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Abstract 
Traffic flow prediction is both one of the important components of intelligent transport systems 
(ITS) and a challenging task at the same time. Although the existing traffic flow prediction has 
achieved good results, the existing traffic flow prediction models only model dynamic spatio-
temporal correlations on a single time or spatial scale, and have poor performance on long-
distance prediction. Aiming at the above problems, this paper proposes a traffic flow prediction 
model based on multi-scale pyramid spatio-temporal network. Specifically, firstly, a local 
spatio-temporal grid is generated by combining traffic data features and adjacency matrix. 
Secondly, multiple convolutional layers are used to aggregate sequences with multiple 
resolutions, and at the same time, the spatio-temporal grids are merged into traffic event 
sequences based on the temporal and spatial dimensions. Next, the adaptive combination of 
pyramidal attention and multi-channel spatio-temporal convolution module is used to capture 
the spatio-temporal dependence of sequence dynamics and the global spatio-temporal features 
are obtained by optimal fusion using fully connected layers. Finally, the corresponding 
predicted values are output based on the global spatio-temporal features. Experimental results 
on two publicly available datasets show that the model largely improves the detection.1 
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1. Introduction 

In recent years, the sensor technology is developing rapidly, and the travel modes are 

rich and diverse, and the intelligent transportation system has become the key 

development object in many countries. In response to the problem of huge urban traffic 

flow and high speed area, traffic prediction has become a key research in intelligent 

transportation system, and traffic flow prediction methods are used to learn the highly 
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nonlinear characteristics of traffic flow data in order to accurately predict the traffic flow 

of complex urban roads in the coming period. Stable and reliable traffic flow prediction 

algorithms can effectively alleviate traffic congestion and improve people's quality of life. 

Traffic data contains important transportation system features, such as traffic flow, 

speed, and time information recorded by road network sensors. Traditional statistical and 

machine learning methods [1,2] are used to analyze the complex spatio-temporal 

properties of these traffic data and thus predict traffic flow. However, these methods 

perform poorly in capturing high-dimensional spatio-temporal features. In recent years, 

researchers in the field of transportation have turned their attention to deep neural 

networks. Researchers have employed CNNs to capture spatial features of target nodes 

and nearby regional nodes [3].Li et al [4] modeled the diffusion process of directed graphs 

and combined diffusion convolution and GRU recurrent neural networks to fuse the 

temporal and spatial correlations of the traffic flow. Tang et al [5] proposed the spatio-

temporal latent graph structure learning network STLGSL, which employs a multilayer 

perceptron and k-nearest neighbors to generate graph structure, and utilizes diffusion 

graph convolution and dilation causal convolution as well as gating mechanism to mine 

the spatio-temporal features of the generated graphs. Li et al [6] proposed Transformer-

enhanced DetectorNet, which utilizes a multi-view temporal attention module to capture 

temporal correlation of distance and proximity, and combines graph convolution and a 

dynamic attention module to aggregate the spatial features of the generated dynamic 

graphs. 

The aforementioned studies on traffic flow prediction have achieved impressive 

results. However, existing work prefers to capture the pairwise impacts of spatio-temporal 

traffic events and the spatio-temporal features of traffic data from a single temporal and 

spatial scope. However, this approach makes it difficult to learn the dependencies of 

distant locations in time and space, and does not comprehensively capture spatio-

temporal dependencies at different scales. 

In order to solve the above two problems, this paper proposes a new traffic flow 

prediction model based on multi-scale pyramidal hybrid spatio-temporal network, called 

MSLST. First, the original traffic data features (time and speed) and sensor distances are 

preprocessed, and a local spatio-temporal grid is constructed by selecting other nodes that 

are spatially correlated with the target node based on the generated adjacency matrices. 

Second, the temporal and spatial dimensions of the spatio-temporal grid are combined 

into a sequence of traffic events, and the sequence is processed using multiple 

convolutional layers with different Stride to obtain the feature information of the 

sequence at different resolutions. And stacking multiple pyramid attention is used to 

simulate the pairwise effects of traffic events under different spatio-temporal scales to 

obtain coarse and fine scale based spatio-temporal correlation features. Next, the spatio-

temporal features at different scales are transformed into different channels using linear 

layers, and spatio-temporal convolution blocks are used for each layer separately to 

capture the spatio-temporal information of other nodes in the region near the target node 

in the local spatio-temporal space. Finally, the spatio-temporal features of each layer are 

merged into one channel, and the fully connected layer is used to transform the merged 



features to obtain the global spatio-temporal features. And finally, traffic flow prediction is 

performed based on the above output global spatio-temporal features. 

To summarize the main contributions: 

1. In this paper, the temporal and spatial dimensions of traffic data are merged into a 

single fluid, and pyramid attention is used to directly model the dynamic spatio-

temporal associations between a target node in local spatio-temporal space and 

other nodes at different moments, and to convey the spatio-temporal information 

of the nodes in different spatio-temporal ranges, which improves the model's 

ability to capture the highly nonlinear spatio-temporal features of the traffic flow. 

2. In this paper, a multi-channel spatio-temporal convolutional block is proposed to 

perform gated aggregation of spatio-temporal information at various scales of the 

pyramid, flexibly mining the compact spatio-temporal feature representations of 

proximity and remoteness in the local spatio-temporal context, establishing one-

to-many relationships between the target node and the other nodes in both time 

and space, and greatly improving the performance of long-distance multistep 

prediction. 

3. MSLST is evaluated on two real-world public datasets to validate the effectiveness 

and sophistication of the model. 

2. Model 

This section describes a multi-scale local spatio-temporal network (MSLST) for 

modeling spatial and temporal information of traffic flow. As shown in Fig. 1, the MSLST is 

composed of three parts, which are local spatio-temporal grid construction, multi-scale 

spatio-temporal attention block, and multi-channel spatio-temporal convolution block. 

The local spatio-temporal mesh construction is responsible for stitching the spatio-

temporal intervals between traffic events from target sensors and other sensors into a 3D 

mesh, the multi-scale spatio-temporal attention block is responsible for capturing the 

spatio-temporal correlation of traffic events of a single flow shape under multiple ranges 

of spatio-temporal contexts, and the multi-channel spatio-temporal convolution block is 

responsible for aggregating temporal and spatial information under multiple channels to 

obtain global spatio-temporal features. Finally, a dense fully connected layer is used to 

predict future traffic flow. 

 

Local spatio-

temporal 

network 

construction linear 

layer

4*4 

convolution

Step size is 4

1*1 

convolution

conca

tenate

Pyramid of 

temporal 

attention

Multiscale spatio-temporal 

attention

Number of 
channels

256

Number of 
channels

128

Number of 
channels

64

Number of 
channels

32

spatiotempo
ral 

convolution

Multi-channel 
spatio-temporal 

convolution

+

full 
connectio

n
Y

2

linear 

layer

4*4 

convolution

Step size is 4

4*4 

convolution

Step size is 4

spatiotempo
ral 

convolution

spatiotempo
ral 

convolution

spatiotempo
ral 

convolution

 
Figure 1: MSLST architecture diagram 



2.1. Local spatio-temporal grid construction 

Inspired by the local spatio-temporal structure[7], we utilize a Gaussian kernel to 

transform the distance matrix of the sensors into a weight matrix to represent the 

connectivity of the sensors, where a larger weight represents a smaller distance of the 

sensors, and the formula is defined as follows: 
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where 
     A , 0,1i j



 is the weight matrix at time step  , 

   ,D i j


 is the distance 

matrix, i  and j  denote two nodes of the weight matrix 
   ,D i j


,   is some time step, and 

  is a hyperparameter, which is usually set to the standard deviation of all 
   ,D i j


.  

According to the weight size of 
   A ,i j


 to extract a portion of nodes that are close to 

the target node, and combined into a node set  , the relevant definition is as follows: 
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where since the traffic graph is a bidirectional graph, the values of 
   A p,q


 and 
   A ,q p


 are different unless q p ;  is a weight threshold set in advance, which 

requires that the degree of connectivity of other nodes connected to the target node pn
 is 

greater than  ; in addition to this, fix the size of the node set   to be  , and for the node 

set with the number of nodes less than  , the remaining nodes need to be filled with the 

features of 0 and have no connectivity to the target node pn
. And for the node number is 

greater than  , the   nodes with the closest distance to the target node pn
 are selected. 

Finally, the nodes of node set   are arranged according to their weights from largest to 

smallest. 

The information related to the traffic map structure at each time step 
 1,..., P 

 and 

the node traffic measurements are fused together to obtain the local spatio-temporal vLS

 of a target node v  as follows: 
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Where 
 
ix


 is the traffic measurement value recorded by node ib
 at time step t , and 

 ,concat
 represents the stitching operation. The matrix 

 
vLS


 not only contains the 



spatial structure relationship between the target node v  at time step   and node ib
 in the 

node set  , but also encodes the traffic measurement information of node ib
. Therefore, 

the local spatio-temporal vLS  is defined as 
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It is the necessary information used to train the traffic prediction model to predict the 

traffic data of node v . 

In summary, the traffic flow prediction problem in this paper is defined as: 
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Where  1f  is the mapping function learned by the multi-scale spatio-temporal 

attention block, 
 2f  is the training function learned by the multi-channel spatio-

temporal convolution block, P  is the historical time step, Q  is the future time step, the 

nodes are 
 1 2, , , Nv v v v

, and N  is the number of nodes in the traffic map. 

2.2. Multi-scale spatio-temporal attention blocks 

Inspired by Pyraformer[8], pyramid attention is introduced to describe the spatio-

temporal dependencies of individual traffic events in multiple resolutions. FPN feature 

pyramids[66] utilize convolution to compute feature maps at different scales, preserving 

high-resolution fine-grained semantic features while incorporating low-resolution coarse-

grained semantic features. 

In this section, multiple convolutional layers with kernel size 4 and step size 4 are used 

for initialization in the dimension of time and space merging. Sequences of length / 4sL  

are generated at scale s . The dimensionality of each node is then reduced by a fully 

connected layer, followed by connecting them to the output of the original sequence 1*1 

convolution. 

Assuming that I  and O  are the input and output of a single attention, first the input 

data I  is linearly transformed into three independent matrices Query , Key , and Value , 

where qQuery IW
, kKey IW

, and vValue IW
. The original attention mechanism can 

be represented as follows: 
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Where 
d d

qW 
, 

d d

kW 
, 

d d

vW 
 are the learnable weight matrices for 

transforming the traffic event features into the query, key, and value space, iq
 denotes the 

ith row of Query , jk
 denotes the jth row of Key , and jv

 denotes the jth row of Value . 
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Figure 2: Pyramid diagram 

 

The structure of the pyramid is shown in Fig. 2, which is defined as a set of neighbor 

nodes 
 s
lAS

 of the current node 
 s
ln

, 
 s
ln

 denotes the lth node in the sth layer and 
 s
lAS

 

contains the neighbor nodes of the current node in the same layer including its own node, 
 s
lAS

, 
 s
lC

 is the C  child node of the current node in the C-fork tree and 
 s

lP
 is the 

parent node. They are specifically defined as: 
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In this section, the number of fixed pyramid layers S  is 4, neighbor node adjN
 is 3 

(including its own node), and child node C  is 4. Therefore, the pyramid attention of the 

current node 
 s
ln

 can be expressed as: 
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2.3. Multi-channel spatio-temporal convolution block 

The outputs of the four layers of the pyramid represent the spatio-temporal feature 

representations of traffic events at different scales. In this section, the features output 

from different layers of the last pyramid are first converted to different channel spaces, 

and then the spatio-temporal convolution block is used to integrate regional spatio-



temporal features of traffic flows at different scales with different depths, and the regional 

spatio-temporal features at various scales are spliced together, and finally the fully-

connected layer converts the spliced multiscale spatio-temporal features into predicted 

values of future traffic flows. 

The spatio-temporal convolution block is composed of three convolutions that capture 

the effect of local spatio-temporal on the target traffic events, the temporal dependence of 

traffic events at different moments of the same node within the local spatio-temporal, and 

the spatial dependence between the node and its neighbors at the same moments within 

the local spatio-temporal, the three convolution kernels are the spatio-temporal 

convolution kernel 
f f

ST 
, the temporal convolution kernel 

1f

T


, and the 

spatial convolution kernel 
1 f

S


, and the output features of the sth layer of the 

pyramid, 
   sd P Bs

CSTI
 

 , serve as the input of the spatio-temporal convolution block, 

and the formula of the spatio-temporal convolution block is defined as follows: 
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Where   represents the convolution operation,  ReLULeaky
 denotes the leakage 

corrected linear unit function, 
  d P Bs

CSTO
 

  is the output of the spatio-temporal 

convolution block, the dimension of the output is the same as the dimension of the input 

as the convolution kernel ST
 S  T is set to 3f   and the padding size to be 1. 

1 1

o


 

is a 1*1 convolution kernel for the aggregation of the three features of 
 s

STH , 
 s

SH , and 
 s

TH
 and a uniform number of channels to be d . 

2.4. Prediction and Optimization 

Next, prediction is performed by using two fully connected layers as prediction layers 

and using 
 s

CSTO  as input to the prediction layers. The final prediction result Y% is 

obtained. 

                                    

  s

0 0 1 1Y CSTO W b W b  %
                                                          （17） 

In order to learn the parameter settings of the model accurately, the final total loss 

function is expressed as follows. 
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where t ,m
Y%

 denotes the predicted value of the mth sensor at time t and t ,m
Y

 denotes the 

true value of the mth sensor at time t . We optimize the model parameters using 

stochastic gradient descent and backpropagation algorithms and further update the 

parameters using Adam optimizer. 

3. Experimental Comparison and Analysis 

3.1. Datasets 

In this section, two publicly available real-world traffic prediction datasets are used to 

validate the effectiveness of the model, PeMS-Bay[9] and METR-LA dataset[9].The PeMS-

Bay dataset contains measurements from 325 sensors for the period of January 1, 2017 to 

May 31, 2017 for the Bay area.The METR-LA dataset contains measurement data from 207 

sensors for the period March 1, 2012 to June 30, 2012 in Bay. The speeds contained in 

both datasets are in miles per hour. Table 3.1 summarizes the statistics for both datasets.  

Table 1 

Statistics of the data set 

3.2. Evaluation Criteria 

This section evaluates the performance of the model using three metrics that are more 

commonly used in traffic flow prediction, including MAE, RMSE, and MAPE, with the 

relevant formulas as follows: 
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Where ˆ, Qy y , Q  denotes the length of the output sequence, P  denotes the length of 

the input sequence, Q  and P  are usually 12, y  denotes the true value of the output 

sequence of a node at a certain moment, and ŷ  denotes the predicted value of the input 

sequence of a node at a certain moment after the model. 

Datasets Time Series Nodes Time 

Interval 

Input 

Length 

Output 

Length 

META-LA 34272 207 5min 12 12 

PeMS-Bay 52116 325 5min 12 12 



3.3. Algorithm Comparison and Experimental Setup  

The number of neighbor nodes constructed by the local spatio-temporal grid in the 

MSLST model architecture is 16. For the multi-scale spatio-temporal attention block, the 

number of output channels is 128, the number of convolutional layers of the initialized 

pyramid graph is 4, including a 1*1 convolutional layer with stride 1 and three 4*4 

convolutional layers with stride 4, the number of pyramidal spatio-temporal attentions of 

the stacked pyramids is 2, and the number of pyramidal layers of each pyramidal spatio-

temporal The number of pyramidal layers of attention is 4. The number of channels of the 

four layers of spatio-temporal convolution of the multichannel spatio-temporal 

convolution block is 32, 64, 128, 256, and the size of convolution kernel of the spatio-

temporal convolution is 3, respectively. 

The dataset is set in chronological order with the first 70% as the training set, the 

middle 10% as the validation set, and the last 20% as the test set, and 0.2 70% is randomly 

selected as the final training set, and the length of the input sequence P and the length of 

the output sequence Q are 12. In terms of the model training, the batch size of the data is 

80, and the number of iterations of the training is 50, and the optimizer for updating the 

parameters of the gradient descent is Adam, and the learning rate is 0.001, and the loss 

function is L1 loss value that minimizes the true and predicted values. dropout layer uses 

0.3. 

In order to verify the superiority of the model MSLST for the traffic prediction task, this 

section compares it with the following baseline methods: 

1. ARIMA (Autoregressive Integrated Moving Average) [11], a well-known time 

series analysis method for predicting future values; 

2. FC-LSTM (Fully Connected Short-Term Memory Network) [55], a sequence-to-

sequence model with fully connected LSTM layers in both encoder and decoder; 

3. STGCN (Spatio-Temporal Graph Convolutional Network) [60], a multi-scale traffic 

network that combines graph convolution and regular convolution; 

4. DCRNN (Diffusion Convolutional Training Neural Network) [45], a diffusion 

convolution and GRU[?] based codec structure; 

5. Graph WaveNet[46], an approach that combines diffusion factor convolution and 

graph convolution to model spatio-temporal dependencies; 

6. DetectorNet (Transformer-enhanced spatio-temporal graph neural network) [63], 

a Transformer spatio-temporal network combining a multi-view temporal 

attention module and a dynamic attention module; 

3.4. Experimental results and analysis 

1) Comparative Analysis of Mainstream Advanced Algorithms 

In this section, the performance of MSLST is evaluated on two real-world traffic 

prediction datasets and compared with state-of-the-art traffic flow prediction methods, as 

shown in Tables 2 and 3, and the following conclusions can be drawn from the comparison 

results: 



1. Deep learning models have better prediction ability than traditional time series 

methods and machine learning models on both datasets, which indicates that deep 

learning methods are better able to model the nonlinear relationships between 

traffic data. 

2. The traffic flow prediction methods STGCN, DCRNN, Graph Wavenet, DetectorNet, 

and MSLST combined with deep learning and graph structure generally perform 

better than FC-LSTM, which demonstrates that information about the structure of 

the traffic road network is crucial for traffic prediction. 

3. (c) DetectorNet and Graph WaveNet based on dynamic attention module have 

small detection errors at both time steps compared to STGCN and DCRNN with 

static road network structure, which reveals that the dynamic spatial correlation 

among modeled roads better reflects the dynamic changes of roads, and the 

learnable adaptive adjacency matrix can adapt to the uncertainty of traffic maps, 

both of which can retain valuable potential information. 

4. (d) MSLST has a great improvement in prediction performance compared to 

DetectorNet in the short, medium, and long term, indicating that fusing temporal 

and spatial dimensions into a single spatio-temporal fluid to capture spatio-

temporal features of traffic flow can directly model the dynamic spatio-temporal 

correlation among roads, which is a more complete characterization than that of 

aggregating independent temporal and spatial feature extraction modules. mSLST 

compared to Graph WaveNet at 60min has a decrease in MAE of 0.55, which 

implies that pyramidal attention modeling local spatio-temporal correlations at 

coarser scales enhances long-distance dependence, while multi-channel spatio-

temporal convolution aggregating spatio-temporal features at each scale of 

pyramidal attention provides compact representations of proximity and long-

distance spatio-temporal dependence. 

Table 2 

Comparison of overall performance in auroc, auprc, precision and recall 

Table 3 

Error comparison between MSLST of this paper and baseline on PeMS-Bay dataset 

METR-LA                                   30min                                                    60min 

 MAE RMSE MAPE MAE RMSE MAPE 

ARIMA 5.15 10.45 12.70% 6.90 13.23 17.40% 

FC-LSTM 3.77 7.23 10.9% 4.37 8.69 13.20% 

STGCN 3.47 7.24 9.57% 4.59 9.40 12.70% 

DCRNN 3.15 6.45 8.80% 3.60 7.60 10.50% 

GraphWavenet 3.07 6.22 8.37% 3.53 7.37 10.01% 

DetectorNet 3.06 6.08 8.12% 3.40 6.98 9.60% 

MSLST 2.50 5.19 6.78% 2.98 6.19 8.43% 

METR-LA                                    30min                                                   60min 

 MAE RMSE MAPE MAE RMSE MAPE 



2) Component Analysis 

In this section, component analysis is performed on two datasets, METR-LA and PeMS-

Bay. Tables 4 and 5 show the statistical results of the three metrics for the component 

analysis of the two datasets, and the components are analyzed as follows: 

1. w/o PM: eliminating the fusion of temporal and spatial dimensions into a single 

fluid, utilizing two independent self-attention for the temporal and spatial 

dimensions respectively for the capture of spatio-temporal correlation of traffic 

data, and then utilizing the gating mechanism to fuse the two features. 

2. w/o R-PA: Replace pyramidal attention with ordinary self-attention. 

3. w/o P-FPA: retain only the first layer output of the pyramid and extract regional 

spatio-temporal features using only a single-channel spatio-temporal convolution 

block. 

Table 4 

Component analysis of this paper's MSLST on the METR-LA dataset 

 

 

 

 

 

 

Table 5 

Component analysis of MSLST in this paper on PeMS-Bay dataset 

 

 

 

 

 

 

The following conclusions can be drawn from the results in Table 4 and Table 4: 

ARIMA 2.33 4.76 5.40% 3.38 6.50 8.30% 

FC-LSTM 2.20 4.55 5.20% 2.37 4.96 5.70% 

STGCN 1.81 4.27 4.17% 2.49 5.69 5.79% 

DCRNN 1.74 3.97 3.90% 2.07 4.74 4.90% 

GraphWavenet 1.63 3.70 3.67% 1.95 4.52 4.63% 

DetectorNet 1.57 3.54 3.56% 1.80 4.26 4.19% 

MSLST 1.47 3.22 3.29% 1.82 4.19 4.26% 

METR-LA 30min 60min 

 MAE RMSE MAPE MAE RMSE MAPE 

MSLST 2.50 5.19 6.78% 2.98 6.19 8.43% 

w/o PM 3.00 6.01 8.09% 3.38 6.90 9.50% 

w/o R-PA 2.67 5.58 7.13% 3.21 6.53 9.12% 

w/o P-FPA 2.69 5.86 7.26% 3.32 6.84 9.26% 

PeMS-Bay 30min 60min 

 MAE RMSE MAPE MAE RMSE MAPE 

MSLST 1.47 3.22 3.29% 1.82 4.19 4.26% 

w/o PM 1.76 4.01 3.94% 1.99 4.74 4.71% 

w/o R-PA 1.57 3.48 3.48% 1.94 4.67 4.63% 

w/o P-FPA 1.61 3.51 3.53% 1.95 4.70 4.67% 



1. For both datasets, MSLST is much more effective than w/o PM, indicating that fusing 

the temporal and spatial dimensions of traffic flow data into a single fluid is more 

capable of modeling the spatio-temporal dynamics of traffic flow by using the 

attention mechanism that can unambiguously capture the spatio-temporal 

dependence of the target sensors at different moments. 

2. The larger error of w/o R-PA than MSLST on both datasets, especially 60min, proves 

that the ability of ordinary self-attention in modeling a single spatio-temporal fluid 

with long-distance multi-step prediction is weaker compared to pyramidal attention, 

whose multi-resolution model effectively constructs the sensor's information transfer 

over long distances in time and space. 

3. For METR-LA and PeMS-Bay, w/o R-PA works slightly better than w/o P-FPA, 

reflecting the multi-channel spatio-temporal convolutional block aggregation 

pyramid attention coarse and fine scale spatio-temporal features of the traffic flow 

are an integral part of the MSLST, and the finest scale spatio-temporal features are 

not able to simulate the long term dependence of traffic events. 

3) Parametric Analysis 

In order to verify how much the number of stacked pyramid spatio-temporal attention 

affects the model MSLST, 1~4 pyramid spatio-temporal attentions are stacked in this 

section, respectively. Figure 4.4 shows the results of the comparison of the average MAE 

for 12 time steps. 

Table 4 

Component analysis of this paper's MSLST on the METR-LA datase 

 

 

 

 

 

 

From the experimental table, it can be seen that stacking 2 pyramids spatio-temporal 

attention is the best performance case for both METR-LA and PeMS-Bay datasets. As the 

number of stacked pyramids increases, the prediction error of the model does not 

decrease, but rather increases, the possible reason being that the model structure is too 

complex and there is overfitting. Apparently, 2 pyramids spatio-temporal attention is 

sufficient to deeply explore the complex spatio-temporal dependence of traffic events, 

which maintains the adequacy of the nonlinear structure of the model and does not lead to 

redundancy in the model structure. 

4. Conclusion 

In this chapter, a traffic flow prediction model based on a multi-scale local spatio-

temporal network is proposed. First, the temporal and spatial dimensions are fused into a 

Stacks METR-LA PeMS-Bay 

 MAE RMSE 

4.46 

4.18 

4.24 

4.41 

MAE RMSE 

2.54 

2.37 

2.42 

2.49 

1 2.35 1.26 

2 2.22 1.17 

3 2.27 1.19 

4 2.31 1.23 



single fluid, the 3D local spatio-temporal grid is generated by combining the adjacency 

matrix and traffic flow features, multiple convolutional layers and pyramidal attention are 

introduced to learn the dynamic spatio-temporal dependence of the local spatio-temporal 

traffic events in different resolutions, and then the multi-channel spatio-temporal 

convolutional block is combined to merge and optimize spatial and temporal features 

among local spatio-temporal nodes, so as to get the global spatio-temporal features. 

Experiments on the traffic flow datasets PeMS and METR-LA show that the proposed 

model outperforms state-of-the-art methods. 

References 

[1] Fang Zheng, Long Qingqing, Song Guojie, et al., Spatial-Temporal Graph ODE Networks 

for Traffic Flow Forecasting [C]// Proceedings of the 27th ACM SIGKDD Conference 

on Knowledge Discovery & Data Mining, pp.364–373. 

[2] Wang Xiaoyang, Ma Yao, Wang Yiqi, et al., Traffic Flow Prediction via Spatial Temporal 

Graph Neural Network[C]// Proceedings of The Web Conference 2020,pp. 1082–

1092. 

[3] Lu Bin, Gan Xiaoying, Jin Haiming, et al., Spatiotemporal Adaptive Gated Graph 

Convolution Network for Urban Traffic Flow Forecasting[C]// Proceedings of the 

29th ACM International Conference on Information & Knowledge Management, 

pp.1025–1034. 

[4] Li Y, Yu R, Shahabi C, et al. Diffusion Convolutional Recurrent Neural Network: Data-

Driven Traffic Forecasting[C]//International Conference on Learning Representations 

2018.  

[5] Tang J, Qian T, Liu S, et al. Spatio-temporal latent graph structure learning for traffic 

forecasting[C]//2022 International Joint Conference on Neural Networks (IJCNN). 

IEEE, 2022: 1-8. 

[6] He Li, Shiyu Zhang, Xuejiao Li, et al., DetectorNet: Transformer-enhanced Spatial 

Temporal Graph Neural Network for Traffic Prediction [C]// Proceedings of the 29th 

International Conference on Advances in Geographic Information Systems,pp.133–

136 

[7] Yang S, Liu J, Zhao K. Space meets time: Local spacetime neural network for traffic 

flow forecasting[C]//2021 IEEE International Conference on Data Mining (ICDM). 

IEEE, 2021: 817-826. 

[8] Liu S, Yu H, Liao C, et al. Pyraformer: Low-complexity pyramidal attention for long-

range time series modeling and forecasting[C]//International conference on learning 

representations. 2021. 

[9] Yu B, Yin H, Zhu Z. Spatio-temporal graph convolutional networks: a deep learning 

framework for traffic forecasting[C]//Proceedings of the 27th International Joint 

Conference on Artificial Intelligence. 2018: 3634-3640. 

 


	1. Introduction
	2. Model
	2.1. Local spatio-temporal grid construction
	2.2. Multi-scale spatio-temporal attention blocks
	2.3. Multi-channel spatio-temporal convolution block
	2.4. Prediction and Optimization

	3. Experimental Comparison and Analysis
	3.1. Datasets
	3.2. Evaluation Criteria
	3.3. Algorithm Comparison and Experimental Setup
	3.4. Experimental results and analysis

	4. Conclusion
	References

