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Abstract 
Vehicle detection and recognition is an important research. An attention and feature fusion 
target detection algorithm based on the improved YOLOv4 algorithm is proposed to achieve a 
more effective screening of vehicle targets in traffic scenes. Considering the cost deployment 
problem of traffic recognition algorithms, this paper uses YOLOv4 as the base architecture, 
firstly, the lightweight DenseNet is used as the backbone feature extraction network; secondly, 
effective channel attention (ECA) and Adaptive Spatial Feature Fusion (ASFF) are used to 
enhance the PANet structure with attention-guided fusion; in addition, the weight ratio of the 
loss function is optimized and the mosaic method is used for training enhancement. 
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1. Introduction 

YOLOv1 [1] achieves real-time performance of 155 fps. The algorithm divides the 

network into multiple grids, and each grid is responsible for predicting only the location 

and class of targets whose centers fall on that grid. This was followed by the SSD [2] and 

YOLOv2 [3], both of which improved detection accuracy and speed. However, the accuracy 

of these algorithms is still relatively limited, especially for small targets. YOLOv3 [4] uses 

an Anchor-based approach that allows targets at different scales to be preassigned a close 

detection frame form, although YOLOv3 uses MSE as the border regression loss function, 

which makes YOLOv3's localization of targets not precise. RetinaNet [5] analyzes the 

category imbalance problem existing in the first stage of network training and proposes 

Focal loss that can automatically adjust the weights according to the Loss size, making the 
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training more focused on difficult samples. Yolov4 introduces the SPP module [6], Mish [7] 

activation function, etc., to improve the performance of the network. 

With the development of deep learning algorithms, multi-target and multi-scale 

detection in complex environments, severe partial occlusion of vehicles, and high 

requirements for computing hardware are in the focus of research [8]. 

FPN [9] is a network for solving multi-scale detection problems. It uses a pyramid 

structure to make features flow between vertical and horizontal and propagates semantic 

information between multiple layers to build multi-scale features. However, FPN does not 

handle the difference of information at different levels reasonably, and the operation of 

fused features is obtained by summing the higher-level features with the next level 

directly after sampling, which limits the self-learning of features. Therefore, recently 

appeared works to optimize and improve FPN. For example, PANet [10] adds an extra top-

down path to the original structure and adopts a channel superposition when fusing 

features, which both uses new feature information and ensures the preservation of 

original features. In addition, the attention mechanism (AM) is gradually becoming a 

popular method to improve detection performance. Various attention modules, used as a 

plug-and-play component, bring good performance improvements at an acceptable model 

complication. They select from the channels or spatial dimensions of the model and filter 

out the feature information that is more interesting and better matches the detection 

target. 

This paper proposes a vehicle detection algorithm based on feature fusion and 

attention enhancement, which can purposefully alleviate the problems of missed detection, 

false detection, and accuracy degradation caused by detection scale or occlusion while 

reducing the complexity of the model. The main work of this paper is as follows: 

1. DenseNet [11] with lower complexity is used as the backbone network of the 

detection model.  

2. Introducing effective channel attention (ECA) [12] attention network, filling in the 

structure between the backbone and neck layer to achieve a smooth transition of features 

and selection of channel information. 

3. Improving the network structure of the feature pyramid, adding Adaptive Spatial 

Feature Fusion (ASFF) [13] fusion module based on PANet. 

2. Materials and Methods 

2.1. Libertinus fonts for Linux Related Materials 

2.1.1. One-stage Target Detection 

The YOLO series algorithm innovates on the detection principle of the Faster Region-

based CNN (R-CNN) series by abandoning the RPN approach and using regression to 

obtain the coordinate information of the bbox. YOLOv1 is an one-stage target detection 

algorithm. This algorithm was quickly deployed in many real-world projects due to the 

dramatic increase in detection speed. Many one-stage target detection algorithms have 

emerged since then [14]. 



YOLOv4 consists of the CSPDarknet53 backbone network, SPPNet, PANet feature fusion 

network, and the YOLO-Head detection head module, that is used in YOLOv3. It is shown in 

Figure 1. 
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Figure 1： YOLOv4 network structure. 

CSPDarknet53 is an improvement on Darknet53, which uses the CSPNet structure and 

applies a more extensive residual structure to reduce the information loss during training 

and further enhance the learning ability of the network. The activation function Leaky 

ReLU is replaced by the Mish function, whose upward unbounded property avoids model 

saturation due to numerical capping. In addition, its micro design for negative values 

brings better gradient flow. The Mish smoothed activation function ensures better 

accuracy and generalization. 

Between the backbone network and the detection head is the Neck layer, which is 

composed of the SPP (Spatial Pyramid Pooling) module and the PANet module. The output 

of the backbone network is adjusted by the convolutional layer and used as the input of 

the SPP module. The SPP outputs the input data after doing maximum pooling and data 

stacking at different scales, and is adjusted by the convolutional layer and used as the 

input of the PANet network together with the two intermediate layers of the backbone 

network. PANet does further fusion of three sets of feature maps at different scales by 

some convolution, upsampling, downsampling and data stacking to enhance the 

perceptual field of feature maps at different scales and output three layers of data 

information. 

The YOLO-Head in the detection layer receives the input from PANet and performs the 

final prediction process. The YOLO-Head with three a priori frames each will predict three 

feature maps with scales of 13X13, 26X26, and 52X52, respectively, and based on the a 

priori frame analysis information, the preliminary prediction frame will be output after 

non-maximum suppression. 

In this paper, we improve the training and inference speed of the one-stage detection 

algorithm by modifying the backbone network of the model, based on the YOLOv4 

algorithm, and improve the model structure using the AM and feature fusion module to 

enhance the detection performance of the algorithm. 



2.1.2. Feature Parymid Network (FPN) 

Feature Pyramid Representation (FPN) addresses the challenge of scale variation in 

target detection. Its structural layer design allows the model to better utilize the feature 

information extracted from the backbone network. 

Initial target detection, either one-stage or two-stage, is usually performed with an 

external detection head after the feature map is output at the last layer of the last stage of 

Backbone. This approach is called the single-stage object detection algorithm. However, in 

this algorithm, the scale of the last output feature map of the backbone is too different 

from the input image, which is easy to cause information loss, especially the detection 

capability of small targets is insufficient. Subsequent studies found that the single-stage 

target detection algorithm cannot effectively transfer the information of various scales in 

the original image. Therefore, later target detection algorithms gradually developed into a 

feature pyramid network (FPN) using multi-scale, multi-stage feature maps to enhance the 

characterization ability of the model. 

The FPN evolved through continuous iterations and can be divided into four models, as 

shown in Figure 2. 
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Figure 2： Various FPN modes 

 

1. A typical representative of fusion-free and at the same time utilizing multi-scale 

features is the SSD algorithm, which directly predicts objects of different sizes from the 

feature maps outputted by different stages. 

2. There are many classical models that use algorithms with top-down fusion 

approach, such as Faster RCNN, Mask RCNN [15], Yolov3, RetinaNet, etc. They use the 

same kind of FPN models, and the difference is that feature maps of different scales are 

involved in feature fusion. 

3. PANet proposes a top-down model followed by an additional bottom-up secondary 

fusion, which can be called a bidirectional fusion structure. YOLOv4 uses a fine-tuned 

version of PANet, which makes feature fusion not additive, but feature stacking. 

4. The proposed PANet proved the effectiveness of bidirectional fusion, introduced 

more complex bidirectional fusion structures, such as NAS-FPN [16] and BiFPN [17]. 

Various FPNs are designed to maximize the utilization of the multi-scale feature maps 

from backbone, and its optimization leads to significant improvement of object detection. 

Therefore, the algorithms in this paper in concert with the fusion of PANet and ASFF to 



enhance the reuse and extraction of feature maps and avoid the loss of effective 

information [18, 19]. 

2.1.3. Attention Mechanisms 

The AM focuses on local information while suppressing distracting information [20]. 

From a mathematical point of view, AMs provide a weight-based model to perform 

operations. The process of extracting image features from feature maps in a NN is seen to 

vary in the degree to which different feature maps provide overall information [21]. The 

AM uses the network layer to calculate the weight values corresponding to the relevant 

feature maps, and then applies these weights to the feature maps, so that the feature maps 

with a large role in extracting information become somewhat more influential on the 

overall [22]. The AMs can currently be classified into following types: channel AMs, spatial 

AMs, and mixed spatial and channel AMs. 

2.1.3.1. Spatial AM 

Not all regions in an image are equally important, only the task-relevant regions are 

important. The spatial attention model is to find the most important parts of the network 

for processing. 

The Spatial Transformer Network (STN) [23] is a spatial-based Attention by learning 

the shape change of the input so as to accomplish preprocessing operations suitable for a 

specific task. The ST module consists of the Localisation net, the Grid generator and 

Sample. The Localisation net determines the parameter θ of the input required 

transformation. The Grid generator finds the mapping T(θ) of the output to the input 

features by θ and the defined transformation. The Sample combines the location mapping 

and transformation parameters to select the input features and combine them with 

bilinear interpolation for the output. 

2.1.3.2. Channel AM 

For a set of images processed by the CNN, its effective information can be extracted 

from two dimensions. One dimension is the scale of the image in space, that is, the length 

and width. The other dimension is the channel information. Therefore, Attention based on 

channel orientation is also common. 

SENet (Sequeeze and Excitation Net) [24] is a channel type Attention model, which 

automatically enhances or suppresses channels after model learning by modeling the 

importance of each feature channel. It divides a bypass branch after the normal 

convolution operation, and this branch is compressed and fully connected to obtain a set 

of weight values. By applying this set of weights to each of the original feature channels, 

the importance of the different channels can be learned. 

2.1.3.3. Fusion of spatial and channel AMs 

CBAM (Convolutional Block Attention Module) [25] is a representative network that 

combines spatial and channel AMs. It uses a channel-then-space approach for collocation, 



so that the model models the important information of channel and spatial locations 

separately.  

Besides these, there are many other AMs related to research [26, 27] 

2.2. The Proposed Method 

Figure 3 shows the architecture of the proposed algorithm. It takes one-stage target 

detection algorithm YOLOv4 as the reference architecture and divides the algorithm 

framework into four parts: data pre-processing and input, backbone network, FPN 

structure and prediction network. The pre-processed images are sent to the backbone 

network, which adopts a lightweight DenseNet structure consisting of different numbers 

of Dense Blocks and Transition Layers. Depending on the number of sub-module overlays, 

the backbone network extracts the feature information at different scales and passes it 

into the FPN network. Before this information is passed into SPPNet and PANet, the 

feature information will be further filtered and refined by three ECA attention modules. 

Then the information output from the bidirectional fusion-type network PANet is fed into 

the complex fusion network ASFF, which makes the feature map information at different 

scales form the interaction. Finally, the information extracted from the ASFF network is 

fed into the YOLO detection head, and the prediction results of the image are obtained 

after the information decoding and other operations. Next, the backbone network, FPN 

structure and loss function of the algorithm in this paper are described in more detail, 

respectively. 
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Figure 3：The structure of the proposed algorithm 

2.2.1. Lightweighting Of The Backbone 

The lightweight network DenseNet is integrated and bridged with the original YOLOv4 

to achieve faster, more accurate, and less computationally intensive target detection 

results. Specifically, the backbone network is replaced with DenseNet-121, and the rest of 

the architecture is optimized on the basis of YOLOv4. 

As another type of CNN with deeper layers, it has the following advantages: 

1. Fewer number of parameters compared to ResNet. 



2. More emphasis and encouragement on feature reuse. 

3. The network is easier to train and has some regularization effect. 

4. The problems of gradient vanishing and model degradation are alleviated. 
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Figure 4： DenseNet main structure 

DenseNet is mainly composed of Dense Blocks and Transition Layers. 

The dense block is composed of several bottle necks. Each block uses the same number 

of output channels, and then uses a loop to connect the input and output of each block in 

the channel dimension. The structure of the bolt neck is shown in the upper part of Figure 

4. 

BN-ReLU is placed before the convolution module for processing. Each Bottle Neck 

contains two convolutions, the first one is a 1*1 convolution, which has 4k output channels. 

Here, k is a feature map growth factor, which is the number of feature maps contributed 

by each Bottle Neck. The second 3*3 convolution has k output channels. Finally, the input 

of the module and the output of the 3*3 convolution are concat stacked to obtain the 

overall number of output channels of the module as C`+k. 

The Dense Block structure is shown in the middle part of Fig. 4. It consists of several 

Bottle Necks. The number of input channels of the whole Dense Block is C0. Since the 

output of Bottle Neck stacks, the output and input of the final convolutional structure in its 

interior, the number of feature channels will be increased by k for each Bottle Neck that 

passes through it. Therefore, the number of final output feature maps of a Dense Block 

composed of n Bottle Neck is C0+nk. The input of each Bottle Neck is a stack of all the 

outputs of its preceding layers. 

The Transition Layer controls the model complexity. Its structure is shown in the 

bottom of Fig. 4. Since the number of channels increases with each Dense Block connec-

tion, its overuse will result in an overly complex model. Therefore, the Transition Layer 

first reduces the number of channels by a 1×1 convolution layer, and then to compress the 

height and width of the feature map, an average pooling layer with stride=2 is used for 

downsampling, which further reduces the model complexity. 



2.2.2. Citation of Attentional Mechanisms 

Among the types of attention modules, channel AMs have great potential in im-proving 

the performance of deep CNNs. However, there are a large number of AMs developing 

more complex attention modules to achieve better performance, which will inevitably 

increase the complexity of the model. To strike a balance between model complexity and 

performance, this paper refers to an effective channel attention module (ECA) that 

contains only a small number of parameters while delivering significant performance 

gains. 
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Figure 5： SENet and ECANet structures 

SE-Net is the basis of ECA-Net optimization and its structure is shown in Figure 5(a). 

Global average pooling is first performed separately for each input channel, followed by 

two fully connected layers using different activation functions. This computational process 

causes the channel features to be mapped from high to low and then to high dimensions. 

This dimensionality reduction operation reduces the complexity of the model, but it also 

cause the loss of critical information. 

ECA-Net empirically shows, by observing SE-Net and improving it, that avoiding 

dimensionality reduction is important for learning channel attention and that proper 

cross-channel interaction can increase model complexity only slightly while maintaining 

performance. Its structural design is shown in Figure 5(b). 

On the left is the feature of the original input image, which is first subjected to global 

average pooling (GAP) [28] to obtain a 1×1×C feature map, on which ECA obtains the local 

cross-channel interaction by fast one-dimensional convolution of size K, where the 

parameter K can be generated by an adaptive function based on the size of the input 

channel C, which represents the local coverage of the cross-channel interaction. After that, 

a Sigmoid function is used to generate the weight share of each channel, and then the 

original input features are combined with the channel weights to obtain the features with 



channel attention. The network constructed with this module makes it easier to extract 

discriminative features of images based on channel dimensionality. 

To avoid the consumption of large computational resources due to manual adjustment, 

the size of the parameter k can be generated adaptively by a function with the convolution 

kernel k calculated as: 

 
 2log C b

k C odd
 

    (1) 

where |t|odd denotes the odd number of t-nearest neighbors, γ is set to 2, and b is 1. 

From (1), it is clear that the communication range of the high-dimensional channel is 

longer, while the communication range of the low-dimensional channel is relatively 

contracted. 

In this paper, three ECA layers are inserted at the connection between Backbone and 

Neck of the model to avoid dimensionality reduction while better bridging the two 

components, making the feature transfer of the model more efficient and preventing the 

disappearance of feature information. At the same time, the ECA layer allows the model to 

focus on more critical features and suppress unnecessary features, which improves the 

detection accuracy. 

2.2.3. Spatially Adaptive Fusion Of Feature Layers 

In general, the lower level features of the network contain more location information 

and the higher level features contain more semantic information. The PANet structure is 

used in YOLOV4 to further fuse and output the higher and lower level features. After 

downsampling, the network does bidirectional propagation and then upsampling, and 

fuses the information from the same level downsampling by lateral connection, and then 

sends the feature information of different scales to different detectors. 

However, the PANet connection simply stacks the top-down and bottom-up layers of 

information together, and there is a lack of communication between the layers to transfer 

the information. To more fully utilize the semantic information of the high-level features 

and the fine-grained features of the underlying features, this paper introduces a new 

feature fusion method, Adaptive Spatial Feature Fusion (ASFF), in the proposed algorithm. 

ASFF can enhance the extraction capability of PANet and can fuse the information of 

multiple feature layers simultaneously. Its idea is to adaptively adjust the spatial weights 

of each scale features in fusion by learning. Its underlying structure is shown in Figure 6. 

Figure 7 shows the operation of layers in ASFF. First, X1, X2 and X3 are derived from 

the feature information at different scales of level1, level2 and level3 output in PANet, 

respectively. 
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Figure 6： ASFF schematic 

The ASFF-3 is an example of a convolution with the kernel of 3*3, the step size of 2, and 

a padding of 1. The X2 is scaled down to the same value as X3 with equal number of 

channels, and is denoted as level_1_resized. The number of channels and dimensionality of 

level_1_resized, level_2_resized and X3 are the same. Finally, level_1_resized, 

level_2_resized, and X3 are multiplied by α, β, and γ, respectively, and the values are 

summed, and the number of channels is adjusted by a final convolutional layer to obtain a 

new feature layer with multi-layer perceptual field fusion. The formula is expressed as 

follows: 
1 2 3· · ·l l l l l l l

ij ij ij ij ij ij ijy X X X            (2) 

where yijl represents the new feature map of a layer obtained by ASFF, αijl, βijl, and γijl 

represent the weight parameters learned through the three feature layers, and 

αijl+βijl+γijl=1 is guaranteed by the Softmax function. 

where yijl represents the new feature map of a layer obtained by ASFF, αijl, βijl, and γijl 

represent the weight parameters learned through the three feature layers, and 

αijl+βijl+γijl=1 is guaranteed by the Softmax function. 
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2.2.4. Design of the loss function 

The loss function contains three components: confidence error Lconf classification 

error Lcls, and regression frame prediction error Lloc [29]. CIoU loss was used in the 

regression frame prediction error. CIoU is based on IoU, GIoU, and DIoU, and the CIOU 



takes into account three geometric factors, which are overlap area, centroid distance, and 

aspect ratio [30]. 
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where S² is the number of grids, B is the number of prediction frames in each grid, 
obj

ijI
, 

noobj

ijI
 are the indicated values of the prediction frames containing and not containing the 

target, C  is the confidence true value, C is the prediction confidence, noobj
 is the penalty 

weight factor,  P c  is the actual probability that the target in the cell belongs to category c, 

P(c) is the probability that the prediction is of category c, wgt, hgt are the width and height 

of the true frame, respectively, IoU(X , Y) is the intersection ratio of the predicted frame X 

to the real frame Y, ρ2(Xctr, Yctr) is the Euclidean distance between the center point of the 

predicted frame and the real frame, m is the diagonal distance of the minimum closed 

region containing both the predicted and real frames, u is the balance adjustment 

parameter, and v is the parameter measuring the consistency of the aspect ratio. 

To balance the loss sensitivity of different detection scales, in this paper, the three 

prediction heads in the network structure are multiplied with different weights when 

calculating the total loss. The weights assigned to Yolo Head1, Yolo Head2, and Yolo Head3 

are 0.4, 1.0, and 4.0, respectively [31]. 

3. Conclusion 

This paper focuses on the One-Stage target detection method which has higher 

requirements for detection speed and deployment cost. It helps cameras in traffic scenes 

to recognize vehicle information and perform vehicle model discrimination. A lightweight 

target detection algorithm based on attention and feature augmentation is proposed to 

address the problem of the demand for vehicle detection in smart city construction. The 

complexity of the algorithm is strictly controlled. The proposed algorithm uses YOLOv4 as 

the base architecture: (i) significantly reduces the number of model parameters by 

replacing the DenseNet, which has excellent performance, as the backbone feature 

extraction network;v(ii) reconstructs the existing FPN network module, uses the ECA 



attention structure for the transition and transfer of feature information between 

Backbone and Neck, as well as adds the information cross-fusion function before the final 

detection layer of the network of the ASFF structure; (iii) while optimizing in terms of the 

loss function and image preprocessing. 
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