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Abstract 
This study focuses on a method for detecting and classifying distributed denial of service (DDoS) 
attacks, such as SYN Flooding, ACK Flooding, HTTP Flooding, and UDP Flooding, using neural 
networks. Machine learning, particularly neural networks, is highly effective in detecting 
malicious traffic. A dataset containing normal traffic and various DDoS attacks was used to train 
a neural network model with a 24-106-5 architecture. The model achieved high Accuracy 
(99.35%), Precision (99.32%), Recall (99.54%), and F-score (0.99) in the classification task. All 
major attack types were correctly identified. 
The model was also further tested in the lab using virtual infrastructures to generate normal and 
DDoS traffic. The results showed that the model can accurately classify attacks under near-real-
world conditions, demonstrating 95.05% accuracy and balanced F-score scores for all attack 
types. This confirms that neural networks are an effective tool for detecting DDoS attacks in 
modern information security systems. 
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1. Introduction 

Distributed denial of service (DDoS) attacks are one of the most serious threats to 
network security. These attacks cause significant system disruptions by flooding the system 
with malicious traffic [1]. Among the various DDoS techniques, Flooding attacks, such as 
SYN Flooding, ACK Flooding, HTTP Flooding, and UDP Flooding, are particularly difficult to 
neutralise due to their ability to mimic legitimate traffic. These attacks drain server 
resources, making it unavailable to legitimate users. 

Machine learning (ML) is one of the key technologies increasingly being implemented in 
various fields of science and technology due to its ability to automate processes, analyze 
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large amounts of data, and make highly accurate predictions. In medicine, ML is used to 
diagnose diseases, analyze medical images, develop personalized treatment plans, and 
predict the spread of infectious diseases [2]. In the financial sector, machine learning allows 
for assessing credit risk, detecting fraud, optimizing investment portfolios, and automating 
trading algorithms [3]. In the automotive industry, ML underpins the development of 
autonomous vehicles that analyze sensor data to make real-time decisions and predict 
vehicle maintenance [4]. In materials science, machine learning allows predicting material 
properties [5,6,7]. In particular, ML minimizes the need for expensive and time-consuming 
experiments. 

In cybersecurity, machine learning has become an important tool for detecting and 
preventing various threats. Traditional methods, such as rule-based and statistical 
approaches, often cannot detect sophisticated attacks. ML allows for more efficient analysis 
of network traffic, detection of anomalies, and classification of malicious traffic, making 
these methods indispensable for modern information security systems [8,9]. Neural 
networks are a subset of machine learning techniques known for their ability to detect 
complex nonlinear relationships. 

The aim of this study is to develop and evaluate an effective neural network for DDoS 
detection and classification. A dataset containing normal traffic and traffic from different 
Flooding attacks (SYN, ACK, HTTP, and UDP Flooding) was used to train and evaluate the 
neural network model. The main stages of this work include the development of a robust 
neural network model for DDoS detection, analyzing its performance for different types of 
attacks, and practical testing of the neural network performance on traffic generated in a 
laboratory environment under conditions close to real-world conditions. 

2. Methods 

2.1. Dataset description 

The dataset used in this study is specifically designed to detect DDoS flooding attacks 
and is obtained from [10,11]. It includes two categories of traffic: normal traffic, which 
represents legitimate user activity, and malicious traffic generated by different Flooding 
attacks.  

Normal traffic is network traffic that does not contain malicious activity and corresponds 
to the standard behavior of users and devices on the network. Such traffic includes 
legitimate requests, data transfers between users and servers, and other typical network 
operations that occur during the normal operation of network systems. In the context of 
DDoS detection, normal traffic is a benchmark for comparison with abnormal traffic that 
may indicate an attack. 

SYN Flooding is a type of DDoS attack aimed at exhausting the resources of a server or 
network device's resources by sending many requests to establish a TCP connection [12]. 
Under normal conditions, a TCP connection is established through a three-step process 
where the client sends a SYN packet to the server; after that, the server responds with a 
SYN-ACK, and the client completes the process by sending an ACK packet. However, in a SYN 
Flooding attack, the attacker sends many SYN packets (in many cases from a spoofed IP 
address) but does not respond to the SYN-ACK packets the server receives in return. This 



causes the server to keep half-open connections, wasting its resources on maintaining them. 
As a result, the server becomes overloaded and unable to process new legitimate connection 
requests, resulting in a denial of service for legitimate users. SYN Flooding is one of the most 
common and difficult attacks to detect because its packets look like legitimate requests. 

ACK Flooding is a DDoS attack that uses many ACK packets to overload the target system 
[13]. ACK packets are part of the normal data transfer process in the TCP protocol and 
acknowledge receipt of a data packet from the sender. In a typical scenario, after data is 
transmitted between two devices, the receiver sends an ACK packet to the sender to confirm 
that the data was successfully received. In the case of ACK Flooding, an attacker sends many 
ACK packets to the target server or network device. These packets do not correspond to the 
connection or previously transmitted data. The attack aims to overwhelm the server by 
processing many invalid ACK packets, thereby depleting its resources, such as CPU time and 
memory. Due to the constant flow of ACK packets, the server is forced to spend significant 
resources on processing them, which can lead to a decrease in performance or a complete 
cessation of service to legitimate users. Like other DDoS attacks, ACK Flooding is difficult to 
detect because individual ACK packets are not malicious and look like normal traffic. 
However, their massive number and the lack of a suitable connection make the attack 
effective and lead to server overload. 

HTTP Flooding is a DDoS attack that aims to exhaust web server resources by sending 
many HTTP requests [14]. In this case, attackers use the HTTP protocol to communicate 
between web browsers and servers to overload the target website or web application. In 
HTTP Flooding, attackers send requests that mimic legitimate web traffic to the target 
server. These requests can be for various website resources, such as HTML pages, images, 
or other media files. The attack aims to consume available server resources, such as 
network bandwidth, CPU time, and RAM. HTTP Flooding can significantly impact a website 
or web application, especially if the attack is large-scale. Due to the heavy load, the server 
can slow down or even stop functioning completely, making the website inaccessible to 
legitimate users. Since HTTP Flooding uses normal web traffic, it is difficult to distinguish it 
from legitimate requests, making it difficult to recognize and block the attack. 

UDP Flooding is a DDoS attack that uses many UDP packets to overload a target server 
or network device [15]. UDP (User Datagram Protocol) is a data transmission protocol that 
does not check packet delivery and does not establish a connection before sending data. In 
the case of UDP Flooding, attackers send many UDP packets to random ports on the target 
server or network device. When the server receives these packets, it tries to process them, 
including checking the incoming data and attempting to respond to requests if necessary. 
As a result, the server spends resources processing and responding to large volumes of 
spoofed requests. This leads to an overload of its network bandwidth and CPU resources, 
which can significantly slow down or stop the server's normal operation. UDP Flooding can 
also affect the network infrastructure by flooding communication channels with large data. 
Like other DDoS attacks, UDP Flooding can be difficult to detect and block because UDP 
packets are not malicious, and the attack uses a legitimate network protocol.  

The dataset has already been pre-processed to make it suitable for neural network 
training. The dataset is divided into three parts to train the neural network: training, test, 
and validation samples. The total sample size was 38413. Of these, 16619 records were 



normal traffic, 3556 were SYN Flooding, 7562 were ACK Flooding, 1044 were HTTP 
Flooding, and 9632 were UDP Flooding.  

To ensure effective training and evaluation of the model, 70% of the data were randomly 
selected for the training set, the largest share of the data. This part was used to train the 
model, i.e. to adjust its parameters based on the available data. The validation sample 
comprised 15% of the total data. It was used to check the quality of the model and the 
settings of its hyperparameters. This allowed us to avoid overfitting, i.e. a situation where 
the model works well on training data but performs poorly on new, unknown data. The 
remaining 15% of the data was reserved for the test sample, which was used after the model 
was trained. Testing allowed us to evaluate the final performance of the model on new data 
that was not involved in the training or validation process. It allowed us to determine its 
generalization capability. 

2.2. Neural network model 

A neuron in neural networks is the basic element that mimics the behaviour of a biological 
neuron. Its main function is to receive signals at the input, process them, and transmit the 
results to the output. The mathematical model of the neuron is described by the following 
equation [16]: 
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where 𝑥𝑥𝑖𝑖 are the input values, ω𝑖𝑖  are the weights associated with each input, b is the bias 
that allows the neuron to better adapt to the data, b is the activation function, n is the 
number of input signals or the number of input features, y is the output of the neuron. Each 
neuron receives input signals represented as a set of values 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛.  These values are 
weighted according to their weights ω1,ω2, … ,ω𝑛𝑛, which are adjusted during model 
training. The sum of the weighted inputs is then passed to the activation function φ. 

In this paper, a neural network with the 24-106-5 architecture is built. Figure 1 shows 
the architecture of a multilayer perceptron with one hidden layer and one output layer. 
 



 

Figure 1: Architecture of the 24-106-5 feed-forward neural network 

A neural network consists of three layers. The input layer contains 24 nodes, 
corresponding to the number of features in the input data; each neuron receives values from 
the data set and passes them on to the next layer. The hidden layer comprises 106 neurons 
activated using the tanh (hyperbolic tangent) activation function. The function is described 
as: 

𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥) =
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
, 

(2) 

where x is an input value or a weighted sum of input signals for a particular neuron, e is 
a mathematical constant known as the Euler number. 

The tanh function maps input values into a range from -1 to 1, which allows the model to 
learn more efficiently as it reduces the problem of vanishing gradients compared to other 
activation functions. The output layer contains 5 neurons, corresponding to the number of 
classes in the classification task, including normal traffic and four types of DDoS Flooding 
attacks. To activate the neurons in this layer, we used the softmax activation function. The 
function is described as: 

σ(𝑧𝑧𝑖𝑖) =
𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝑛𝑛
𝑗𝑗=1

, 
(3) 

where 𝑧𝑧𝑖𝑖  is a real number that reflects the ‘strength’ of the signal for class i before 
applying softmax, i is a fixed index for calculating the probability of a particular class, n 
defines the number of possible categories for classification.  

This function  maps the neurons' output values into probabilities belonging to each class, 
where the sum of probabilities for all classes is 1. This allows the model to provide 
probabilities for each possible outcome, which is convenient for the classification task.  



This neural network architecture allows for the effective detection and classification of 
various DDoS attacks using input data consisting of various network traffic characteristics. 

2.3. Model evaluation 

A confusion matrix was built to evaluate the neural network's effectiveness in detecting and 
classifying DDoS attacks (Table 1). The model evaluation is based on four main categories 
of classification results: True Positive (TP), True Negative (TN), False Positive (FP), and 
False Negative (FN). 
 

Table 1 
Confusion matrix 

True label 
Predicted label 

Normal traffic DDoS traffic 
Normal traffic TN FP 
DDoS traffic FN TP 

 
True Positive (TP) represents the number of times the model correctly identified an 

attack. True Negative (TN) represents the number of times the model correctly identified 
normal traffic. False Positive (FP) represents the number of times the model incorrectly 
identified normal traffic as an attack. False Negative (FN) shows the number of cases when 
the model failed to recognize an attack and classified the data as normal traffic.  

Several key performance indicators are calculated based on the TP, TN, FP, and FN 
values: Accuracy, Precision, Recall, Specificity, and F-score. 

In terms of classifying normal traffic and DDoS traffic, accuracy shows the overall 
efficiency of the model in classifying these two types of traffic: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴𝑦𝑦 = 100% ∙
∑(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

∑(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇)
, 

(4) 

 
If the model correctly identifies the majority of samples as either normal traffic or a DDoS 

attack, it will have high accuracy. 
Precision in the context of DDoS detection is the proportion of correctly classified traffic 

as a DDoS attack among all samples that are classified as attacks: 
 

𝑇𝑇𝐴𝐴𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 = 100% ∙
∑(𝑇𝑇𝑇𝑇)

∑(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
, 

(5) 

 
A high score means that the model rarely mistakes normal traffic for a DDoS attack, 

meaning that the number of False Positive results is low. This is important in real-world 
networks, where false alarms can lead to unnecessary blocking of legitimate traffic. 



Recall (Sensitivity) shows how well the model detects real DDoS attacks. It is the 
proportion of correct attack classifications among all the real attacks present in the dataset:  

 

𝑅𝑅𝑒𝑒𝐴𝐴𝑡𝑡𝑅𝑅𝑅𝑅 = 100% ∙
∑(𝑇𝑇𝑇𝑇)

∑(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
, 

(6) 

 
A high score means that the model effectively detects most or all real DDoS attacks while 

minimizing the number of missed attacks (False Negative). This is critical because missed 
attacks can go undetected, allowing attackers to cause damage to the system. 

Specificity measures how well the model identifies normal traffic and distinguishes it 
from DDoS attacks:  

 

𝑆𝑆𝑆𝑆𝑒𝑒𝐴𝐴𝑃𝑃𝑆𝑆𝑃𝑃𝐴𝐴𝑃𝑃𝑡𝑡𝑦𝑦 = 100% ∙
∑(𝑇𝑇𝑇𝑇)

∑(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
, 

(7) 

 
A high score means that the model correctly classifies most normal traffic samples as not 

DDoS, reducing the number of False Positive results. It indicates how well the model 
protects legitimate traffic from false blocking. 

The F-score in the case of classifying normal traffic and DDoS attacks provides a balanced 
assessment between Precision and Recall. It allows you to evaluate the overall performance 
of the model, taking into account both the model's ability to minimize False Positive results 
(high Precision) and detect genuine attacks (high Recall): 

 

𝐹𝐹 − 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑒𝑒 =
2 ∙  𝑅𝑅𝑒𝑒𝐴𝐴𝑡𝑡𝑅𝑅𝑅𝑅 ∙  𝑇𝑇𝐴𝐴𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝑅𝑅𝑒𝑒𝐴𝐴𝑡𝑡𝑅𝑅𝑅𝑅 +  𝑇𝑇𝐴𝐴𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

, (8) 

 
A high F-score indicates that the model performs well in detecting real attacks and 

avoiding false alarms, which is key to reliable network protection. 
These metrics provide a comprehensive assessment of the neural network's 

performance to classify network traffic and determine how effectively it detects and 
recognizes different types of DDoS attacks in combination with normal traffic. 

3. Results and discussion 

3.1. Detection performance 

In this work, we used a neural network with a 24-106-5 architecture to detect and classify 
DDoS attacks such as SYN Flooding, ACK Flooding, HTTP Flooding, and UDP Flooding along 
with normal traffic. The confusion matrix of the model is shown in Table 2. 
 
 



Table 2 
Confusion matrix of the neural network 24-106-5 

True label 
Predicted label 

Normal traffic SYN 
Flooding 

ACK 
Flooding 

HTTP 
Flooding 

UDP 
Flooding 

Normal traffic 2471 15 3 2 2 
SYN Flooding 10 523 - - - 
ACK Flooding 1 - 1133 - - 

HTTP Flooding 1 - - 156 - 
UDP Flooding 3 - - - 1442 
 
Most of the traffic samples are classified correctly, but it is noticeable that the largest 

classification errors occur between normal traffic and SYN Flooding. In some cases, the 
difference between normal connection establishment and SYN Flooding can be small, 
making it difficult for the model to distinguish between these types of traffic accurately. This 
also explains why the model sometimes confuses the two types of traffic, as SYN packets are 
used both in the normal connection establishment process and during an attack. Therefore, 
the similarity like requests between normal traffic and SYN Flooding may be the main 
reason for the increase in classification errors between them. 

Table 3 shows the performance of the neural network in the task of detecting and 
classifying DDoS attacks. 

Table 3 
Performance indicators of the neural network 24-106-5 

Performance 
indicator  

Normal traffic  
All DDoS 
Flooding 

SYN 
Flooding 

ACK 
Flooding 

HTTP 
Flooding 

UDP 
Flooding 

Accuracy (%) 99.35 99.17 99.88 99.88 99.87 
Precision (%) 99.32 97.21 99.73 98.73 99.86 

Recall (%) 99.54 98.12 99.91 99.36 99.79 
Specificity (%) 99.11 99.39 99.87 99.91 99.91 

F-score 0.99 0.97 0.99 0.99 0.99 
 
The overall accuracy rate is 99.35%, which indicates that the model is highly effective in 

correctly classifying different types of traffic. The model also shows a high Precision of 
99.32%, which indicates a minimal number of False Positive results. Recall, which reflects 
the model's ability to detect real attacks, reaches 99.54%, which means that the model 
almost never misses real attacks. The Specificity, which indicates the model's ability to 
identify normal traffic correctly, is 99.11%, which confirms the model's high ability to avoid 
misclassifying normal traffic as an attack. The F-score is 0.99, emphasizing the model's 
balance in detecting attacks and minimizing false alarms. Among the individual attack types, 
ASK Flooding and UDP Flooding are the easiest for the model to detect, with performance 
scores above 99% for all metrics. At the same time, the performance for SYN Flooding is 



somewhat lower, especially in Precision and F-score, which may be due to the peculiarities 
of this type of attack. Overall, the model shows a high level of performance, making it a 
reliable tool for detecting various types of DDoS attacks. 

3.2. Practical testing of a neural network 

The machine learning approach to detecting DDoS traffic and normal traffic involves several 
key steps (Figure 2). 
 

 

Figure 2: Steps of the malicious traffic detection approach 

To implement this approach, a special network infrastructure was created (Figure 3). 
 

 

Figure 3: Lab network infrastructure 

The basis of this infrastructure is a KVM hypervisor installed on Oracle Linux, which 
provides virtualization and supports the operation of virtual machines. Communication 
between the virtual machines and the physical network occurs through a virtual bridge 
connected to a Wi-Fi router. The Ubuntu Linux server deploys network services such as SSH, 
HTTP, DNS, FTP, SMTP, and IMAP, which are used to create a realistic network environment. 
Virtual machines with Parrot Security were launched to generate DDoS traffic to test the 
DDoS detection algorithms. At the same time, a network packet capture tool is running on 
Ubuntu Linux, collecting all network traffic for further analysis. Normal traffic, used to 



simulate normal network activity, is generated by laptops connected to the same network 
via Wi-Fi. This configuration allows you to collect the necessary data to test the effectiveness 
of the neural network in realistic conditions by simulating different types of traffic. 

We used tcpdump to capture network packets and save them to a file in the pcap format. 
Parrot Security created the DDoS traffic using Metasploit, an effective tool for carrying out 
network attacks, including SYN Flooding, ACK Flooding, HTTP Flooding, and UDP Flooding. 

Special software was developed in the Python programming language to extract features 
from captured network packets. This software allows for the automatic processing and 
analysis of large network data, highlighting key features that allow for further traffic 
classification. 

The total network traffic records created in the lab environment was 10564. Of these, 
3845 records were normal traffic, 1721 were SYN Flooding, 2203 were ACK Flooding, 980 
were HTTP Flooding, and 1815 were UDP Flooding. The confusion matrix of the model is 
shown in Table 4. 

Table 4 
Confusion matrix of neural network 24-106-5 in practical testing 

True label 
Predicted label 

Normal traffic SYN 
Flooding 

ACK 
Flooding 

HTTP 
Flooding 

UDP 
Flooding 

Normal traffic 3467 126 101 64 87 
SYN Flooding 56 1665 - - - 
ACK Flooding 34 - 2169 - - 

HTTP Flooding 25 - - 955 - 
UDP Flooding 29 - - - 1786 
 
This confusion matrix shows the results of testing a neural network to detect and classify 

DDoS attacks from traffic generated in a lab environment. The neural network detected 
3467 cases of normal traffic correctly. Still, several errors were made when SYN Flooding, 
ACK Flooding, HTTP Flooding, and UDP Flooding were mistakenly identified as normal 
traffic. Also, for SYN Flooding, the network correctly predicted 1665 cases but made 56 
mistakes, identifying it as normal traffic. In the case of ACK Flooding, the network correctly 
predicted 2169 samples but made 34 errors. The network accurately classified 955 HTTP 
Flooding cases, making minor errors with this category, and correctly predicted 1786 UDP 
Flooding cases. The network generally does a good job of classifying DDoS attacks, but there 
are several errors, especially when SYN and ACK Flooding are classified as normal traffic. 

Table 5 shows the neural network's performance in detecting and classifying DDoS 
attacks on traffic generated in the laboratory environment. 

 
 
 
 
 



Table 3 
Performance indicators of the neural network 24-106-5 in practical testing 

Performance 
indicator  

Normal traffic  
All DDoS 
Flooding 

SYN  
Flooding 

ACK 
Flooding 

HTTP 
Flooding 

UDP 
Flooding 

Accuracy (%) 95.05 96.57 97.66 98.02 97.83 
Precision (%) 94.56 92.96 95.55 93.71 95.35 

Recall (%) 97.85 96.74 98.45 97.44 98.40 
Specificity (%) 90.16 96.49 97.16 98.18 97.55 

F-score 0.96 0.95 0.97 0.95 0.97 
 
The overall Accuracy for all DDoS attacks is 95.05%, which indicates that the model can 

classify both normal traffic and different types of attacks correctly. Precision, which 
determines the percentage of correct positive predictions among all predicted positive 
cases for all attacks, is 94.56%. Recall, which indicates how well the model detects all 
positive cases, has the highest performance among the other metrics. The overall Recall is 
97.85%. Specificity, which shows how well the model avoids false positives, is also quite 
high. The overall score for all attacks is 90.16%. For all attacks, the F-score, the harmonic 
mean between Precision and Recall, is 0.96.  

Thus, the neural network demonstrates high efficiency in detecting and classifying DDoS 
attacks on traffic generated in the laboratory environment, showing good results for all 
major metrics for each type of attack. 

4. Conclusions 

As a result of the study, the neural network showed high efficiency in detecting and 
classifying DDoS attacks. The overall accuracy is 95.05%, and the Precision, Recall, and 
Specificity values are high for all types of attacks, indicating the model's reliability. For all 
DDoS attacks, the overall F-score is 0.96, indicating that the model is highly balanced. This 
means that the model effectively detects genuine attacks without generating many false 
alarms. 
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