL(1/X /X /5)[24] 0.64 ± 0.03 0.88 ± 0.04 0.33 ± 0.06 0.04 ± 0.01 0.48 ± 0.08
OCEL(25/✓/✓/5)[24] 0.69 ± 0.01 0.68 ± 0.05 0.74 ± 0.10 0.35 ± 0.12 0.70 ± 0.02
CELOE(25/✓/✓/5)[24] 0.68 ± 0.01 0.65 ± 0.03 0.77 ± 0.05 0.40 ± 0.07 0.70 ± 0.01
LEN 0.87 ± 0.01 0.88 ± 0.02 0.87 ± 0.02 0.13 ± 0.02 0.88 ± 0.01

Comparison against interpretable approaches. We identified two significant contribu-
tions for interpretable malware detection using the EMBER dataset: (i) the concept learning
method by Švec et al. [24], and (ii) the decision-tree-based techniques by Mojžiš and Keny-
eres [25]. The former approach, due to its complexity, was tested on 5,000 random samples
with 5-fold cross-validation. The latter utilized a dataset of 600,000 samples with an 80%/20%
training/testing for 25, 50, 75, 100 and 200 feature sets. To ensure consistency, the same sample
size and cross-validation method were used for the concept learning approach, and the same
feature set and sample distribution were applied for the decision-tree-based approach.
Results. LENs significantly outperform concept learning approaches in all metrics (cf. Table 2).
This support the claim that LENs can represent a promising solution for real-world deployment,
meeting the increasing need for both clarity and effectiveness in malware detection systems.
Additionally, when compared with standard decision tree models, LENs demonstrate good
performance wrt different feature sizes, as evidenced in Figure 2. While LENs outperform most
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Figure 3: Plots comparing the performance of the explanations of the different LENs in terms of (a)
accuracy, (b) FP-Rate, (c) Fidelity and (d) Complexity, over different feature size on the EMBER dataset.

decision tree models, their performance is on par with the J48-ESFS model.
Analysis of provided Explanations. The Tailored-LEN explanation method (Section 4) was

evaluated against the Raw-LEN and Standard-LEN methods proposed in the original paper [4].
This evaluation used 25,000 samples and tested feature sets of 5, 10, 15, 20, and 25 features. with
the data divided into a 75% and a 25% split for training and testing, respectively.
Results. Figure 3 illustrates that Tailored LEN explanations outperform Standard LENs
across all feature sizes, offering better fidelity and lower complexity. Raw LENs provide a
better predictive performance but suffer from high complexity, making them less interpretable.
Standard-LENs, while similar in complexity to Tailored-LENs, fall short in both fidelity and
accuracy compared to Tailored-LENs. Additionally, the practicality of the extracted rules was
analyzed in the context of malware detection applications by a cybersecurity expert (cf. Table 3
in Appendix).



6. Conclusions

This paper studies the application of Logic Explained Networks to malware detection. The
conducted experiments demonstrate that LENs can attain performance comparable to complex
black-box neural models, while maintaining explenability and outperforming other interpretable
machine learning alternatives in terms of efficacy.

Furthermore, this study introduces a novel algorithm designed to extract global explanations
from LENs. This algorithm improves the predictive precision of LENs, while yielding explana-
tions characterized by both elevated fidelity and reduced complexity. The findings support the
claim that LENs are a promising candidate for the integration of explainable methodologies
into malware detectors.
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is the main dataset used throughout this study and provides a comprehensive collection of
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300, 000 are unlabelled samples. We harnessed only the labelled samples for our study.
While the EMBER dataset is in JSON format, for our experimental analysis we utilized the

version with derived features, as defined by Mojžiš and Kenyeres [25]. This dataset consists
of binary features (each feature can be either true or false – i.e. it is boolean, denoting the
presence/positiveness or the absence/negativeness of each feature) to create a simplified repre-
sentation. This representation is actually a variation of the ontology realized over the EMBER
dataset by Švec et al. [26].

Feature Selections Methods. Since the majority of interpretable methods have severe
performance limitations and also fail at providing human-readable explanations when a large
feature set is available, we compared our approach against other interpretable models using the
same feature selection techniques used in the original papers. In particular, following what was
done in [31, 32], a decision tree-based feature selection technique was used in the experiments
to identify and retain the most informative features. In the experiments we considered a varying
amount of the most informative features. On the other hand, for the comparison of LENs with
state-of-the-art black-box models, like Deep Neural Networks (DNN), we used the full of set of
features.

Evaluation Metrics. We evaluated both the LEN model and explanations performance using
standard metrics, i.e. accuracy, precision, recall, False Positive Rate and F1-score. For evaluating
the explanations performance, two additional metrics were employed: Fidelity [4, 33] and
Complexity [4].

The Fidelity metric measures the extent to which explanations faithfully represent the inner
workings of predictive models. Formally, given a data collection, a predictive model (ModelPM),
and a model explanation (ModelEx), the Fidelity(ModelEx) is defined as the accuracy obtained
when comparing the predictions made by ModelPM and the predictions derived from the expla-
nations ModelEx:

Fidelity =
1

𝑁

𝑁∑︁
𝑖=1

Acc (ModelPM(𝑥𝑖),ModelEx(𝑥𝑖)) (1)

where 𝑁 is the number of samples in the data collection, Acc denotes the accuracy metric,
and ModelPM(𝑥𝑖) and ModelEx(𝑥𝑖) represent the predictions made by ModelPM and ModelEx,
respectively, for the 𝑖-th sample 𝑥𝑖. This fidelity metric will serve as a crucial indicator of the
trustworthiness of the explanations extracted.

The Complexity metric counts the number of terms in the explanation as a proxy for the
human understandability of the explanation.

A.2. Global Explanations in Tailored LENs

Algorithm 1 reports the full procedure to get the global explanations for Tailored LENs.



Algorithm 1: Compilation of the global explanations in Tailored LENs.
Input: 𝑙𝑜𝑐𝑎𝑙_𝑒𝑥𝑝𝑙, 𝐿𝐸𝑁_𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝛼
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐿𝐸𝑁_𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑏𝑒𝑠𝑡_𝑒𝑥𝑝𝑙← FilterExpl(𝑙𝑜𝑐𝑎𝑙_𝑒𝑥𝑝𝑙, 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑏𝑒𝑠𝑡 ← EvaluateAcc(𝑏𝑒𝑠𝑡_𝑒𝑥𝑝𝑙)

while not reached optimal accuracy do
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝛼
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑒𝑥𝑝𝑙← FilterExpl(𝑙𝑜𝑐𝑎𝑙_𝑒𝑥𝑝𝑙, 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← EvaluateAcc(𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑒𝑥𝑝𝑙)
if 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑏𝑒𝑠𝑡 then

𝑏𝑒𝑠𝑡_𝑒𝑥𝑝𝑙← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑒𝑥𝑝𝑙
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑏𝑒𝑠𝑡 ← 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡

else
break

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐿𝐸𝑁_𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
while not reached optimal accuracy do

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝛼
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑒𝑥𝑝𝑙← FilterExpl(𝑙𝑜𝑐𝑎𝑙_𝑒𝑥𝑝𝑙, 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← EvaluateAcc(𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑒𝑥𝑝𝑙)
if 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑏𝑒𝑠𝑡 then

𝑏𝑒𝑠𝑡_𝑒𝑥𝑝𝑙← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑒𝑥𝑝𝑙
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑏𝑒𝑠𝑡 ← 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡

else
break // Optimal accuracy reached

A.3. Human-expert remarks on logic explanations provided by LENs.

Table 3 shows some local explanations provided by LENs together with some remarks provided
by a cybersecurity expert. The expert highlighted that all the explanations indicated meaningful
reasons for the sample being a malware, and that it is impressive to be able to have this level
of insight into the workings of an ML-based model that was able to process the full EMBER
dataset. At the same time, all explanations were more general and abstract compared to those
derived by concept learning on a fractional dataset [24].



Table 3
On the left we have some examples of local explanations for a detected malware. On the right side it
is reported a justification of the plausibility of the rule according to domain expertise in the field of
malware detection.

Explanation Cybersecurity expert remarks
has_section_high_entropy ∧
¬is_dll ∧ ¬has_debug

It points to packed malware that is not
.dll and has not debug symbols enabled
(which is a typical malware behaviour).

has_write_execute_section ∧
¬has_debug

Malware can typically use a section with
write and execute permission for self
injection.

has_section_high_entropy ∧
¬has_signature

This also points to packed malware and
malware usually has no signature

has_section_high_entropy ∧
sect_text_write_execute_section

It points to packed (encrypted) code
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