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Abstract
Interpretable machine learning models can be improved by correcting mispredicted intermediate steps

via test-time interventions on their intermediate predictions. Methods that jointly learn to impute missing

features and predict a downstream task can benefit from such interventions. However, determining

which features to prioritise for intervention remains a challenge. To address this, we propose F-Act, a

novel method employing feature selection to adaptively manage feature availability during test-time. Our

approach achieves this by combining in-model imputation and test-time interventions on intermediate

predictions to avoid the need for model retraining. Furthermore, F-Act can recommend which features

to prioritise when collecting data, a key property when optimising performance in resource-limited

environments. Our empirical analysis shows F-Act performs competitively or better than previous

baselines in inference tasks with missing features when incorporating feature collection recommendations.

Additionally, we show F-Act can incorporate missing feature values through test-time interventions,

improving predictive performance without retraining across tasks.
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1. Introduction

Machine learning models for tabular datasets typically expect a complete feature set during

both training and inference. However, in practice, features are often missing during inference

due to the high cost and difficulty of obtaining the complete feature set for some samples (e.g.,

gene expression counts) [1, 2]. Such test-time feature unavailability necessitates models that

can make accurate predictions with incomplete feature sets. Additionally, since acquiring new

features may be prohibitively expensive, it is crucial for these models to offer recommendations

on which missing feature values to collect to maximise their impact on the model’s accuracy.

Current strategies addressing limited feature availability typically involve either: (i) imputing,

or predicting, missing features at test-time [1], or (ii) selecting a minimal feature subset on

which the model is retrained [3, 4]. Although these methods are practical, they have clear

limitations in scenarios with variable feature availability: Feature selection identifies critical

features but cannot adapt to changes in feature availability, while imputation provides flexibility

but lacks guidance for users on prioritising features.

In this paper, we address this gap by introducing F-Act (Feature-wise Active adaptation), a

method that combines feature selection with imputation to enable adaptation to variable feature
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availability without retraining, all while maintaining high predictive accuracy. F-Act achieves

this by, first, imputing missing features at test-time and, second, enabling new features to be

incorporated through test-time interventions, where F-Act’s intermediate predictions space is

modified to incorporate the presence of a new feature. Technically, F-Act employs differentiable

mask sampling and feature reconstruction to learn to optimally operate from an incomplete set

of features. This design enables F-Act to advise on the order features should be collected to

maximise their impact, permitting deployment in resource-constrained settings. Using real and

synthetic datasets, we evaluate F-Act and find that it matches benchmarks’ performance in

imputation, feature selection, and prediction, providing recommendations that enhance model

performance through adaptive feature incorporation.

2. Background and Related Work

Imputation and Feature Selection Our work incorporates both feature imputation and

feature selection to address limited test-time feature availability. As such, our work is placed at

the intersection of these two research subfields. Previous works in feature imputation can be

divided into auxiliary model-based approaches and joint learning approaches. In this context,

auxiliary-model-based approaches pair prediction models with separate imputation methods

[5, 6, 7] while joint learning approaches integrate both prediction and feature selection in an

end-to-end model [8, 9]. Nevertheless, we emphasise that previously proposed imputation

techniques lack feature prioritisation for collection, leading to uncertainty over what features

one should prioritise when deploying the model in a setup with varying feature availability.

This is a key gap we aim to address with this paper.

Feature selection techniques [10, 11, 12, 13], in contrast, deal with potential feature unavail-

ability (or redundancy) by learning to select a subset of features from which a task can be

accurately solved. These approaches commonly achieve this by learning a feature importance

ranking that can then inform which subset of features one should select. A shortcoming of these

approaches, however, is their inflexibility to a varying set of input features, as, once features

have been selected, they require a fixed subset of features to train the downstream model [14].

As such, in this work we combine feature imputation with feature selection to enable easy

adaptability from a core set of initially selected features. We note that combining feature selec-

tion and imputation has been previously explored [15, 16, 17, 3]. However, performing feature

selection with joint learning for inference and imputation in a single end-to-end architecture is

novel. This is worth exploring, as Bertsimas et al. [8] and Le Morvan et al. [9] note that joint

learning for imputation and inference can yield improved results.

Relation to Active Feature Acquisition Active Feature Acquisition (AFA) involves learning

a policy for collecting new features at test-time such that a model’s accuracy is maximised

after observing a small set of features [18, 19, 20, 21]. As we are interested in providing feature

collection recommendations, our work is highly related to AFA. Nevertheless, we highlight that

we distinguish ourselves from traditional AFA approaches in two key ways. First, we provide

feature collection recommendations at a global level rather than at a local, per-sample level.

Second, we learn to both select a subset of features and impute missing features in an end-to-end
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Figure 1: F-Act. Given a sample x, we apply an element-wise mask msoft ∈ [0, 1]𝑛, which acts as
a sparsity-inducing global feature selection mask, eliminating noisy features and resulting in x̃. We
then apply an element-wise mask mhard ∈ {0, 1}𝑛, sampled from a Gumbel-Softmax distribution with
learnable probabilities 𝜋hard. The masked features are reconstructed by the Reconstruction Module, 𝑓𝑅,
to approximate x̃. Subsequently, we perform test-time interventions on this reconstructed sample by
re-incorporating 𝑘 previously masked features according to a greedy policy, 𝜇 derived from the rankings
of 𝜋hard, resulting in x̃𝐼 . Finally, the Prediction Module, 𝑓𝑃 predicts the sample’s label.

fashion, enabling missing features to be predicted at test-time.

Relation to Human Interpretable Artificial Intelligence Human Interpretable Artificial

Intelligence (HI-AI) refers to AI systems designed to ensure their decisions and workings are

understandable and transparent to humans. Our work is related to HI-AI methods as it enables

(1) reconstruction of missing features through test-time imputations, providing insights into

a model’s understanding of how missing features relate to provided ones, (2) construction of

feature importance rankings through its feature collection recommendations, and (3) test-time

interventions, where users can provide previously missing features by intervening on F-Act’s

intermediate predictions using these features’ values. As such, our work is related to previous

interpretable imputation techniques [22, 7] and methods in the concept-based explainable AI

literature [23, 24, 25, 26] that provide test-time feedback to models via human-aligned concepts.

3. Feature-wise Active adaptation

We present a joint learning framework for inference and missing value imputation that offers

users insights into which missing feature values should be prioritised for collection and inter-

vention. Formally, our goal is to learn a predictor 𝑓𝜃 , parameterised by 𝜃, which can operate on

any subset of features 𝑆 ⊆ ℱ . Concurrently, the predictor 𝑓𝜃 should also suggest which missing

feature values to collect for intervention at test-time, prioritised by their importance to improve

the predictor’s performance. We achieve this by introducing F-Act (Figure 1), a method for the

joint learning of feature selection, missing value imputation, and prediction. Our architecture

comprises three modules: (i) a Mask module that facilitates feature selection, (ii) a Reconstruction

module for feature imputation, and (iii) a Prediction module for making predictions.

The Mask module serves three objectives: i) global feature selection to eliminate irrelevant

features, ii) learning feature importance rankings to provide recommendations for feature



collection, and iii) simulating a missing feature scenario to train the Reconstruction module.

We achieve all this functionality through hierarchical masking, first employing a soft mask

msoft ∈ [0, 1]𝑑 for feature selection and then a hard mask mhard ∈ {0, 1}𝑑 to simulate missing

features. The hard mask is sampled from a Gumbel-Softmax distribution [27] with a learnable

probability 𝜋ℎ𝑎𝑟𝑑.

To enable predictions from any truncated feature space and facilitate test-time interventions,

we use the Reconstruction Module to reconstruct features from the truncated feature space

𝒳̃ 𝑆 generated by the hard mask. The Reconstruction Module outputs “reconstructed” samples,

containing feature values for all values, even though they are missing from the original input.

The reconstructed samples are then processed by the Prediction Module, which maps from the

complete feature space 𝒳̃ to make the predictions 𝒴 . This setup ensures the model can make

predictions even when in the presence of missing features.

To provide feature collection recommendations, we define a greedy intervention policy that

corrects reconstructed data based on feature selection probabilities from the mask module. This

is the same approach used by feature importance-based selection methods [11, 4, 13, 12].

In order to jointly learn to perform feature selection, missing feature imputation and,

downstream task prediction, we train our model using a composite loss function ℒ =
ℒP + 𝛼𝑆ℒS + 𝛼𝑅ℒR where 𝛼𝑆 and 𝛼𝑅 are hyperparameters controlling how much we value

feature selection (i.e., ℒS) and feature reconstruction (i.e., ℒR) over task accuracy (i.e., ℒP).

To encourage our model to perform a sparse feature selection, we follow previous works [28, 4]

and let ℒS be the ℓ1 norm of the soft and hard learnable mask probabilities:

ℒS :=
𝑑∑︁

𝑖=1

(︁
𝜋soft𝑖

+ 𝜋hard𝑖

)︁
In contrast, to encourage accurate imputation of masked features, we include a reconstruction

loss term ℒR that minimises the ℓ2 norm of the difference between reconstructed/imputed

feature values and ground truth feature values:

ℒR :=
1

|ℱ ∖ 𝑆|
∑︁

𝑖∈ℱ∖𝑆

(x̃𝑖 − 𝑓𝑅𝑖(mhard ⊙ x̃; 𝜃𝑅))
2

where 𝑆 is the set of features selected by the Mask module. This loss encourages our model to

learn to select a set of core features from which other, dependent features, may be easily imputed.

Finally, to enable our model to predict downstream tasks both in and outside the presence of

potential feature interventions, we follow the work in [25] and define our prediction loss, ℒP, as

ℒP := 𝐿pred(𝑓𝜃(x; 𝜃, 0),X,Y) + 𝜔𝑘max𝐿pred(𝑓𝜃(x; 𝜃, 𝑘max),X,Y)

Here, 𝑓𝜃(x; 𝜃, 𝑖) represents the output of the task predictor for sample x when the top-𝑖 de-

pendent features are intervened on and 𝑘max is the maximum number of interventions one

may perform (i.e., the number of dependent features |ℱ ∖ 𝑆|). We clarify that, in this context,

an intervention for a feature x𝑗 involves setting the 𝑗-th feature of the reconstructed features

x𝑅 to x̃𝑗 . This loss, therefore, encourages the model to minimise a task-specific loss (e.g.,

cross-entropy) before and after interventions, with higher penalties incurred when a mistake is

made after a higher number of features have been intervened on at train time (controlled by a

hyperparameter 𝜔 > 1).



Table 1
Test F1 Scores (%) (class-weighted) are presented as the mean ± standard deviation over three seeds.
To aggregate the results, we compute the average rank of each method across datasets, where a higher
rank indicates superior accuracy. F-Act achieves competitive accuracy and overall ranks higher than
other benchmark methods.

Model COIL20 Isolet PBMC USPS Finance Madelon Mice Protein Avg. Rank

Lasso 98.24 ± 0.00 94.58 ± 0.01 89.25 ± 0.14 93.36 ± 0.03 59.78 ± 0.00 51.53 ± 0.00 95.24 ± 2.29 4.29
Rand. Forest 96.76 ± 0.18 90.09 ± 0.45 88.66 ± 0.37 93.36 ± 0.15 61.95 ± 0.47 67.19 ± 0.26 96.98 ± 1.82 4.07

XGBoost 98.61 ± 0.00 88.75 ± 0.00 89.42 ± 0.00 97.37 ± 0.00 58.83 ± 0.00 80.96 ± 0.00 98.15 ± 0.81 3.07
SEFS 94.97 ± 1.40 88.61 ± 2.08 83.17 ± 1.27 92.54 ± 0.75 59.93 ± 0.46 65.23 ± 1.69 85.08 ± 4.59 5.71
CAE 97.04 ± 0.87 80.14 ± 1.28 68.07 ± 5.34 90.47 ± 0.83 59.26 ± 1.2 70.19 ± 1.83 85.35 ± 5.37 5.86

Sup. CAE 6.46 ± 4.45 3.68 ± 0.79 85.37 ± 0.01 20.90 ± 2.56 54.44 ± 1.80 61.84 ± 0.30 17.24 ± 6.78 7.43
MLP 98.83 ± 0.53 93.48 ± 1.29 89.42 ± 0.48 96.78 ± 0.15 57.02 ± 3.96 57.18 ± 0.89 98.30 ± 0.27 3.36

F-Act (Ours) 98.84 ± 0.19 92.86 ± 1.18 89.87 ± 0.40 95.95 ± 0.31 59.81 ± 1.90 72.9 ± 2.33 98.46 ± 1.07 2.21

Inference By thresholding mask probabilities, we can identify core necessary features and

recommend which features to prioritize for collection. During inference, F-Act imputes missing

features dynamically and allows the re-incorporation of non-selected features in the form of

test-time interventions. In practice, given an incomplete sample at test-time, we replace the

missing values with 0. To perform feature selection, imputation and prediction, we apply the

mask, reconstruction and prediction modules in order. A change from the training procedure is

that, at test-time, the Gumbel Softmax function’s temperature is set to 0, making its performance

deterministic. This is equivalent to thresholding the hard mask probabilities at 0.5. Test-time

interventions are performed by replacing the reconstructions of the hard-masked features with

their true values, as shown in Figure 1.

4. Experiments

Datasets and benchmark methods We consider various real-world datasets commonly

referenced in feature selection literature. These include image datasets (COIL20 and USPS), a

voice audio dataset (Isolet) sourced from [29], a synthetic dataset (Madelon) from [30], genomic

datasets (PBMC [31] and Mice Protein [32]), and a financial dataset (Finance) from [33].

Beyond predictive accuracy, we assess F-Act’s capabilities in selecting important features

and recommending which features to collect at test-time to enhance performance. To this

end, we consider several feature selection methods, including LASSO [11], Random Forest [13],

Concrete Autoencoders (CAE) [34], XGBoost [12], and SEFS [4]. All methods except CAE rank

the features by their importance, which allows us to evaluate F-Act’s ability to recommend

features for collection. We train each feature selection method on the prediction task, using a

simple MLP as a baseline for comparison.

For missing data imputation, we evaluate four methods: Mean, Iterative Chained Equations

(ICE) [6], and MissForest [7]. Additionally, we assess the performance of all combinations of

downstream models and imputation methods.

We train F-Act by minimising the loss 𝐿. We pre-train the reconstruction module following

[4], with tasks that include reconstructing input vectors and estimating gate vectors. Following

this, we tune the intervention number 𝑘 to minimise the prediction loss on the validation dataset.



(a) Missing Completely at Random (MCAR) (b) Collecting features by model’s feature ranking

Figure 2: Performance varies with the number of missing features at test-time; error bars represent
standard deviation. (a) When features are missing at random, several methods outperform F-Act. (b)
F-Act outperforms other methods when the features selected for collection at test-time are based on
the predictor’s learned feature ranking. F-Act outperforms all baseline methods when many features
are missing. However, with fewer missing features, F-Act can be outperformed by XGBoost combined
with ICE. This indicates that F-Act is especially effective when feature collection can be prioritised.

For further implementation details, please refer to Appendix A.

Predictive Accuracy Table 1 illustrates the predictive accuracy of F-Act compared to other

benchmark methods. F-Act demonstrates competitive performance, consistently ranking in the

top three across datasets and outperforming all baselines in three cases. Overall, F-Act ranks

the best across datasets. However, besides making predictions, F-Act offers two additional

functionalities without any re-training: imputing missing data at test-time and recommending

which feature values to collect. We next explore these capabilities.

Test-time Imputation First, we evaluate F-Act’s imputation capabilities when features are

missing completely at random (MCAR). To simulate this, we randomly remove features at

test-time (without considering the potential to collect these feature values). At low levels of

missing features, Figure 2a shows that F-Act is generally outperformed by Random Forest

and MLP, and at higher levels of missing values, it is outperformed by Lasso and MLP. These

mixed results suggest F-Act achieves relatively average performance when one cannot utilise

its learned feature ranking.

Second, we consider prioritising test-time feature collection based on the model’s learned

feature ranking. Figure 2b shows that when this ranking is used, F-Act outperforms all other

methods with only a few features collected.

Test-Time Interventions As a feature selection method, F-Act uses a threshold to separate

core from non-core features. Unlike standard approaches, F-Act can incorporate non-core



Figure 3: Test-time interventions boost performance. The x-axis represents the number of interven-
tions. The dotted line marks the peak performance achieved by baselines trained with the full feature set,
whereas F-Act operates with only a subset. The results demonstrate that F-Act’s performance improves
when values for the recommended features are imputed at test-time. In some cases, this enhancement
allows F-Act, without retraining, to surpass baselines that need the full feature set at test-time.

features during inference. Figure 3 illustrates that F-Act’s performance improves with test-time

interventions, sometimes even surpassing the best-performing method on that dataset. For

more results, please see Appendix B.

5. Conclusion

This paper introduces F-Act, a method combining feature selection and missing data imputation

to enable the model to operate when there are missing features at test-time. More importantly,

F-Act provides recommendations of which features one should prioritise collecting at test-

time to improve the model’s performance. Our empirical analysis shows F-Act performs

competitively or better than previous baselines in inference tasks with missing features when

incorporating feature collection recommendations. Additionally, we show how F-Act can

incorporate missing feature values at test-time through test-time interventions, improving

performance without retraining and boosting F1 scores across datasets. This work highlights

the benefit of designing methods that learn, in an end-to-end fashion, to adapt to different

feature availability while providing feature collection recommendations.
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A. Reproducibility

A.1. Datasets

Table 2
Overview of Datasets

Dataset # samples # features # classes N/D min # samples max # samples Domain
(N) (D) per class per class

COIL20 [29] 1440 1024 20 1 72 72 Image
Finance [33] 2664 154 2 17 1195 1469 Financial indicators
Isolet [29] 1560 617 26 3 60 60 Voice audio
Madelon [30] 2600 500 2 5 1300 1300 Synthetic
Mice Protein [32] 1080 77 8 14 105 150 Protein Expression
PBMC [31] 1038 21932 2 0 514 524 Genomics
USPS [29] 9298 256 10 36 708 1553 Image (written digit)

A.2. Reproducibility

Our code is made available at https://github.com/evanrex/feature-wise-active-adaptation.

A.3. Training Protocol

We present the training algorithm for our approach in Appendix A.3.

A.4. Training and Evaluation Methodology

We divided the datasets into three subsets: training, validation, and testing, using a 60:20:20

split. We use the validation to select the model’s hyperparameters. We evaluate and report the

class-weighted F1 score on the test set. The results are averaged across these seeds during both
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Algorithm 1 Pre-training F-Act

Require: Dataset (X,Y), mini-batch size 𝑛mb, learning rate 𝜂, Loss coefficient 𝛼pre, mask

probability 𝜋
Ensure: Trained model parameters 𝜃𝑅

1: Initialise parameters 𝜃𝑅, 𝜃pre

2: repeat ◁ Begin pre-training loop

3: for 𝑖 = 1 to 𝑛mb do ◁ For each point in the mini-batch

4: (x𝑖, 𝑦𝑖) ∼ (X,Y) ◁ Sample a data point

5: mhard𝑖
← Bernoulli(𝜋) ◁ Sample hard mask with probability 𝜋

6: x𝑆𝑖 ←mhard𝑖
⊙ x𝑖 ◁ Apply hard mask to the data point

7: x𝑅𝑖 ← 𝑓𝑅(x𝑆𝑖 ; 𝜃𝑅) ◁ Reconstruct features from masked data

8: m̂hard𝑖
← 𝑓pre(x𝑆𝑖 ; 𝜃pre) ◁ Predict mask using the pre-training function

9: end for
10: 𝜃 ← 𝜃 − 𝜂∇𝜃

∑︀𝑛mb

𝑖=1

(︀
ℒR(x𝑆𝑖 ,x𝑅𝑖) + 𝛼pre · CE(m̂hard𝑖

,mhard𝑖
)
)︀

◁ Update parameters

using gradient descent

11: until convergence

hyperparameter tuning and final evaluation phases. We pre-train out model as per Appendix A.3

and train our model as per Algorithm 2.

A.5. Hyper-parameter Tuning

Random Forest. For the Random Forest model, we conducted a hyper-parameter sweep on

the max_depth parameter. The values considered for max_depth were {3, 5, 7}. This tuning

was performed to control the complexity of the individual trees in the forest, with a goal of

balancing the bias-variance tradeoff.

Lasso. In our implementation of the Lasso model, we performed hyper-parameter tuning

on two key parameters: l1_ratio and C. The l1_ratio was varied over {0, 0.25, 0.5, 0.75, 1},

allowing us to explore the impact of the ElasticNet mixing parameter which adjusts the balance

between L1 and L2 penalties. The C parameter, which controls the inverse of regularisation

strength, was swept over {10, 100, 1000}, providing a wide range of regularisation effects.

XGBoost. For the XGBoost model, we focused our hyper-parameter sweep on the eta
(learning rate) and max_depth. The eta values considered were {0.1, 0.3, 0.5}, providing a

spectrum of learning rates to control the step size during optimisation. For max_depth, the

values were {3, 6, 9}, allowing us to examine different depths for the trees to manage the model’s

complexity and prevent overfitting.

Neural Network Based Models. For the neural network-based models, which include

MLP, SEFS, CAE, Supervised CAE, and F-Act, we conducted a hyper-parameter sweep. Key

parameters included learning rate, lr, ({1e-3, 3e-4, 1e-4}), number of hidden layers ({1, 2, 4}), and

dropout rates ({0, 0.2}). Additionally, for the Concrete Autoencoder models (CAE, Supervised

CAE), we swept the neurons_ratio over {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} to explore

various proportions of neurons in the encoder and decoder layers. This extensive tuning process

was aimed at optimising each of the methods architectures and regularisation techniques to



Algorithm 2 Training F-Act

Require: Dataset (X,Y), mini-batch size 𝑛mb, loss coefficients (𝛼𝑆 , 𝛼𝑅), Gumbel-Softmax

temperature parameter 𝜏 , maximum intervention 𝑘max, learning rate 𝜂
Ensure: Trained model parameters (𝜃𝑚soft

, 𝜃𝑚hard
, 𝜃𝑅, 𝜃𝑃 )

1: Initialise (𝜃𝑚soft
, 𝜃𝑚hard

, 𝜃𝑅, 𝜃𝑃 ) ◁ Initialise parameter weights randomly

2: repeat
3: for 𝑖 = 1 to 𝑛 do ◁ For each sample in the training set

4: (x𝑖, 𝑦𝑖) ∼ (X,Y) ◁ Sample a data point

Mask the data

5: msoft ← Sigmoid(𝜃𝑚soft
) ◁ Compute soft mask

6: mhard ← GumbelSoftmax(𝜃𝑚hard
, 𝜏) ◁ Compute hard mask

7: x̃𝑖 ←msoft ⊙ x𝑖 ◁ Apply soft mask to input data

8: x̃𝑆𝑖 ←mhard ⊙ x̃𝑖 ◁ Apply hard mask to soft-masked data

Reconstruct the data, apply interventions, and make prediction

9: x̃𝑅𝑖 ← 𝑓𝑅(x̃𝑆𝑖 ; 𝜃𝑅) ◁ Reconstruct the hard-masked features

10: 𝑦𝑅𝑖
← 𝑓𝑃 (x̃𝑅𝑖 ; 𝜃𝑃 ) ◁ Make prediction without intervention

11: x̃𝐼𝑖 ← 𝜇(x̃𝑅𝑖 , x̃𝑖; 𝜃𝑚hard
, 𝑘max) ◁ Apply interventions on top features

12: 𝑦𝐼𝑖 ← 𝑓𝑃 (x̃𝐼𝑖 ; 𝜃𝑃 ) ◁ Make prediction with full intervention

13: end for
14: 𝜃 ← 𝜃 − 𝜂∇𝜃

∑︀𝑛b

𝑖=1

(︀
ℒ(𝑦𝑅𝑖

, 𝑦𝐼𝑖 ,y𝑖)
)︀

◁ Update parameters using gradient descent

15: until convergence

enhance model performance

B. Further Experiments and Discussion

B.1. Test-time Imputation

B.1.1. Further Discussion

In Figure 2b, we observe the interesting phenomenon that at low levels of missing data, ICE

imputation enables the tree-based models to achieve considerably improved performance.

Concurrently, ICE negatively affects the Neural Network and Lasso models. Here, we discuss

that phenomenon. Note that, as per the structure of the experiment, the missing features at

those levels are relatively lower-ranked features which have less impact on predictions in the

case of tree-based models. One possible explanation for the increase in performance of the

tree-based models, is that they were initially negatively affected by over-fitting to noise in the

lower-ranked features. As a result, the models might benefit from the removal of these features

in the test set. This then explains why replacing the lower-ranked features with expected values

conditioned by the other observed features of that data point (as per the ICE imputation strategy

[22]) would reduce their noisy impact. To explain the poor performance of ICE with the Neural

Network-based and Lasso models, we note that those models are known to be more sensitive

to scale and domain shift [35]. We also note that ICE is known to suffer from misspecification



Table 3
F1 Weighted Averages. Comparing F-Act, which uses an “optimal feature selection” found through
post-training hyperparameter tuning of the number of interventions, to F-Act "selected only", which
uses a feature selection made from thresholding the feature selection probabilities as 50%.

Partition Validation Validation Test Test
Model F-Act (selected only) F-Act F-Act (selected only) F-Act

Dataset COIL20 0.9929 0.9953 0.9860 0.9884
Isolet 0.9264 0.9430 0.9197 0.9286
PBMC 0.8461 0.8793 0.8317 0.8987
USPS 0.9681 0.9681 0.9683 0.9683
Finance 0.5992 0.6027 0.6029 0.5981
Madelon 0.7287 0.7415 0.7225 0.7290
Mice Protein 0.9815 0.9908 0.9877 0.9846

[36], where imputed values are “implausible”, falling out of the domain.

B.2. Optimal feature availability

The adaptive nature of our model enables the ability to provide a more finely tuned optimal

feature selection recommendation than the standard “selected” vs “non-selected” features

dichotomy. Rather than being derived from what is typically an arbitrarily set threshold, we

are able to tune the number of selected features without re-training. By contrast, to implement

feature selection with methods such as Lasso it is standard to re-train the model with the

reduced feature set. In this section, we hypothesise that this functionality will enable improved

performance, due to the ability to more finely tune the number of selected features.

The “optimal feature selection” is found through post-training hyperparameter tuning of

the number of interventions, 𝑘. That is, we evaluate the model at varying degrees of test-time

interventions on the validation set, and then set this as the number of features used by the

model. In Table 3, we present the results of this approach. In the table, we compare F-Act,

which uses post-training hyperparameter tuning of 𝑘, to F-Act “selected only”, which only

uses only the selected features. We find that in most datasets, this enables an improvement

over the “selected only” variant of the model. Exceptions include the finance and mice protein

datasets, where F-Act “selected only” outperforms F-Act 0̔.005, which is within the standard

deviation of our model’s F1 score for those datasets. However, on other datasets, such as PBMC,

the improvement of F-Act over F-Act "selected only" is rather notably greater than twice the

standard deviation. Overall we find that the difference in average F1 score falls within the

standard deviation of the model, indicating that the potential gains for this mechanism are

limited, however the substantial gains on the PBMC dataset, as well as the small computational

costs associated with its implementation, indicate that the mechanism is worth exploring when

deploying F-Act.
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