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Abstract
Vehicle detection and recognition is an important research. An attention and feature fusion target 
detection  algorithm based  on the  improved  YOLOv4 algorithm is  proposed  to  achieve  a  more 
effective screening of vehicle targets in traffic scenes. Considering the cost deployment problem of 
traffic  recognition  algorithms,  this  paper  uses  YOLOv4  as  the  base  architecture,  firstly,  the 
lightweight  DenseNet  is  used  as  the  backbone  feature  extraction  network;  secondly,  effective 
channel attention (ECA) and Adaptive Spatial Feature Fusion (ASFF) are used to enhance the PANet 
structure with attention-guided fusion; in addition, the weight ratio of the loss function is optimized 
and the mosaic method is used for training enhancement.
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1. Introduction

YOLOv1 [1] achieves real-time performance of 155 fps. The algorithm divides the network 
into multiple grids, and each grid is responsible for predicting only the location and class of 
targets whose centers fall on that grid. This was followed by the SSD [2] and YOLOv2 [3], 
both  of  which  improved  detection  accuracy  and  speed.  However,  the  accuracy  of  these 
algorithms is still relatively limited, especially for small targets. YOLOv3 [4] uses an Anchor-
based approach that allows targets at different scales to be preassigned a close detection frame 
form,  although  YOLOv3  uses  MSE  as  the  border  regression  loss  function,  which  makes 
YOLOv3's localization of targets not precise. RetinaNet [5] analyzes the category imbalance 
problem existing  in  the  first  stage  of  network  training  and  proposes  Focal  loss  that  can 
automatically adjust the weights according to the Loss size, making the training more focused 
on difficult samples. Yolov4 introduces the SPP module [6], Mish [7] activation function, etc., 
to improve the performance of the network.
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With the development of deep learning algorithms, multi-target and multi-scale detection 
in  complex environments,  severe  partial  occlusion of  vehicles,  and high requirements  for 
computing hardware are in the focus of research [8].

FPN [9] is a network for solving multi-scale detection problems. It uses a pyramid structure 
to make features flow between vertical and horizontal and propagates semantic information 
between multiple  layers  to  build  multi-scale  features.  However,  FPN does  not  handle  the 
difference of information at different levels reasonably, and the operation of fused features is 
obtained by summing the higher-level features with the next level directly after sampling, 
which limits the self-learning of features. Therefore, recently appeared works to optimize and 
improve FPN. For example, PANet [10] adds an extra top-down path to the original structure 
and  adopts  a  channel  superposition  when  fusing  features,  which  both  uses  new  feature 
information  and  ensures  the  preservation  of  original  features.  In  addition,  the  attention 
mechanism (AM) is gradually becoming a popular method to improve detection performance. 
Various  attention  modules,  used  as  a  plug-and-play  component,  bring  good  performance 
improvements at an acceptable model complication. They select from the channels or spatial 
dimensions of the model and filter out the feature information that is more interesting and 
better matches the detection target.

This paper proposes a vehicle detection algorithm based on feature fusion and attention 
enhancement,  which  can  purposefully  alleviate  the  problems  of  missed  detection,  false 
detection, and accuracy degradation caused by detection scale or occlusion while reducing the 
complexity of the model. The main work of this paper is as follows:

1. DenseNet  [11]  with  lower  complexity  is  used  as  the  backbone  network  of  the 
detection model. 

2. Introducing effective channel attention (ECA) [12] attention network, filling in the 
structure between the backbone and neck layer to achieve a smooth transition of features and 
selection of channel information.

3. Improving the  network structure  of  the  feature  pyramid,  adding Adaptive  Spatial 
Feature Fusion (ASFF) [13] fusion module based on PANet.

2. Materials and Methods

2.1. Libertinus fonts for Linux Related Materials

2.1.1. One-stage Target Detection

The YOLO series algorithm innovates on the detection principle of the Faster Region-based 
CNN (R-CNN) series by abandoning the RPN approach and using regression to obtain the 
coordinate information of the bbox. YOLOv1 is an one-stage target detection algorithm. This 
algorithm was quickly deployed in many real-world projects due to the dramatic increase in 
detection speed. Many one-stage target detection algorithms have emerged since then [14].

YOLOv4 consists of the CSPDarknet53 backbone network, SPPNet, PANet feature fusion 
network, and the YOLO-Head detection head module, that is used in YOLOv3. It is shown in 
Figure 1.



Figure 1: YOLOv4 network structure.

CSPDarknet53 is an improvement on Darknet53,  which uses the CSPNet structure and 
applies a more extensive residual structure to reduce the information loss during training and 
further enhance the learning ability of the network. The activation function Leaky ReLU is 
replaced by the Mish function, whose upward unbounded property avoids model saturation 
due  to  numerical  capping.  In  addition,  its  micro  design for  negative  values  brings  better 
gradient  flow.  The  Mish  smoothed  activation  function  ensures  better  accuracy  and 
generalization.

Between  the  backbone  network  and  the  detection  head  is  the  Neck  layer,  which  is 
composed of the SPP (Spatial Pyramid Pooling) module and the PANet module. The output of 
the backbone network is adjusted by the convolutional layer and used as the input of the SPP 
module. The SPP outputs the input data after doing maximum pooling and data stacking at 
different scales, and is adjusted by the convolutional layer and used as the input of the PANet 
network together with the two intermediate layers of the backbone network. PANet does 
further  fusion  of  three  sets  of  feature  maps  at  different  scales  by  some  convolution, 
upsampling, downsampling and data stacking to enhance the perceptual field of feature maps 
at different scales and output three layers of data information.

The YOLO-Head in the detection layer receives the input from PANet and performs the 
final prediction process. The YOLO-Head with three a priori frames each will predict three 
feature maps with scales of 13X13, 26X26, and 52X52, respectively, and based on the a priori 
frame  analysis  information,  the  preliminary  prediction  frame  will  be  output  after  non-
maximum suppression.

In this  paper,  we improve the training and inference speed of  the one-stage detection 
algorithm by modifying the backbone network of the model, based on the YOLOv4 algorithm, 
and improve the model structure using the AM and feature fusion module to enhance the 
detection performance of the algorithm.

2.1.2. Feature Parymid Network (FPN)

Feature Pyramid Representation (FPN) addresses the challenge of  scale variation in target 
detection. Its structural layer design allows the model to better utilize the feature information 
extracted from the backbone network.



Initial target detection, either one-stage or two-stage, is usually performed with an external 
detection head after the feature map is output at the last layer of the last stage of Backbone. 
This  approach  is  called  the  single-stage  object  detection  algorithm.  However,  in  this 
algorithm, the scale of the last output feature map of the backbone is too different from the 
input image, which is easy to cause information loss, especially the detection capability of 
small targets is insufficient. Subsequent studies found that the single-stage target detection 
algorithm cannot effectively transfer the information of various scales in the original image. 
Therefore,  later  target  detection  algorithms  gradually  developed  into  a  feature  pyramid 
network (FPN) using multi-scale, multi-stage feature maps to enhance the characterization 
ability of the model.

The FPN evolved through continuous iterations and can be divided into four models, as 
shown in Figure 2.

Figure 2: Various FPN modes.

1. A  typical  representative  of  fusion-free  and  at  the  same  time  utilizing  multi-scale 
features  is  the  SSD algorithm,  which  directly  predicts  objects  of  different  sizes  from the 
feature maps outputted by different stages.

2. There are many classical models that use algorithms with top-down fusion approach, 
such as Faster RCNN, Mask RCNN [15], Yolov3, RetinaNet, etc. They use the same kind of 
FPN models, and the difference is that feature maps of different scales are involved in feature 
fusion.

3. PANet proposes a top-down model followed by an additional bottom-up secondary 
fusion, which can be called a bidirectional fusion structure. YOLOv4 uses a fine-tuned version 
of PANet, which makes feature fusion not additive, but feature stacking.

4. The proposed PANet proved the effectiveness of bidirectional fusion, introduced more 
complex bidirectional fusion structures, such as NAS-FPN [16] and BiFPN [17].

Various FPNs are designed to maximize the utilization of the multi-scale feature maps from 
backbone,  and  its  optimization  leads  to  significant  improvement  of  object  detection. 
Therefore,  the algorithms in this paper in concert with the fusion of PANet and ASFF to 
enhance the reuse and extraction of feature maps and avoid the loss of effective information 
[18, 19].



2.1.3. Attention Mechanisms

The AM focuses on local information while suppressing distracting information [20]. From a 
mathematical point of view, AMs provide a weight-based model to perform operations. The 
process of extracting image features from feature maps in a NN is seen to vary in the degree 
to which different feature maps provide overall information [21]. The AM uses the network 
layer to calculate the weight values corresponding to the relevant feature maps, and then 
applies  these  weights  to  the  feature  maps,  so  that  the  feature  maps with a  large  role  in 
extracting information become somewhat more influential on the overall [22]. The AMs can 
currently be classified into following types: channel AMs, spatial AMs, and mixed spatial and 
channel AMs.

2.1.3.1. Spatial AM

Not  all  regions  in  an  image  are  equally  important,  only  the  task-relevant  regions  are 
important. The spatial attention model is to find the most important parts of the network for 
processing.

The Spatial Transformer Network (STN) [23] is a spatial-based Attention by learning the 
shape change of the input so as to accomplish preprocessing operations suitable for a specific 
task. The ST module consists of the Localisation net, the Grid generator and Sample. The 
Localisation net determines the parameter θ of the input required transformation. The Grid 
generator finds the mapping T(θ) of the output to the input features by θ and the defined 
transformation. The Sample combines the location mapping and transformation parameters to 
select the input features and combine them with bilinear interpolation for the output.

2.1.3.2. Channel AM

For a set of images processed by the CNN, its effective information can be extracted from two 
dimensions. One dimension is the scale of the image in space, that is, the length and width.  
The  other  dimension  is  the  channel  information.  Therefore,  Attention  based  on  channel 
orientation is also common.

SENet  (Sequeeze  and  Excitation  Net)  [24]  is  a  channel  type  Attention  model,  which 
automatically  enhances  or  suppresses  channels  after  model  learning  by  modeling  the 
importance of each feature channel. It divides a bypass branch after the normal convolution 
operation, and this branch is compressed and fully connected to obtain a set of weight values. 
By applying this set of weights to each of the original feature channels, the importance of the 
different channels can be learned.

2.1.3.3. Fusion of spatial and channel AMs

CBAM  (Convolutional  Block  Attention  Module)  [25]  is  a  representative  network  that 
combines spatial and channel AMs. It uses a channel-then-space approach for collocation, so 
that the model models the important information of channel and spatial locations separately. 

Besides these, there are many other AMs related to research [26, 27]



2.2. The Proposed Method

Figure 3 shows the architecture of the proposed algorithm. It takes one-stage target detection 
algorithm YOLOv4 as the reference architecture and divides the algorithm framework into 
four parts: data pre-processing and input, backbone network, FPN structure and prediction 
network.  The  pre-processed  images  are  sent  to  the  backbone  network,  which  adopts  a 
lightweight  DenseNet  structure  consisting  of  different  numbers  of  Dense  Blocks  and 
Transition Layers. Depending on the number of sub-module overlays, the backbone network 
extracts the feature information at different scales and passes it into the FPN network. Before 
this information is passed into SPPNet and PANet, the feature information will be further 
filtered and refined by three ECA attention modules. Then the information output from the 
bidirectional fusion-type network PANet is fed into the complex fusion network ASFF, which 
makes  the  feature  map  information  at  different  scales  form  the  interaction.  Finally,  the 
information extracted from the ASFF network is fed into the YOLO detection head, and the 
prediction  results  of  the  image  are  obtained  after  the  information  decoding  and  other 
operations. Next, the backbone network, FPN structure and loss function of the algorithm in 
this paper are described in more detail, respectively.

Figure 3: The structure of the proposed algorithm.

2.2.1. Lightweighting Of The Backbone

The lightweight network DenseNet is integrated and bridged with the original YOLOv4 to 
achieve  faster,  more  accurate,  and  less  computationally  intensive  target  detection  results. 
Specifically,  the  backbone  network  is  replaced  with  DenseNet-121,  and  the  rest  of  the 
architecture is optimized on the basis of YOLOv4.

As another type of CNN with deeper layers, it has the following advantages:
1. Fewer number of parameters compared to ResNet.
2. More emphasis and encouragement on feature reuse.
3. The network is easier to train and has some regularization effect.
4. The problems of gradient vanishing and model degradation are alleviated.



Figure 4: DenseNet main structure.

DenseNet is mainly composed of Dense Blocks and Transition Layers.
The dense block is composed of several bottle necks. Each block uses the same number of  

output channels, and then uses a loop to connect the input and output of each block in the 
channel dimension. The structure of the bolt neck is shown in the upper part of Figure 4.

BN-ReLU  is  placed  before  the  convolution  module  for  processing.  Each  Bottle  Neck 
contains two convolutions, the first one is a 1*1 convolution, which has 4k output channels. 
Here, k is a feature map growth factor, which is the number of feature maps contributed by 
each Bottle Neck. The second 3*3 convolution has k output channels. Finally, the input of the 
module and the output of the 3*3 convolution are concat stacked to obtain the overall number 
of output channels of the module as C`+k.

The Dense Block structure is shown in the middle part of Fig. 4. It consists of several Bottle 
Necks. The number of input channels of the whole Dense Block is C0. Since the output of 
Bottle Neck stacks, the output and input of the final convolutional structure in its interior, the 
number of feature channels will be increased by k for each Bottle Neck that passes through it. 
Therefore, the number of final output feature maps of a Dense Block composed of n Bottle 
Neck is C0+nk. The input of each Bottle Neck is a stack of all the outputs of its preceding 
layers.

The Transition Layer controls the model complexity. Its structure is shown in the bottom 
of Fig.  4.  Since the number of  channels  increases with each Dense Block connec-tion,  its 
overuse will result in an overly complex model. Therefore, the Transition Layer first reduces 
the number of channels by a 1×1 convolution layer, and then to compress the height and 
width of the feature map, an average pooling layer with stride=2 is used for downsampling, 
which further reduces the model complexity.

2.2.2. Citation of Attentional Mechanisms

Among the types of attention modules, channel AMs have great potential in im-proving the 
performance of deep CNNs. However,  there are a large number of AMs developing more 
complex attention modules to achieve better performance, which will inevitably increase the 



complexity of the model. To strike a balance between model complexity and performance, this 
paper refers to an effective channel attention module (ECA) that contains only a small number 
of parameters while delivering significant performance gains.

Figure 5: SENet and ECANet structures.

SE-Net is  the basis of ECA-Net optimization and its structure is shown in Figure 5(a). 
Global average pooling is first performed separately for each input channel, followed by two 
fully connected layers using different activation functions. This computational process causes 
the  channel  features  to  be  mapped from high to  low and then to  high dimensions.  This 
dimensionality reduction operation reduces the complexity of the model, but it also cause the 
loss of critical information.

ECA-Net  empirically  shows,  by  observing  SE-Net  and  improving  it,  that  avoiding 
dimensionality reduction is important for learning channel attention and that proper cross-
channel  interaction  can  increase  model  complexity  only  slightly  while  maintaining 
performance. Its structural design is shown in Figure 5(b).

On the left is the feature of the original input image, which is first subjected to global 
average pooling (GAP) [28] to obtain a 1×1×C feature map, on which ECA obtains the local 
cross-channel interaction by fast one-dimensional convolution of size K, where the parameter 
K can be generated by an adaptive function based on the size of the input channel C, which 
represents the local coverage of the cross-channel interaction. After that, a Sigmoid function is 
used to generate the weight share of each channel, and then the original input features are 
combined  with  the  channel  weights  to  obtain  the  features  with  channel  attention.  The 
network constructed with this module makes it easier to extract discriminative features of 
images based on channel dimensionality.

To avoid the consumption of large computational resources due to manual adjustment, the 
size of the parameter k can be generated adaptively by a function with the convolution kernel 
k calculated as:



(1)

where |t|odd denotes the odd number of t-nearest neighbors, γ is set to 2, and b is 1. From (1), 
it is clear that the communication range of the high-dimensional channel is longer, while the 
communication range of the low-dimensional channel is relatively contracted.

In this paper, three ECA layers are inserted at the connection between Backbone and Neck 
of the model to avoid dimensionality reduction while better bridging the two components, 
making the feature transfer of the model more efficient and preventing the disappearance of 
feature information. At the same time, the ECA layer allows the model to focus on more 
critical features and suppress unnecessary features, which improves the detection accuracy.

2.2.3. Spatially Adaptive Fusion Of Feature Layers

In general, the lower level features of the network contain more location information and the 
higher  level  features  contain more semantic  information.  The PANet  structure  is  used in 
YOLOV4 to further fuse and output the higher and lower level features. After downsampling, 
the network does bidirectional propagation and then upsampling, and fuses the information 
from  the  same  level  downsampling  by  lateral  connection,  and  then  sends  the  feature 
information of different scales to different detectors.

However,  the  PANet  connection  simply  stacks  the  top-down and  bottom-up layers  of 
information together, and there is a lack of communication between the layers to transfer the 
information. To more fully utilize the semantic information of the high-level features and the 
fine-grained features of the underlying features, this paper introduces a new feature fusion 
method, Adaptive Spatial Feature Fusion (ASFF), in the proposed algorithm.

ASFF can enhance the extraction capability of  PANet and can fuse the information of 
multiple feature layers simultaneously. Its idea is to adaptively adjust the spatial weights of 
each scale features in fusion by learning. Its underlying structure is shown in Figure 6.

Figure 7 shows the operation of layers in ASFF. First, X1, X2 and X3 are derived from the 
feature  information  at  different  scales  of  level1,  level2  and  level3  output  in  PANet, 
respectively.



Figure 6: ASFF schematic.

The ASFF-3 is an example of a convolution with the kernel of 3*3, the step size of 2, and a 
padding of 1. The X2 is scaled down to the same value as X3 with equal number of channels, 
and  is  denoted  as  level_1_resized.  The  number  of  channels  and  dimensionality  of 
level_1_resized, level_2_resized and X3 are the same. Finally, level_1_resized, level_2_resized, 
and X3 are multiplied by α, β, and γ, respectively, and the values are summed, and the number 
of channels is adjusted by a final convolutional layer to obtain a new feature layer with multi-
layer perceptual field fusion. The formula is expressed as follows:

 (2)
where  yij

l represents the new feature map of a layer obtained by ASFF,  αij
l,  βij

l,  and  γij
l 

represent the weight parameters learned through the three feature layers, and αij
l+βij

l+γij
l=1 is 

guaranteed by the Softmax function.
where  yij

l represents the new feature map of a layer obtained by ASFF,  αij
l,  βij

l,  and  γij
l 

represent the weight parameters learned through the three feature layers, and αij
l+βij

l+γij
l=1 is 

guaranteed by the Softmax function.

Figure 7: ASFF specific operations.

2.2.4. Design of the loss function

The loss function contains three components: confidence error Lconf classification error Lcls, 
and regression frame prediction error Lloc [29]. CIoU loss was used in the regression frame 
prediction error. CIoU is based on IoU, GIoU, and DIoU, and the CIOU takes into account 
three geometric factors, which are overlap area, centroid distance, and aspect ratio [30].

         

(3)



(4)

(5)

where S² is the number of grids, B is the number of prediction frames in each grid, ,  

are the indicated values of the prediction frames containing and not containing the target,  

is the confidence true value, C is the prediction confidence,  is the penalty weight factor, 

 is  the actual probability that the target in the cell  belongs to category c,  P(c)  is  the 
probability that the prediction is of category c, wgt, hgt are the width and height of the true 
frame, respectively, IoU(X , Y) is the intersection ratio of the predicted frame X to the real 
frame Y, ρ2(Xctr, Yctr) is the Euclidean distance between the center point of the predicted 
frame and the real frame, m is the diagonal distance of the minimum closed region containing 
both  the  predicted  and real  frames,  u  is  the  balance  adjustment  parameter,  and v  is  the 
parameter measuring the consistency of the aspect ratio.

To  balance  the  loss  sensitivity  of  different  detection  scales,  in  this  paper,  the  three 
prediction  heads  in  the  network  structure  are  multiplied  with  different  weights  when 
calculating the total loss. The weights assigned to Yolo Head1, Yolo Head2, and Yolo Head3 
are 0.4, 1.0, and 4.0, respectively [31].

3. Conclusion

This paper focuses on the One-Stage target detection method which has higher requirements 
for detection speed and deployment cost. It helps cameras in traffic scenes to recognize vehicle 
information  and  perform  vehicle  model  discrimination.  A  lightweight  target  detection 
algorithm based on attention and feature augmentation is proposed to address the problem of 
the demand for vehicle detection in smart city construction. The complexity of the algorithm 
is  strictly  controlled.  The  proposed  algorithm  uses  YOLOv4  as  the  base  architecture:  (i) 
significantly reduces the number of model parameters by replacing the DenseNet, which has 
excellent  performance,  as  the  backbone  feature  extraction  network;v(ii)  reconstructs  the 
existing FPN network module, uses the ECA attention structure for the transition and transfer 
of feature information between Backbone and Neck, as well as adds the information cross-
fusion function before the final detection layer of the network of the ASFF structure; (iii)  
while optimizing in terms of the loss function and image preprocessing.

References

[1] W J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-
Time  Object  Detection,"  2016  IEEE  Conference  on  Computer  Vision  and  Pattern 
Recognition (CVPR), 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.



[2] Liu W, Anguelov D, Erhan D, et al, "SSD: Single Shot MultiBox Detector," 2016 Computer 
Vision and Pattern Recognition (ECCV), 2016, doi: 10.1007/978-3-319-46448-0_2.

[3] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," 2017 IEEE Conference on 
Computer  Vision  and  Pattern  Recognition  (CVPR),  2017,  pp.  6517-6525,  doi: 
10.1109/CVPR.2017.690.

[4] Fang, M. T., Chen, Z. J., Przystupa, K., Li, T., Majka, M., & Kochan, O. (2021). Examination 
of Abnormal Behavior Detection Based on Improved YOLOv3. Electronics 2021, 10, 197.

[5] T.  -Y.  Lin,  P.  Goyal,  R.  Girshick,  K.  He and P.  Dollár,  "Focal  Loss  for  Dense  Object 
Detection," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, 
no. 2, pp. 318-327, 1 Feb. 2020, doi: 10.1109/TPAMI.2018.2858826.

[6] K. He, X. Zhang, S.  Ren and J.  Sun, "Spatial  Pyramid Pooling in Deep Convolutional 
Networks for Visual Recognition," in IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 37, no. 9, pp. 1904-1916, 1 Sept. 2015, doi: 10.1109/TPAMI.2015.2389824.

[7] Misra D.  Mish:  A self  regularized non-monotonic  neural  activation function[J].  arXiv 
preprint arXiv:1908.08681, 2019, 4(2): 10.48550.

[8] Q.  Ailing  and  T.  Ning,  "Fine-grained  vehicle  recognition  method  based  on  improved 
ResNet," 2020 2nd International Conference on Information Technology and Computer 
Application (ITCA), 2020, pp. 588-592, doi: 10.1109/ITCA52113.2020.00129.

[9] T. -Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, "Feature Pyramid 
Networks for Object Detection," 2017 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2017, pp. 936-944, doi: 10.1109/CVPR.2017.106.

[10] S.  Liu,  L.  Qi,  H.  Qin,  J.  Shi  and  J.  Jia,  "Path  Aggregation  Network  for  Instance 
Segmentation," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
2018, pp. 8759-8768, doi: 10.1109/CVPR.2018.00913.

[11] G.  Huang,  Z.  Liu,  L.  Van  Der  Maaten  and  K.  Q.  Weinberger,  "Densely  Connected 
Convolutional  Networks,"  2017  IEEE  Conference  on  Computer  Vision  and  Pattern 
Recognition (CVPR), 2017, pp. 2261-2269, doi: 10.1109/CVPR.2017.243.

[12] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo and Q. Hu, "ECA-Net: Efficient Channel Attention 
for  Deep  Convolutional  Neural  Networks,"  2020  IEEE/CVF  Conference  on  Computer 
Vision  and  Pattern  Recognition  (CVPR),  2020,  pp.  11531-11539,  doi: 
10.1109/CVPR42600.2020.01155.

[13] Liu S, Huang D, Wang Y. Learning spatial fusion for single-shot object detection[J]. arXiv 
preprint arXiv:1911.09516, 2019.

[14] X. Dai et al., "Dynamic Head: Unifying Object Detection Heads with Attentions," 2021 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 
7369-7378, doi: 10.1109/CVPR46437.2021.00729.

[15] He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE international 
conference on computer vision. 2017: 2961-2969.

[16] G.  Ghiasi,  T.  -Y.  Lin  and  Q.  V.  Le,  "NAS-FPN:  Learning  Scalable  Feature  Pyramid 
Architecture for Object Detection," 2019 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), 2019, pp. 7029-7038, doi: 10.1109/CVPR.2019.00720.

[17] M. Tan, R. Pang and Q. V. Le, "EfficientDet: Scalable and Efficient Object Detection," 2020 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 
10778-10787, doi: 10.1109/CVPR42600.2020.01079.



[18] Y. Gong, X. Yu, Y. Ding, X. Peng, J. Zhao and Z. Han, "Effective Fusion Factor in FPN for 
Tiny  Object  Detection,"  2021  IEEE  Winter  Conference  on  Applications  of  Computer 
Vision (WACV), 2021, pp. 1159-1167, doi: 10.1109/WACV48630.2021.00120.

[19] Xiong, G., Przystupa, K., Teng, Y., et al. (2021). Online measurement error detection for 
the electronic transformer in a smart grid. Energies, 14(12), 3551. 

[20] Jiang, K., Zhang, C., Wei, B., Li, Z., & Kochan, O. (2024). Fault diagnosis of RV reducer 
based  on  denoising  time–frequency  attention  neural  network. Expert  Systems  with 
Applications, 238, 121762. 

[21] Xu, X., Przystupa, K., & Kochan, O. (2023). Social Recommendation Algorithm Based on 
Self-Supervised Hypergraph Attention. Electronics, 12(4), 906. 

[22] Y. Wang and A. Zell, "Yolo+FPN: 2D and 3D Fused Object Detection With an RGB-D 
Camera," 2020 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 
4657-4664, doi: 10.1109/ICPR48806.2021.9413066.

[23] Jaderberg M, Simonyan K, Zisserman A. Spatial transformer networks[J]. Advances in 
neural information processing systems, 2015, 28.

[24] J.  Hu,  L.  Shen  and  G.  Sun,  "Squeeze-and-Excitation  Networks,"  2018  IEEE/CVF 
Conference  on  Computer  Vision  and  Pattern  Recognition,  2018,  pp.  7132-7141,  doi: 
10.1109/CVPR.2018.00745.

[25] Woo  S,  Park  J,  Lee  J  Y,  et  al.  Cbam:  Convolutional  block  attention 
module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-
19.

[26] F.  Wang  et  al.,  "Residual  Attention  Network  for  Image  Classification,"  2017  IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6450-6458, 
doi: 10.1109/CVPR.2017.683.

[27] Deng J, Cheng L, Wang Z. Attention-based BiLSTM fused CNN with gating mechanism 
model for Chinese long text classification[J].  Computer Speech & Language, 2021, 68: 
101182.

[28] Lin M , Chen Q , Yan S . Network In Network[J]. Computer Science, 2013.
[29] N.  K.  Kim  and  H.  K.  Kim,  "Polyphonic  Sound  Event  Detection  Based  on  Residual 

Convolutional Recurrent Neural Network With Semi-Supervised Loss Function," in IEEE 
Access, vol. 9, pp. 7564-7575, 2021, doi: 10.1109/ACCESS.2020.3048675.

[30] Zheng Z, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding 
box regression[C]//Proceedings of the AAAI conference on artificial intelligence. 2020, 
34(07): 12993-13000.

[31] Jiang Z, Fan Y. Singularity intensity function analysis of autoregressive spectrum and its 
application in weak target detection under sea clutter background[J]. Radio Science, 2020, 
55(10): 1-8.


	1. Introduction
	2. Materials and Methods
	2.1. Libertinus fonts for Linux Related Materials
	2.1.1. One-stage Target Detection
	2.1.2. Feature Parymid Network (FPN)
	2.1.3. Attention Mechanisms
	2.1.3.1. Spatial AM
	2.1.3.2. Channel AM
	2.1.3.3. Fusion of spatial and channel AMs

	2.2. The Proposed Method
	2.2.1. Lightweighting Of The Backbone
	2.2.2. Citation of Attentional Mechanisms

	2.2.3. Spatially Adaptive Fusion Of Feature Layers
	2.2.4. Design of the loss function

	3. Conclusion
	References

