
An Isolation Forest - based approach for brute
force attack detection
Olha	Mykhaylova	1,†,	Andriy	Shtypka	1	,†	and	Taras	Fedynyshyn1,*,†

1	Lviv	Polytechnic	National	University,	12	Stepan	Bandera	str.,	Lviv,	79000,	Ukraine

	

Abstract	
In	today's	rapidly	evolving	digital	landscape,	characterized	by	dynamic	cyber	threats,	brute	force	
attacks	 persist	 as	 among	 the	most	 prevalent	 and	 enduring	 security	 challenges.	 In	 the	 face	 of	
evolving	cyber-attacks,	conventional	detection	techniques	frequently	demonstrate	inadequacies,	
prompting	 the	 exploration	 of	 innovative	 solutions	 like	 the	 integration	 of	 machine	 learning	
algorithms.	This	paper	introduces	a	novel	intelligent	model	utilizing	decision	trees,	designed	to	
detect	anomalies	in	user	behavior	indicative	of	potential	brute	force	attacks.	Additionally,	this	
paper	 includes	 the	Python	source	code	 for	 implementing	 the	model	as	well	as	presenting	 the	
obtained	results.	The	paper	explores	the	effectiveness	of	an	intelligent	decision	tree-based	model	
in	detecting	brute	force	attacks	during	system	logins.	It	delves	into	the	algorithmic	underpinnings	
of	these	models,	highlights	their	advantages	over	traditional	detection	methods,	and	examines	
practical	considerations	for	their	implementation	and	utilization.	The	proposed	Isolation	Forest-
based	model	effectively	detects	brute	force	attacks	with	high	accuracy,	adaptability,	and	reduced	
false	positives,	but	it	requires	careful	tuning	of	anomaly	thresholds,	faces	limitations	in	highly	
imbalanced	datasets	where	attack	 instances	are	 rare,	and	may	be	vulnerable	 to	 sophisticated	
adversarial	tactics	that	mimic	normal	behavior,	highlighting	the	need	for	further	improvements	
in	its	robustness	and	sensitivity.	

Keywords		
intrusion	detection	model,	Isolation	Forest,	brute	force,	machine	learning1	

1. Introduction
In	the	modern	digital	world,	where	cyber	threats	evolve	at	an	incredible	pace,	brute	force
attacks	continue	to	remain	one	of	the	most	common	and	persistent	threats.	These	attacks,
which	 involve	 the	 continuous	 guessing	 of	 user	 credentials,	 pose	 a	 serious	 threat	 to	 the
security	of	systems	and	data.	However,	traditional	methods	of	detection	often	prove	to	be
insufficiently	 effective	 in	 the	 changing	 landscape	 of	 cyber-attacks,	 opening	 the	 door	 to
innovative	approaches	such	as	the	application	of	machine	learning	algorithms.

	

BAIT’2024:	The	1st	International	Workshop	on	“Bioinformatics	and	applied	information	technologies”,	
October	02-04,	2024,	Zboriv,	Ukraine	
∗	Corresponding	author.	
†	These	authors	contributed	equally.	
	olha.o.mykhailova@lpnu.ua	(O.	Mykhaylova);	andriyko7788@gmail.com	(A.	Shtypka);	

fedynyshyn.taras@gmail.com	(T.	Fedynyshyn)		
		0000-0002-3086-3160	(O.	Mykhaylova);	0009-0005-1419-9051	(A.	Shtypka);	0009-0006-8233-8057	(T.	

Fedynyshyn)	
	 ©	2024	Copyright	for	this	paper	by	its	authors.	Use	permitted	under	Creative	Commons	License	Attribution	4.0	International	(CC	BY	4.0).		

	

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:olha.o.mykhailova@lpnu.ua
mailto:andriyko7788@gmail.com
mailto:fedynyshyn.taras@gmail.com
https://orcid.org/0000-0002-3086-3160
https://orcid.org/0009-0005-1419-9051
https://orcid.org/0009-0006-8233-8057


One	such	approach	 is	 the	development	of	 intelligent	models	based	on	decision	 trees,	
capable	of	identifying	anomalies	in	user	behavior	that	may	indicate	attempts	of	brute	force	
attacks.	These	models,	able	to	analyze	large	volumes	of	data	and	promptly	detect	potential	
threats,	 represent	 a	 significant	 advancement	 in	 countering	 these	 attacks.	 They	 not	 only	
enhance	 the	 accuracy	 of	 attack	 detection	 but	 also	 reduce	 the	 number	 of	 false	 positives,	
optimizing	the	performance	of	security	teams.	
The	intelligent	model	for	detecting	brute	force	attacks	is	based	on	decision-making	using	

decision	trees	as	a	machine	learning	algorithm	to	classify	network	traffic	as	either	normal	
or	anomalous.	The	model	applies	the	decision	tree	algorithm	for	training	based	on	a	labeled	
dataset	of	network	 traffic,	which	 includes	examples	of	both	successful	 login	attempts	or	
unsuccessful	 attempts	 within	 acceptable	 norms,	 as	 well	 as	 anomalous	 unsuccessful	
attempts	 that	may	 indicate	malicious	unauthorized	access	attempts.	During	 training,	 the	
model	identifies	criteria	by	which	brute	force	attacks	are	most	likely	to	occur.	
Upon	 completion	 of	 training,	 the	 model	 can	 be	 utilized	 for	 classifying	 new	 network	

traffic,	such	as	login	attempts	into	the	system.	If	the	model	identifies	a	segment	of	traffic	as	
malicious,	 it	 is	 likely	 that	 this	 traffic	 is	part	of	a	brute	 force	attack.	This	 information	can	
serve	as	the	basis	for	taking	actions	such	as	blocking	the	traffic	or	notifying	the	network	
administrator.	
Decision	 trees	 represent	 a	 type	 of	 machine	 learning	 algorithm	 that	 is	 optimal	 for	

classification	tasks.	One	of	the	advantages	of	using	decision	trees	for	detecting	brute	force	
attacks	 is	 their	 high	 effectiveness	 in	 recognizing	 attacks	 that	 are	 not	 yet	 known	 to	 the	
system,	thanks	to	their	ability	to	learn	from	new	data	and	adapt	to	changes	in	the	attack	
landscape.	 It	 is	 also	 important	 to	 note	 that	 decision	 trees	 can	 be	 easily	 interpreted,	
facilitating	understanding	of	the	decisions	made	by	the	model.	
However,	there	are	some	considerations	when	using	decision	trees	for	detecting	brute	

force	attacks.	One	such	consideration	 is	 that	decision	 trees	 require	continual	 training	 to	
function	 correctly.	 Additionally,	 decision	 trees	 need	 to	 be	 adapted	 individually	 for	 each	
project,	considering	its	specific	characteristics	and	security	requirements.	
To	enhance	the	accuracy	and	effectiveness	of	the	intelligent	intrusion	detection	model	

for	 system	 login,	 it	 is	 crucial	 to	 conduct	 performance	 evaluation	 of	 brute	 force	 attack	
detection	using	decision	trees.	Effective	evaluation	of	brute	force	attack	detection	models	is	
vital	for	ensuring	system	security.	Decision	trees,	with	their	capability	to	identify	complex	
patterns	in	data,	offer	a	promising	approach	for	this	task.	
The	following	metrics	are	used	to	evaluate	the	effectiveness	of	decision	tree	models	in	

the	context	of	brute	force	attack	detection:	
• True	Positive	Rate	(TPR),	also	known	as	recall,	measures	the	proportion	of	actual	

brute	 force	 attacks	 that	 were	 correctly	 identified.	 A	 high	 TPR	 indicates	 that	 the	
model	effectively	detects	true	attacks.	

• False	Positive	Rate	(FPR)	assesses	the	proportion	of	normal	login	attempts	that	are	
incorrectly	 classified	 as	 brute	 force	 attacks.	 A	 low	 FPR	 ensures	 that	 the	 model	
minimizes	unnecessary	alarms.	

• Accuracy	measures	the	proportion	of	login	attempts	labeled	as	brute	force	attacks	
that	 are	 actually	 true	 attacks.	 A	 high	 accuracy	 value	 indicates	 that	 the	model	 is	
precise	in	its	classifications.	



In	addition	to	these	metrics,	it	is	also	important	to	evaluate	the	following	characteristics
of	decision	tree	models:

• Detection	 time	 is	 a	 critical	 factor	 in	 real-time	 attack	 detection	 scenarios.	 Swift
detection	ensures	that	the	system	can	promptly	respond	to	an	attack.

• Computational	efficiency	is	also	an	important	characteristic	of	decision	tree	models,
especially	when	processing	large	volumes	of	data.

• Resistance	to	adversarial	attacks	is	an	important	characteristic	for	any	brute	force
attack	 detection	 model.	 Adversaries	 may	 employ	 various	 methods	 to	 evade
detection,	 such	as	using	unique	 login	 credentials	or	 introducing	 subtle	variations
into	their	attack	patterns.

• Interpretability	of	decision	tree	models	 is	 important	 for	ensuring	their	credibility
and	interpretability.	Interpretability	methods	can	provide	insight	into	the	decision-
making	process	of	the	model,	allowing	security	analysts	to	verify	 its	performance
and	identify	potential	biases.

Each	performance	evaluation	metric	corresponds	to	a	specific	task.	For	example,	TPR	is
important	to	ensure	that	the	model	does	not	miss	real	attacks.	FPR	is	important	to	ensure
that	the	model	does	not	generate	too	many	false	positives.

2. Related Works

In	 brute-force	 attacks,	 the	 assailant	 systematically	 submits	 every	 conceivable	 value	 as
inputs	 for	account	 credentials	 to	gain	unauthorized	access	 to	 the	 system's	account	data.
These	attacks	are	characterized	by	two	primary	methodologies:	dictionary	attacks,	which
exhaustively	 test	 all	 entries	 in	 a	 predefined	 list,	 and	 random	 sequence	methods,	 which
systematically	test	all	feasible	string	combinations	in	a	sequential	manner	[1].	A	prevalent
strategy	for	mitigating	brute-force	attacks	involves	implementing	access	controls	triggered
by	repeated	incorrect	password	entries.	For	servers,	this	entails	establishing	a	threshold	for
login	 failures	 via	 an	 account	 lock	 policy,	which	 restricts	 access	 to	 the	 account	 once	 the
threshold	is	surpassed	[2].
This	 research	 paper	 delves	 into	 the	 creation	 of	 an	 Intrusion	Detection	 System	 (IDS),

specifically	brute	force	attacks,	with	particular	emphasis	on	the	IDS's	ability	to	withstand
adversarial	attacks	and	the	reliability	of	explainable	AI.
Over	 the	past	decade,	numerous	 intrusion	detection	Systems	have	been	developed	 to

safeguard	cyber	networks	against	malicious	attacks	[3].	Notably,	Machine	Learning	(ML)-
based	IDS	have	demonstrated	outstanding	performance	owing	to	their	capacity	to	learn	vast
numbers	 of	 parameters.	 However,	 these	 sophisticated	 models,	 often	 termed	 black-box
models,	 lack	 interpretability	 [4],	 which	 contradicts	 the	 essential	 need	 for	 transparent
decision-making	in	IDS	operations.	Given	that	even	a	single	erroneous	prediction	by	an	IDS
can	expose	the	system	to	significant	cyber	threats,	the	integration	of	eXplainable	Artificial
Intelligence	(XAI)	 is	 imperative	 in	traditional	 IDS	frameworks	to	enhance	credibility	and
reliability.
Mane	et	al.	[5]	employed	the	NSL-KDD	dataset	alongside	a	Deep	Neural	Network	(DNN)-

based	 Machine	 Learning	 (ML)	 model	 for	 network	 intrusion	 detection.	 In	 an	 effort	 to
enhance	 transparency,	 they	 employed	 five	 distinct	 XAI	 frameworks	 to	 illustrate	 the



behavior	 of	 the	 trained	 model.	 Nevertheless,	 they	 did	 not	 leverage	 the	 explanations
provided	by	any	XAI	framework	to	validate	the	credibility	of	the	predicted	outcomes.
Mahbooba	 et	 al.	 [6],	 similarly,	 addressed	 the	 explanation	 of	 individual	 predicted

outcomes	by	deriving	rules	from	the	decision	tree	trained	and	assessed	on	the	KDD	dataset.
These	rules	were	exclusively	employed	to	clarify	each	predicted	outcome	and	the	overall
model	response.	However,	their	focus	did	not	extend	to	adversarial	attacks	or	enhancing
Intrusion	Detection	Systems	(IDS)	using	explanations	from	XAI	tools
Fidel	et	al.	[7]	introduced	a	framework	based	on	XAI	signatures	to	distinguish	between

adversarial	 samples	 and	 normal	 network	 traffic.	 They	 assessed	 their	 approach	 using
datasets	 typically	 employed	 in	 image	 recognition	 tasks	 and	 achieved	 an	 accuracy	 of
approximately	97%	in	detecting	adversarial	attacks.	Such	defense	mechanisms	are	essential
in	cyber	networks.	Hence,	this	paper	suggests	a	novel	intrusion	detection	approach	aimed
at	verifying	 the	credibility	of	machine	 learning	model	predictions	and	ensuring	superior
performance	in	both	normal	and	adversarial	scenarios.	Moreover,	it	enhances	transparency
in	the	decision-making	process,	thereby	bolstering	user	trust.

3. Proposed model
Isolation	Forest	 is	an	 innovative	unsupervised	 learning	method	specifically	designed	 for
anomaly	detection	in	data.	A	key	feature	of	this	method	is	 its	ability	to	effectively	detect
anomalies	without	the	need	for	prior	definition	or	labeling	of	normal	data.	Isolation	Forest
utilizes	 an	 ensemble	 of	 randomized	 decision	 trees	 to	 "isolate"	 observations,	 whereby
anomalous	data	points	are	typically	isolated	in	fewer	steps	than	normal	observations.
The	key	idea	of	the	algorithm	lies	in	the	fact	that	anomalies	typically	represent	a	minority

in	 the	 dataset	 and	 exhibit	 differences	 from	 normal	 observations,	 allowing	 them	 to	 be
isolated	more	quickly.	The	process	of	partitioning	the	data	is	performed	recursively	until
each	instance	is	isolated	in	its	own	"leaf"	of	the	tree.	The	number	of	splits	required	to	isolate
an	instance	is	used	as	a	measure	of	its	anomaly	score.
Isolation	Forest	demonstrates	high	effectiveness	in	various	applications,	including:
• Fraud	 detection:	 Identifying	 anomalous	 transactions	 or	 user	 behavior	 that	 may

indicate	financial	fraud.
• Intrusion	detection	systems:	Detecting	anomalous	patterns	in	network	traffic	that

may	indicate	unauthorized	access	attempts.
• Recommendation	 systems:	 Identifying	non-standard	user	 behavior	 or	 anomalous

purchasing	patterns	that	may	impact	recommendation	algorithms.
• Detection	 of	 anomalies	 in	 large	 datasets:	 Identifying	 anomalous	 records	 in	 large

datasets	that	may	 indicate	data	errors,	external	 interference,	or	other	unforeseen
phenomena.

The	underlying	principle	of	the	Isolation	Forest	algorithm	is	that	anomalous	data	points
are	more	readily	distinguishable	from	the	rest	of	the	dataset.	To	isolate	a	data	point,	the
algorithm	 iteratively	 creates	 partitions	 within	 the	 dataset	 by	 randomly	 choosing	 an
attribute	and	subsequently	 selecting	a	 split	 value	at	 random	between	 the	minimum	and
maximum	values	permitted	for	that	attribute.



	
Figure	1:	An	example	of	isolating	an	anomalous	point	in	a	2D	Gaussian	distribution	[8].	

Figure	1	illustrates	random	partitioning	in	a	2D	dataset	of	normally	distributed	points	
for	 a	 non-anomalous	 point,	 while	 Figure	 2	 depicts	 a	 point	 that	 is	 more	 likely	 to	 be	 an	
anomaly.	It	is	evident	from	the	visuals	that	anomalies	necessitate	fewer	random	partitions	
for	isolation	compared	to	normal	points.	

	
Figure	2:	An	example	of	isolating	a	non-anomalous	point	in	a	2D	Gaussian	distribution	[8].	

The	process	of	recursive	partitioning	can	be	visualized	through	a	tree	structure	called	
the	Isolation	Tree.	The	number	of	partitions	needed	to	isolate	a	point	can	be	understood	as	



the	length	of	the	path	within	this	tree,	starting	from	the	root	and	terminating	at	a	leaf	node.	
For	instance,	in	Figure	1,	the	path	length	of	point	𝑥𝑖	is	longer	than	that	of	𝑥𝑗	in	Figure	2.	
Let	𝑋	=	{𝑥1,	…,	𝑥𝑛}	be	[8]	a	set	of	d-dimensional	points	and	𝑋′⊂	𝑋.	An	Isolation	Tree	(iTree)	

is	defined	as	a	data	structure	with	the	following	properties:	
1. for	each	node	𝑇	in	the	Tree,	𝑇	is	either	an	external-node	with	no	child,	or	an	internal-

node	with	one	“test”	and	exactly	two	child	nodes	(𝑇𝑙	and	𝑇𝑟).	
2. a	test	at	node	𝑇	consists	of	an	attribute	𝑞	and	a	split	value	𝑝	such	that	the	test	𝑞	<	𝑝	

determines	the	traversal	of	a	data	point	to	either	𝑇𝑙	or	𝑇𝑟.	
To	build	an	iTree,	the	algorithm	recursively	divides	𝑋′	by	randomly	selecting	an	attribute	

𝑞	and	a	split	value	𝑝,	until	either:	
1. the	node	has	only	one	instance,	or	
2. all	data	at	the	node	have	the	same	values.	
When	the	iTree	is	fully	grown,	each	point	in	𝑋	is	isolated	at	one	of	the	external	nodes.	

Intuitively,	the	anomalous	points	are	those	(easier	to	isolate,	hence)	with	the	smaller	path	
length	in	the	tree,	where	the	path	length	ℎ(𝑥𝑖)	of	point	𝑥𝑖	∈	𝑋	is	defined	as	the	number	of	
edges	𝑥𝑖	traverses	from	the	root	node	to	get	to	an	external	node.	
To	detect	anomalies	using	IForest,	two	main	steps	need	to	be	executed:	
1. Training	the	model.	The	model	is	built	by	taking	a	partial	sample	of	the	dataset.	
2. Testing	the	model.	The	test	dataset	is	fed	into	the	model	to	compute	anomaly	scores	

for	each	point.	
The	diagram	in	Figure	3	illustrates	the	algorithmic	steps	of	applying	the	IForest	model.	

	
Figure	3:	Isolation	forest	construction	process	[9].	



The	IForest	algorithm	can	be	used	to	detect	brute	force	attacks	on	a	login	system.	If	an	
attacker	attempts	to	guess	the	password,	they	will	make	many	incorrect	login	attempts.	The	
IForest	algorithm	can	detect	and	label	such	attempts	as	anomalies.	The	process	of	applying	
the	Isolation	Forest	algorithm	for	a	login	system	attack	detection	model	consists	of	several	
steps.	
The	first	step	is	to	gather	data	about	login	attempts	to	the	system.	This	data	may	include	

characteristics	such	as:	
• IP	address	
• Username	
• Password	
• Date	
The	second	step	is	to	create	an	IForest	model.	This	can	be	done	using	the	Isolation	Forest	

library	from	the	scikit-learn	package.	
The	third	step	is	to	train	the	IForest	model	on	the	gathered	data.	This	process	may	take	

some	time	depending	on	the	size	of	the	dataset.	
After	training	the	IForest	model,	it's	necessary	to	determine	the	anomaly	threshold.	This	

threshold	value	determines	which	login	attempts	are	considered	anomalous.	
The	fifth	step	is	to	use	the	IForest	model	to	assess	anomalies	for	new	login	attempts.	If	a	

login	 attempt	 has	 an	 anomaly	 score	 lower	 than	 the	 anomaly	 threshold,	 it	 is	 considered	
anomalous.	
Brute	force	attacks	on	login	systems	typically	have	a	short	path	to	the	root	of	the	tree.	

This	 is	 because	 the	 attacker	 attempting	 to	 crack	 the	 password	 will	 try	 many	 incorrect	
passwords.	 If	 a	 login	 attempt	 has	 an	 anomaly	 score	 below	 the	 anomaly	 threshold,	 it	 is	
considered	 anomalous.	 This	 login	 attempt	 can	 be	 classified	 as	 a	 brute	 force	 attack.	 The	
anomaly	threshold	can	be	optimized	to	achieve	an	optimal	balance	between	sensitivity	and	
specificity.	Sensitivity	 is	 the	probability	 that	 the	model	correctly	classifies	an	anomalous	
login	attempt	as	an	anomaly.	Specificity	is	the	probability	that	the	model	correctly	classifies	
normal	login	attempts	as	normal.	A	too	low	anomaly	threshold	will	result	in	high	sensitivity	
but	also	a	high	number	of	false	positive	results.	A	too	high	anomaly	threshold	will	result	in	
high	specificity	but	also	a	high	number	of	false	negative	results.	
IForest	is	an	effective	method	for	detecting	brute	force	attacks	on	login	systems.	It	has	

several	advantages,	such	as:	
• Speed	
• Accuracy	
• Robustness	to	noise	
• Adaptability	to	changes	

	

4. Results
In	this	section,	the	Python	code	implementation	is	demonstrated	to	create	an	intelligent

intrusion	detection	system	(for	brute	force	attacks)	on	the	login	system.	After	displaying
each	written	part	of	the	code,	the	execution	result	and	its	description	is	provided.



The	working	principle	of	the	intelligent	system	model	involves	detecting	unsuccessful	
login	attempts	to	specific	accounts	within	a	system	or	software	application	based	on	login	
history	and	providing	information	about	each	anomaly	(users	and	anomalous	IP	addresses).	
This	enables	the	individual	or	the	monitoring	model	itself	to	take	appropriate	measures	to	
ensure	integrity,	confidentiality,	and	availability.	
Before	writing	the	code,	we	need	to	first	obtain	and	save	the	login	data	into	a	CSV	file	for	

training	and	applying	the	model.	The	CSV	file	should	have	4	columns	(IP-address,	user,	time,	
login	result),	containing	data	about	the	IP	addresses	from	which	login	attempts	were	made,	
the	users	whose	accounts	were	attempted	to	be	logged	into,	the	time,	and	the	login	result,	
as	shown	in	Figure	4.	

	
Figure	4:	Implemented	model	input	file.	

The	next	step	is	to	install	and	utilize	the	Scikit-learn	library	along	with	Isolation	Forest	
for	training	and	application,	Pandas	for	file	operations,	NumPy	for	numerical	functions,	and	
Matplotlib	for	creating	plots.	See	Appendix	A	for	references	[10,	11,	12].	
To	filter	the	data,	we	create	two	DataFrames,	failed	logins	and	success	logins,	where	we	

store	the	data	and	count	the	number	of	failed	and	successful	login	attempts,	respectively.	
Then,	we	merge	them	into	one	DataFrame,	grouped	data,	where	we	store	data	about	users,	
IP	addresses,	and	the	count	of	failed	and	successful	logins.	



To	train	the	anomaly	detection	model	for	the	login	system,	we	need	to	utilize	the	grouped	
data	 DataFrame	 containing	 information	 about	 the	 count	 of	 failed	 and	 successful	 login	
attempts.	 For	 this	 purpose,	 we	 create	 our	 model	 (model)	 and	 specify	 parameters	
(contamination='auto',	which	denotes	the	percentage	of	anomalous	points	from	the	total	by	
isolating	normal	points	from	anomalies,	random	state=42,	defining	the	initial	state	of	the	
random	number	generator).	Then,	based	on	the	count	of	failed	and	successful	attempts	for	
each	 IP	 address,	 the	 model	 predicts	 whether	 there	 is	 anomaly,	 labeling	 each	 row	
accordingly:	-1	if	an	anomaly	is	detected	and	1	if	not,	as	showed	on	Figure	5.	

	
Figure	5:	Trained	model	output.	

To	visually	represent	the	model's	output,	we	need	to	use	the	Matplotlib	library.	The	plot	
is	constructed	based	on	information	about	failed	attempts	and	is	displayed	corresponding	
to	each	user	from	the	"Logs.csv"	file.	The	visualized	results	presented	on	Figure	6.	

	
Figure	5:	The	resulting	visualization	of	failed	login	attempts	per	user.	



To	 obtain	 information	 about	 suspicious	 IP	 addresses	 from	 which	 a	 specific	 user
experienced	an	anomalous	number	of	login	attempts,	you	need	to	filter	IP	addresses	from
the	DataFrame	“grouped_data”	based	on	the	"anomaly"	index	and	present	it	as	a	message.
The	development	of	an	intelligent	intrusion	detection	system	for	identifying	brute	force

attacks	on	login	systems	demonstrates	significant	potential	in	ensuring	digital	security.	The
application	of	the	Isolation	Forest	algorithm	in	the	context	of	unsupervised	learning	enables
effective	identification	of	anomalies	in	large	datasets,	particularly	in	login	histories.

5. Discussion
The	proposed	Isolation	Forest-based	approach	effectively	detects	brute	force	attacks	with
high	accuracy	and	reduced	false	positives	compared	to	traditional	methods.	 Its	ability	to
isolate	anomalous	 login	attempts	 in	 real-time	enhances	 its	utility	 in	 large-scale	 systems,
offering	both	speed	and	adaptability	as	 it	 learns	 from	evolving	data	patterns.	One	of	 the
model’s	 major	 strengths	 is	 its	 unsupervised	 nature,	 allowing	 it	 to	 identify	 anomalies
without	 the	 need	 for	 labeled	 datasets,	 making	 it	 suitable	 for	 dynamic	 environments.
However,	 the	 model’s	 performance	 heavily	 depends	 on	 setting	 an	 optimal	 anomaly
threshold,	which	requires	fine-tuning	to	balance	sensitivity	and	specificity.	A	key	limitation
is	that	in	cases	of	highly	imbalanced	datasets,	where	brute	force	attacks	are	rare,	the	model
may	struggle	with	sensitivity,	potentially	missing	some	attacks.	Additionally,	the	model	can
be	 vulnerable	 to	 adversarial	 attacks	 that	 are	 designed	 to	mimic	 normal	 login	 behavior,
reducing	its	effectiveness	in	more	sophisticated	threat	scenarios.	Despite	these	limitations,
the	 Isolation	Forest	method	shows	promise	as	a	scalable	and	efficient	solution	 for	brute
force	detection.	Future	work	could	explore	hybrid	approaches	or	enhancements	to	further
improve	the	model’s	resilience	against	adversarial	tactics	and	improve	its	performance	in
imbalanced	data	sets.

6. Conclusion
The	developed	algorithm	demonstrates	high	effectiveness	in	anomaly	detection,	especially
in	 contexts	 where	 anomalies	 are	 relatively	 rare	 compared	 to	 the	 overall	 number	 of
observations.	Its	ability	to	quickly	isolate	anomalous	data	points	makes	it	an	ideal	tool	for
detecting	brute	force	attack	attempts.
Usage	of	this	method	may	automate	the	process	of	identifying	suspicious	login	attempts,

reducing	the	need	for	constant	monitoring	by	security	analysts	and	increasing	the	speed	of
response	to	potential	threats.	This	approach	can	be	utilized	on	web	and	mobile	application
services	and	may	be	highly	valuable	if	applied	on	critical	infrastructure	computer	systems
[13].	The	unsupervised	learning	usage	helps	reduce	the	number	of	false	positives,	as	the
model	 adapts	 to	 changes	 in	 data	 behavior,	 ensuring	 more	 accurate	 detection	 of	 real
anomalies.
The	developed	method	seamlessly	integrates	with	existing	login	systems	and	databases,

enabling	the	quick	implementation	of	an	additional	layer	of	security	without	the	need	for
significant	modifications	to	the	existing	infrastructure.	It	also	provides	information	about



users	and	IP	addresses	associated	with	anomalous	access	attempts,	which	can	be	used	for
further	analysis	and	the	development	of	countermeasures.

References
[1] Park,	J.,	Kim,	J.,	Gupta,	B.B.,	Park,	N.	(2021).	Network	log-based	SSH	brute-force	attack

detection	 model.	 Computers,	 Materials	 &	 Continua,	 68(1),	 887-901.
https://doi.org/10.32604/cmc.2021.015172.

[2] P.	S.	Abril,	R.	Plant,	The	patent	holder’s	dilemma:	Buy,	sell,	or	troll?,	Communications	of
the	ACM	50	(2007)	36–44.	https://doi.org/10.1145/1188913.1188915.

[3] Abid	Salih,	A.	and	Abdulazeez,	A.M.	(2021)	“Evaluation	of	Classification	Algorithms	for
Intrusion	Detection	System:	A	Review”,	 Journal	of	 Soft	Computing	and	Data	Mining,
2(1),	 pp.	 31–40.	 Available	 at:
https://publisher.uthm.edu.my/ojs/index.php/jscdm/article/view/7982	 (Accessed:
29	April	2024).

[4] Rai,	A.	Explainable	AI:	from	black	box	to	glass	box.	J.	of	the	Acad.	Mark.	Sci.	48,	137–141
(2020).	https://doi.org/10.1007/s11747-019-00710-5.

[5] S.	Mane	and	D.	Rao,	“Explaining	network	intrusion	detection	system	using	explainable
ai	 framework,”	 arXiv	 preprint	 arXiv:	 2103.07110	 ,	 2021.
https://doi.org/10.48550/arXiv.2103.07110.

[6] Mahbooba,	 Basim	 &	 Timilsina,	 Mohan	 &	 Sahal,	 Radhya	 &	 Serrano,	 Martin.	 (2021).
Explainable	 Artificial	 Intelligence	 (XAI)	 to	 Enhance	 Trust	Management	 in	 Intrusion
Detection	 Systems	 Using	 Decision	 Tree	 Model.	 Complexity.	 2021.	 11.
https://doi.org/10.1155/2021/6634811.

[7] G.	 Fidel,	 R.	 Bitton,	 and	 A.	 Shabtai,	 “When	 explainability	meets	 adversarial	 learning:
detecting	 adversarial	 examples	 using	 shap	 signatures,”	 in	 Proceedings	 of	 2020
International	Joint	Conference	on	Neural	Networks	(IJCNN),	Glasgow,	UK,	2020,	pp.	1-
8.

[8] Isolation	forest,	Available	at:	https://en.wikipedia.org/wiki/Isolation_forest.
[9] Zou,	Zhuping	&	Xie,	Yulai	&	Huang,	Kai	&	Xu,	Gongming	&	Feng,	Dan	&	Long,	Darrell.

(2019).	A	Docker	Container	Anomaly	Monitoring	System	Based	on	Optimized	Isolation
Forest.	 IEEE	 Transactions	 on	 Cloud	 Computing.	 PP.	 1-1.

[10] Python	 documentation,	 Available	 at:	 https://www.python.org/doc/	 (Accessed:	 11
April	2024).

[11] Scikit-learn	 Isolation	 Forest	 documentation.	 Available	 at:	 https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

[12] Matplotlib	 3.8.4	 documentation.	 Available	 at:
https://matplotlib.org/stable/index.html	(Accessed:	11	April	2024).

[13] Olha	 Mykhaylova,	 Taras	 Fedynyshyn,	 Anastasiia	 Datsiuk,	 Bohdan	 Fihol,	 Hennadii
Hulak: Mobile Application as a Critical Infrastructure Cyberattack Surface.
Proceedings of the Cybersecurity Providing in Information and Telecommunication
Systems II co-located with International Conference on Problems of
Infocommunications. Science and Technology (PICST 2023), Kyiv, Ukraine,
October 26, 2023, CEUR-WS.org/Vol-3550, urn:nbn:de:0074-3550-0.



A. Algorithm implementation python code 

	


