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Abstract 
This research develops a dynamic mathematical model for controller synthesis using genetic 
algorithms, surpassing traditional methods by integrating adaptive optimization with 
evolutionary principles. Unlike conventional fixed algorithms and manual tuning, this model 
dynamically explores a broader parameter space and autonomously adjusts parameters, 
enhancing performance in complex systems. The research involved a computer experiment 
applying this model to a PID controller implemented with a dynamic neural network. The 
results demonstrated significant improvements, including adjustments to PID coefficients that 
reduced transient process time and overshoot, increased modeling accuracy from 99.523 to 
99.783 %, and minimized losses from 2.5 to 0.5 %. These findings suggest that incorporating 
the developed model into the automatic control system for helicopter turboshaft engines free 
turbine rotor speed could significantly enhance system performance and reliability. These 
findings suggest that incorporating the developed model into the automatic control system for 
helicopter turboshaft engines free turbine rotor speed could significantly enhance system 
performance and reliability. Future work will focus on validating these results under diverse 
operational conditions and exploring additional optimization techniques. 
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1. Introduction 

Automation of controller synthesis is a critical task in control complex dynamic systems, 

where traditional design methods may be insufficiently effective [1]. In recent years, there 

has been growing interest in the application of optimization methods based on 

evolutionary algorithms, among which genetic algorithms hold a prominent position [2, 3]. 

These algorithms, inspired by the natural selection and genetic evolution processes, 

enable effective solutions to optimization tasks in multidimensional spaces, where 

traditional methods may encounter difficulties [4, 5]. In the controller synthesis context, 

genetic algorithms provide flexibility and adaptability, allowing for the multiple criteria 

consideration and modern control systems constraints characteristic.  

This research relevance is driven by the modern dynamic systems increasing 

complexity that require highly efficient and adaptive control methods. Traditional 

approaches to controller synthesis are often limited due to the systems and multi-criteria 

requirements complexity, which can lead to suboptimal solutions or excessive design 

costs. In this context, genetic algorithms, with their ability to effectively search for global 

optima in multidimensional spaces and adapt to changing conditions [6–8], offer new 

opportunities for automating controller synthesis. The genetic algorithms application 

significantly enhances the controller synthesis accuracy and reliability, which is 

particularly important for control critical systems such as aviation and energy complexes, 

where failures can have severe consequences.  

2. Related Works 

Existing research in the controller synthesis automation field using genetic algorithms has 

shown significant progress in solving optimization tasks for complex dynamic systems. 

Many researches emphasize the genetic algorithms flexibility and adaptability, allowing 

the various quality criteria consideration and constraints inherent in real-world control 

systems [9]. Research demonstrates that genetic algorithms are successfully applied in 

various industries, including aerospace [10–12], energy [13, 14], robotics [15, 16], and 

others [17–19]. Their ability to effectively solve multi-objective optimization tasks [20] 

makes them an attractive tool for automating controller synthesis, especially under 

conditions of high uncertainty and the numerous local optima presence. 

One important area of research is the hybrid methods development that combine 

genetic algorithms with other optimization techniques, such as neural networks [21–23] 

and particle swarm [24, 25] methods. These approaches improve convergence and the 

finding optimal solutions speed, as well as enhance the algorithms against local minima 

resilience. Notably, successful results have been obtained when applying hybrid methods 

for synthesizing controllers in complex nonlinear systems, where traditional methods 

prove to be less effective [26–28]. However, such hybrid approaches require more precise 

tuning and complicate the process of model development. 

Despite the advances in applying genetic algorithms for controller synthesis, there 

remain several unresolved issues related to these processes mathematical modeling. 

Specifically, the genetic algorithms scalability when working with large and high-



dimensional systems remains insufficiently studied. Additionally, there are limitations in 

assessing algorithm performance in the synthesis early stages, which can lead to increased 

computation time and reduced automation efficiency. Moreover, the literature highlights a 

lack of development in methods for adapting genetic algorithms to changing 

environmental conditions and parameter instability, which limits their application in real-

time systems. 

Therefore, further development of mathematical models for automating controller 

synthesis using genetic algorithms is necessary, focusing on improving the scalability and 

adaptability of algorithms, as well as reducing computational costs. Research in this 

direction may include developing new approaches to the genetic algorithm parameters 

adaptive tuning, enhancing hybridization methods with other optimization techniques, 

and exploring ways to integrate genetic algorithms into real-time control systems. These 

research gaps present opportunities for developing more effective and versatile tools for 

automating controller synthesis, capable of handling control tasks in increasingly complex 

and uncertain environments. 

3. Proposed technique 

Genetic algorithms have proven their effectiveness in solving optimization tasks, 

especially in cases where classical methods encounter difficulties due to the 

multidimensionality and nonlinearity of tasks [29, 30]. This research presents an 

innovative dynamic mathematical model for the controllers’ synthesis automating based 

on the genetic algorithms use. The model includes several stages: the target function 

formation, the controller parameters determination, the genetic algorithm development 

for the controller optimization and dynamic adaptation during the system operation [31]. 

Let y(t) be the system output variable, yr(t) be the output variable desired value 

(reference). The output variable from the reference deviation is defined as: 

e(t) = yr(t) − y(t). (1) 

The optimization task is to minimize the objective function J, which is defined as the 

integral of the squared error over a certain time interval T: 

𝐽 = ∫𝑒2(𝑡)𝑑𝑡

𝑇

0

. (2) 

Let us consider an example of a PID controller for the helicopter turboshaft engines 

(TE) free turbine rotor speed nFT, whose transfer function has the form [32, 33]: 

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑠
+ 𝐾𝑑 ∙ 𝑠, (3) 

where Kp, Ki, and Kd are the proportional, integral, and differential components 

coefficients, respectively. The genetic algorithm task is to find such values of Kp, Ki, and Kd 

that minimize the objective function J. 



The genetic algorithm application first stage is the initialization of the population. Let N 

be the population size, then the initial population P(0) can be defined as a set of random 

values  Kp, Ki, and Kd: 

𝑃(0) = {(𝐾𝑝1, 𝐾𝑖1, 𝐾𝑑1),… , (𝐾𝑝𝑁 , 𝐾𝑖𝑁 , 𝐾𝑑𝑁)}. (4) 

Next, the fitness function is evaluated. Each population member is evaluated by the 

objective function J value as: 

𝐽𝑖 = ∫𝑒𝑖
2(𝑡)𝑑𝑡

𝑇

0

, 𝑖 = 1…𝑁, (5) 

Next, it performs a crossover as follows: two parent solutions Pi and Pj produce an 

offspring Pk using a parameters combination: 

Pk = α ∙ Pi + (1 − α) ∙ Pj, α ∈ [0, 1], (6) 

Next, mutation is carried out by randomly changing one or more parameters of the 

offspring: 

Pk = Pk + δ, δ ∼ N(0, σ2). (7) 

For the selection process, where M best solutions that minimize the objective function J 

survive, an algorithm is applied in which there is a solutions population {P1, P2, …, PN}, 

where N is the solutions total number. For each solution, the objective function J(Pi) value 

is calculated according to (5). 

At the next stage, the solution is sorted by the objective function J(Pi) value in 

ascending order: 

P(1), P(2), …, P(N), (8) 

where Pi is the solution for which the J(P(i)) value is less than for all previous solutions: 

J(P(1)) ≤ J(P(2)) ≤ … ≤ J(P(N)). (9) 

After sorting, M best solutions are selected for which J(P(i)) is minimal: 

J(P(1)) ≤ J(P(2)) ≤ … ≤ J(P(M)), (10) 

where M ≤ N, and the selected solutions {P(1), P(2), …, P(M)} become the basis for forming a 

new population in the algorithm next step. A new population is formed from descendants 

and parents: 

P(t + 1) = {P(1), P(2), …, P(M), new descendants}. (11) 

This process continues until a stopping criterion is reached, such as when the minimum 

value is reached or when the iterations maximum number is reached. 

In real systems, the system parameters may change over time, which requires the 

regulator to adapt in real time. For this aim, an algorithm is proposed that consists of 

modeling the change in system parameters, controller adaptive adjustment, and feedback. 

Let the system parameters a(t), b(t), and c(t) change over time: 



�̇�(𝑡) = 𝐴(𝑡) ∙ 𝑥(𝑡) + 𝐵(𝑡) ∙ 𝑢(𝑡), 

y(t) = C(t) ∙ x(t), 
(12) 

where A(t) = a(t), B(t) = b(t), C(t) = c(t) are the system matrices that change over time. 

The controller adaptive tuning assumes that the controller parameters can change over 

time in response to changes in the control object dynamics. Let us consider a 

mathematical model for the PID controller adaptive tuning that updates the controller 

coefficients Kp(t), Ki(t), and Kd(t) at each time step. The helicopter TE free turbine rotor 

speed nFT PID controller is presented in the form [32, 33]: 

𝑢(𝑡) = 𝐾𝑝(𝑡) ∙ 𝑒(𝑡) + 𝐾𝑖(𝑡) ∙ ∫ 𝑒(𝜏)𝑑𝜏

𝑡

0

+ 𝐾𝑑(𝑡) ∙
𝑑𝑒(𝑡)

𝑑𝑡
, (13) 

where e(t) = yr(t) – y(t) is the control error calculated according to (1), yr(t) is the specified 

output value (reference). 

To estimate the system parameters A(t), B(t), and C(t) in real time, the recursive least 

squares (RLS) method [34] can be used: 

𝜃(𝑡) = 𝜃(𝑡 − 1) + 𝐿(𝑡) ∙ [𝑦(𝑡) − �̂�(𝑡)], (14) 

where 𝜃(𝑡) is the system parameters estimate at time t, L(t) is the adaptation matrix, 

�̂�(𝑡) = �̂�(𝑡) ∙ 𝑥(𝑡) is the system output estimate, 𝑥(𝑡) is the system state estimate. 

The controller parameters are updated using gradient descent: 

𝐾𝑝(𝑡 + 1) = 𝐾𝑝(𝑡) − 𝛼 ∙
𝜕𝐽(𝑡)

𝜕𝐾𝑝
, (18) 

𝐾𝑖(𝑡 + 1) = 𝐾𝑖(𝑡) − 𝛼 ∙
𝜕𝐽(𝑡)

𝜕𝐾𝑖
, (19) 

𝐾𝑑(𝑡 + 1) = 𝐾𝑑(𝑡) − 𝛼 ∙
𝜕𝐽(𝑡)

𝜕𝐾𝑑
, (20) 

where J(t) is the objective function (for example, the squared error integral), α is the 

training step. 

The objective function gradients for each of the parameters can be calculated as 

follows: 

𝜕𝐽(𝑡)

𝜕𝐾𝑝
= −2 ∙ ∫𝑒(𝜏) ∙

𝜕𝑢(𝜏)

𝜕𝐾𝑝
𝑑𝜏

𝑡

0

, (21) 

𝜕𝐽(𝑡)

𝜕𝐾𝑖
= −2 ∙ ∫𝑒(𝜏) ∙

𝜕𝑢(𝜏)

𝜕𝐾𝑖
𝑑𝜏

𝑡

0

, (22) 



𝜕𝐽(𝑡)

𝜕𝐾𝑑
= −2 ∙ ∫𝑒(𝜏) ∙

𝜕𝑢(𝜏)

𝜕𝐾𝑑
𝑑𝜏

𝑡

0

. (23) 

Because: 

𝜕𝑢(𝑡)

𝜕𝐾𝑝
= 𝑒(𝑡), (24) 

𝜕𝑢(𝑡)

𝜕𝐾𝑖
= ∫𝑒(𝜏)𝑑𝜏

𝑡

0

, (25) 

 

𝜕𝑢(𝑡)

𝜕𝐾𝑑
=
𝜕𝑒(𝑡)

𝜕𝑡
. (26) 

Substituting expressions (24)–(26) into the formulas for gradients (21)–(23), we 

obtain: 

𝜕𝐽(𝑡)

𝜕𝐾𝑝
= −2 ∙ ∫𝑒(𝜏) ∙ 𝑒(𝜏)𝑑𝜏

𝑡

0

= −2 ∙ ∫𝑒2(𝜏)𝑑𝜏

𝑡

0

, (27) 

𝜕𝐽(𝑡)

𝜕𝐾𝑖
= −2 ∙ ∫ 𝑒(𝜏) ∙ (∫𝑒(𝜉)𝑑𝜉

𝜏

0

)𝑑𝜏

𝑡

0

, (28) 

𝜕𝐽(𝑡)

𝜕𝐾𝑑
= −2 ∙ ∫ 𝑒(𝜏) ∙

𝜕𝑒(𝜏)

𝜕𝑡
𝑑𝜏

𝑡

0

. (29) 

Thus, at each time step, the parameters Kp(t), Ki(t), and Kd(t) are updated taking into 

account the  control error current values and its derivatives, which allows the controller to 

adapt to changes in the system dynamics. 

Feedback is a control system key element that allows the system behavior to be 

adjusted based on the system current state deviation from a given value. To control a 

nonlinear system, the input-output linearization method is used, which consists of 

selecting the control action so that the closed system becomes linear. The control signal is 

selected as:  

𝑢(𝑡) =
1

𝑔(𝑥(𝑡))
∙ (−

𝑑(𝑟) ∙ ℎ(𝑥(𝑡))

𝑑𝑡(𝑟)
+ 𝑣(𝑡)), (30) 

where r is the system relative degree, and v(t) is the linear system new control action. 

Substituting u(t) into the original equation, we obtain the linear system: 



𝑣(𝑡) =
𝑑(𝑟) ∙ 𝑦(𝑡)

𝑑𝑡(𝑟)
. (31) 

The control task is reduced to choosing v(t) so that the output signal y(t) desired 

trajectory is achieved. 

The developed dynamic mathematical model for the controllers synthesis automating 

using genetic algorithms represents a significant advancement over traditional 

approaches by integrating adaptive optimization mechanisms with evolutionary 

principles. Unlike conventional methods that rely on fixed algorithmic structures and 

heuristic tuning, this model employs genetic algorithms to dynamically explore and 

optimize a broader parameter space, facilitating the more effective and robust controller 

configurations discovery. The model's innovation lies in its ability to autonomously adjust 

controller parameters through a continuous evolutionary process, thereby enhancing 

performance in complex and variable system environments. This adaptive capability 

contrasts with traditional methods that often require manual intervention and lack the 

flexibility to respond to real-time changes in system dynamics, thus offering a more 

versatile and efficient solution for modern control applications. 

4. Results 

Based on [32, 33], the work solves the task of synthesizing a PID controller (Figure 1) for 

the helicopters TE free turbine rotor speed nFT controlling task. 

kd

kp

d
dt

+

+
++

-

nFT_max nTC_req

.

.

nFT

 nFT kI
nFT

PID-controller

 

Figure 1: Updated block diagram illustrating the system for the helicopter turboshaft 

engines free turbine rotor speed controlling using a PID controller (author’s research). 

The input parameters are the atmospheric parameters (h is the flight altitude, TN is the 

temperature, PN is the pressure, ρ is the air density) values. The parameters recorded on 

board of the helicopter (nFT is the free turbine rotor speed) reduced to absolute values 

according to the gas-dynamic similarity theory (table 1). We assume in this research that 

the atmospheric parameters are constant (h is the flight altitude, TN is the temperature, PN 

is the pressure, ρ is the air density) [35–37]. 



Table 1 

Training dataset fragment 

 

 

 

 

 

 

 

The training dataset homogeneity evaluation, as described in [35–37], employed the 

Fisher-Pearson [38] and Fisher-Snedecor [39] tests. Based on these criteria, the dataset 

was found to be homogeneous, with the computed Fisher-Pearson and Fisher-Snedecor 

statistics falling below their respective critical limits, specifically 𝜒2 = 5.365 < 𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2 =

6.6 and 𝐹 = 2.177 < 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 2.58. To assess the dataset's representativeness, cluster 

analysis using the k-means method [40–42] was conducted. The dataset was divided into 

training and testing subsets in a 2:1 ratio, corresponding to 67 % (172 samples) and 33 % 

(84 samples), respectively. The cluster analysis (Table 1) identified seven distinct classes 

(I...VII), confirming their presence and demonstrating consistency between the training 

and test datasets (Figure 2). These results allowed for the optimal sample datasets 

determination: the training dataset consists of 256 elements (100 %), the validation 

dataset comprises 172 elements (67 % of the training dataset), and the test dataset 

contains 84 elements (33% of the training dataset). 

 

Figure 2: The cluster analysis results, where “left figure” is the training dataset, “right 

figure” is the test (author’s research) (author’s research). 

As detailed in [32, 33], an improved standard configuration for the helicopter TE free 

turbine rotor speed controlling has been introduced, featuring a PID controller. This 

enhancement is realized by integrating a dynamic neural network with direct data 

transmission, where the first layer consists of neurons with a radial-basis activation 

function, and the second layer includes adalines are the neurons with a linear activation 

function. Since maintaining the main rotor rotational speed is a critical objective during 

helicopter flight, this modification is especially relevant. In [32, 33], a neural network was 

Number nFT Number nFT 

1 0.983 132 0.992 

… … … … 

28 0.979 … … 

… … 256 0.974 



employed to adjust the PID controller Kp, Kd, and Ki coefficients, which ultimately enabled 

the main rotor speed dynamic regulation. 

In [33] it is implemented a discrete PID controller using a dynamic neural network with 

direct data flow, where only the activation function in the second layer is linear, while the 

activation functions in the first layer are nonlinear, specifically radial-basis functions (see 

Figure 3, where Δ represents a one-step delay). 

u(n)
Σ 

Input 

layer
Layer of non-

linear neurons
Layer of 

linear neurons

kp
sd

si

Δ 

e(n)

e(n-1)

 

Figure 3: The nonlinear PID controller neural network-based representation (author’s 

research). 

To fine-tune the PID controller, a dynamic neural network with direct data flow was 

utilized. This network comprises neurons with a radial basis activation function in the first 

layer and adalines is the neurons with a linear activation function is the in the second 

layer. The network's structural parameters include a learning rate set to 1.5, 20 neurons in 

the hidden layer, a delay line length of 5 for input signals, and 1000 training epochs. The 

initial coefficients were set at Kp = 0.5, Ki = 5, Kd = 0.01. For initial training, recorded data 

from the control object’s operation were used, specifically the first 50 data points, with a 

window size of 10 and a training accuracy of 0.00005. If during operation the control error 

exceeded 2 over ten time cycles, the neural network underwent further training, with a 

training accuracy of 0.0001 and a limit of 10 training iterations. As per [32, 33], the first 

step involved optimizing the PID controller coefficients (Figure 1). The transient response 

after optimization is depicted by curve 1 in Figure 4, where the linear control law resulted 

in significant overshoot and a large static error. The transient response is shown as “blue 

curve” in Figure 4, which indicates that while the response became aperiodic, the static 

error remained, and the rise time increased slightly. In the third step, the neuron's 

activation function parameters, corresponding to the integral component of the PID 

controller, were optimized (Figure 3). This optimization resulted in the transient response 

shown as “red curve” in Figure 5, where the response became oscillatory again. It is 

evident that with changes in the task, the transient response remained consistent, 



maintaining a low overshoot due to the PID coefficients static nature. The overshoot was 

minimal, the slew rate significantly improved, and the static error was negligible. 

 

Figure 4: The PID controller computer simulation results (author’s research). 

According to Figure 4 initial coefficient values are: Kp = 0.5, Ki = 5, Kd = 0.01, after the 

add-on Kp = 0.45, Ki = 4.985, Kd = 0.007, overshoot value does not exceed 0.3 %. 

To evaluate the neural network's performance in the next training phase, both accuracy 

(Figure 5) and loss (Figure 6) are measured. The Accuracy metric represents the correct 

predictions percentage, while the Loss metric shows the predictions average squared 

error, indicating how much they deviate from the true values. To evaluate the precise 

calculations proportion for the free turbine rotor speed nFT, the Accuracy metric is used 

(Figure 5), and it is computed at training epoch t using the following expression [35–37]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡 =
1

𝑁
∙∑𝐼(�̂�𝑇𝐶𝑖

𝑡 = 𝑛𝑇𝐶)

𝑁

𝑖=1

. (32) 

 

 

Figure 5: The accuracy metric diagram (author’s research). 



 

Figure 6: The loss metric diagram (author’s research). 

As shown in Figures 5 and 6, these metrics indicate that the neural network model 

delivers high prediction accuracy (99.77 %) and performs efficiently, with the mean 

squared error staying under 2.5 %. Furthermore, the significant reduction in the loss 

function from 2.5 to 0.5 % reflects an enhancement in the model's quality over the training 

process course. 

Similarly to the method described in [32, 33], the approach quality is assessed using 

classification metrics derived from the confusion matrix presented in Table 2. In this 

matrix, TP denotes true positives (instances correctly classified as defects by the model), 

FP refers to false positives (non-defects mistakenly classified as defects), TN represents 

true negatives (cases accurately identified as non-defective data), and FN indicates false 

negatives (defects incorrectly identified as non-defective) [43, 44]. 

Table 2 

The error matrix [43, 44]  

Category Positive Negative 

Predicted positive TP FP 

Predicted negative FN TN 

 

To assess the developed method quality in this research, the following metrics were 

chosen [45–47]: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 is the objects percentage calculates for which 

the classifier accurately made decisions, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 is the relevant parameters 

percent among all researched, 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 is the crucial parameter in defect detection 

is precision, as the detected defects ratio signifies to the defective instances overall 

number, 𝐹1 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 is the F-measure, which is the “harmonic” average 

between Precision and Recall. Table 3 presents the model's training outcomes average 

results, including the mean and variance for the accuracy metrics. 



Table 3 

The testing indicators average values 

Metric 

Value 

PID-controller developed on 

the neural network basis [33] 

PID-controller developed on 

the neural network basis with 

genetic algorithms 

Accuracy 0.99523 0.99783 

Precision 0.96238 0.98472 

Recall 1.0 1.0 

F-measure 0.98165 0.99362 

Average time, seconds 1201.99 1095.38 

Average Accuracy 0.99319 0.99525 

Dispersion Accuracy 0.00000886 0.00000322 

 

Table 4 provides an accuracy comparative analysis provided by each of the evaluated 

controllers, highlighting the Type I and Type II errors [48–50] probabilities in identifying 

the optimal parameter nFT. 

Table 4 

The 1st and 2nd types errors determining results 

Controller type 

Error probability in determining the 

parameter nFT optimal value 

Type 1st error Type 2nd error 

Linear PD-controller 1.95 1.42 

PD-controller with reduced Kd 1.74 1.21 

Quadratic controller 1.46 1.03 

PD-controller with a variable amplification 

factor 
1.32 0.95 

Fuzzy logical P-controller 1.08 0.77 

Fuzzy logical P-controller with a corrective 

differential link 
0.97 0.64 

PID-controller developed on the neural network 

basis [32] 
0.58 0.22 

Modified PID-controller developed on the neural 

network basis [33] 
0.36 0.14 

PID-controller developed on the neural network 

basis with genetic algorithms 
0.22 0.10 

 

As shown in Table 4, incorporating a dynamic neural network with direct data flow into 

the PID controller with genetic algorithms, where the first layer consists of neurons with a 

radial basis activation function and the second layer includes adalines with a linear 

activation function is led to a decrease in Type I and Type II errors by 30 to 40 % 

compared to the PID-controller described in [33]. 



5. Discussions 

The research is aimed at creating a dynamic mathematical model (1)–(31) for the 

controllers (see Figure 1) synthesis using genetic algorithms. The new dynamic 

mathematical model for controller synthesis, utilizing genetic algorithms, surpasses 

traditional methods by integrating adaptive optimization with evolutionary principles. 

Unlike fixed algorithms and manual tuning, this model dynamically explores a broader 

parameter space, autonomously adjusting parameters for improved performance in 

complex systems. This approach offers greater flexibility and efficiency, responding to 

real-time changes more effectively than conventional methods. 

In this research, a computer experiment was conducted to determine the helicopter TE 

free turbine rotor speed transient process by introducing the developed mathematical 

model (1)–(31) into a PID controller implemented utilizing a dynamic neural network 

with direct data flow, where only the second layer has a linear activation function, while 

the first layer features nonlinear, radial-basis activation functions (see Figure 3). 

According to the obtained results (see Figure 4), the developed mathematical model 

(1)–(31) application made it possible to adjust the PID controller coefficients: the Kp 

coefficient from 0.5 to 0.45, the Ki coefficient from 5.0 to 4.985, the Kd coefficient from 0.01 

to 0.007, which made it possible to minimize the transient process time and overshoot 

from 0.5 to 0.3% compared to the PID controller developed in [32, 33]. 

The developed mathematical model (1)–(31) application made it possible to increase 

the accuracy of the helicopter TE free turbine rotor speed transient process modeling from 

99.523 to 99.783 % (see Figure 5 and Table 3), and also to minimize loss from 2.5 to 0.5% 

(see Figure 6), and also reduce the first and second types errors by 30...40 % compared to 

the PID controller developed in [32, 33]. 

Thus, it seems appropriate to implement the developed mathematical model (1)–(31) 

into the helicopter TE free turbine rotor speed automatic control system, including a 

neural network, which task is to determine the PID controller coefficients (Figure 7). 
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Figure 7: Modified PID controller design with an auto-tuning block based on a neural 

network, where TD represents the delay operator (author’s research). 



The limitations of the obtained results may be as follows. First, the proposed 

mathematical model (1)–(31) and optimization methods based on genetic algorithms 

might not account for all possible external and internal influences, limiting their 

applicability to real-world operational conditions. Second, the improvement in modeling 

accuracy and reduction in losses achieved by adjusting PID controller coefficients may be 

due to the specific parameters and neural network architecture used, which does not 

necessarily guarantee similar results in other systems or under different operating 

conditions. Third, the experimental data used in the study may not fully capture complex 

dynamic processes, potentially affecting the proposed method accuracy and reliability in 

various real-world scenarios. Specifically, the controller's performance accuracy is 

contingent on the sensor data precision, and any significant deviation in sensor readings 

can negatively affect the dynamic response. Additionally, the genetic algorithm 

computational complexity, combined with the neural network, can lead to increased 

processing time, particularly in real-time applications, which may necessitate further 

optimization for onboard systems. 

Future research prospects include several key directions. First, additional experiments 

are needed to verify the proposed mathematical model and optimization methods 

universality under various operational conditions and different system types. Second, 

integrating the model with more advanced adaptive control algorithms should be 

considered to enhance its ability to handle dynamic changes and unforeseen disturbances. 

Third, exploring new neural network architectures that may improve modeling accuracy 

and efficiency is promising. Additionally, investigating the model's application in real 

operational environments will be valuable for assessing its practical utility and reliability. 

6. Conclusions 

The research demonstrates the newly developed dynamic mathematical model (1)–(31) 

effectiveness for synthesizing controllers using genetic algorithms. The model offers 

significant advantages over traditional methods by integrating adaptive optimization with 

evolutionary principles, allowing for the broader parameter space dynamic exploration 

and parameters autonomous adjustment. This approach enhances flexibility, efficiency, 

and responsiveness to real-time changes. 

The computer experiment results show that applying the model to a PID controller 

significantly improved performance. Adjustments to the PID coefficients led to a reduction 

in transient process time and overshoot, with modeling accuracy increasing from 99.523 

to 99.783 % and losses minimized from 2.5 to 0.5 %. These improvements indicate the 

incorporating potential benefits the developed model into the automatic control system 

for helicopter TE free turbine rotor speed. 

However, limitations include potential gaps in accounting for all external and internal 

influences, the neural network parameters specificity affecting generalizability, and the 

experimental data potential inadequacy in capturing complex dynamics. Future research 

should focus on validating the model's universality under diverse conditions, integrating it 

with advanced adaptive control algorithms, exploring new neural network architectures, 

and assessing its practical applicability in real operational environments. 
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