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Abstract
An approach to parallelizing the DBSCAN algorithm without losing in accuracy is presented to 
further  improve  quality  of  arbitrary-shape  clustering.  The  dataset  is  divided  into  a  number  of 
subsets,  one  of  which  should  be  labeled  to  adjust  the  DBSCAN  hyperparameters  —  the 
neighborhood  radius  and  minimum-neighbors  number.  The  neighborhood  radius,  set  to  a 
minimum, is adjusted first, where the original DBSCAN is applied to a subset of points with known 
ground truth labels. While the current accuracy of clustering is not improved, the neighborhood 
radius is increased by an increment step. The original DBSCAN algorithm is applied with the best 
neighborhood  radius  to  the  remaining  subsets.  The  minimum-neighbors  number,  set  to  3,  is 
adjusted second by the best neighborhood radius. Compared to the performance of the original 
DBSCAN algorithm, the parallelized DBSCAN performs more accurately being extremely fast. As 
the  dataset  size  increases  and  the  number  of  clusters  increases,  one  by  one  or  together,  the 
parallelized  DBSCAN  outperforms  the  original  DBSCAN  more.  However,  the  DBSCAN 
parallelization  by  spatial  dataset  division  and  hyperparameter  adjustment  is  less  efficient  on 
datasets  with more complex structure.  Nevertheless,  the average speedup exceeds 80 times for 
planar datasets and exceeds 300 times for three-dimensional datasets.
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1. Introduction

DBSCAN is one of the most commonly used clustering algorithms whose purpose is to reveal 
clusters  of  arbitrary shape by domain minimal  knowledge [1,  2].  DBSCAN groups points 
based  on  the  notion  of  -neighborhood  of  a  point  and  a  specified  minimum number  of 
neighboring points  ,  which further are supplemented with the notions of core points, 
directly reachable points, non-directly reachable points, and outliers [3, 4]. Besides, to rectify 
the  non-symmetric  relation  of  the  reachability  [5,  6],  a  symmetric  notion  of  density-
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connectedness  is  added [7,  8].  The density  is  defined by the  neighborhood radius   and 
number , where a cluster contains at least  points. The -neighborhood is defined as 
a set of points falling within radius  by a distance function [5, 9, 10]. Apart from DBSCAN 
hyperparameters  and , the distance function is seen as an additional parameter of the 
DBSCAN algorithm [7, 11, 12].

For   points  in  a  dataset,  the  DBSCAN  average  runtime  complexity  is  , 

although the worst case of  is not excluded [3, 4, 7], especially when there is probable 

incompleteness in data [9, 10, 13] or the neighborhood radius can vary in a wide range [5, 12, 
14]. Whereas the overall performance of DBSCAN is quite satisfactory, and it successfully 
reveals  outliers  and  identifies  nonglobular  shapes  (contrary  to  other  commonly  used 
clustering algorithms like, e. g., k-means [9, 15, 16]), it fails to handle datasets whose clusters 
are of  much varying densities  [17,  18].  The second drawback is  the neighborhood radius 
selection [8, 11, 14]. While datasets of planar points or points in the three-dimensional space 
are  visualized,  the  neighborhood  radius  is  well  understood  and  assessed,  but  higher 
dimensions  are  problematic  to  “see”  a  meaningful  distance  [19,  20].  Moreover,  quality  of 
features may be pretty different and may change through a domain which is clustered [8]. 
This hinders in obtaining accurately partitioned datasets by coarsely applying DBSCAN [17]. 
There are domains whose factual clusters have multiple meaningful radii of the neighborhood 
[11, 13, 20].

Both the weaknesses of  DBSCAN are addressed by OPTICS [21,  22],  which is  another 
algorithm whose purpose is to detect meaningful clusters in data of varying density [23, 24]. 
OPTICS also requires two hyperparameters  and , although the neighborhood radius is 
not  necessary.  The  radius  can be  set  to  the  maximum possible  value,  but  this  results  in 

runtime close to  [25]. Besides, OPTICS is mainly intended for hierarchical clustering, 

and OPTICS is  reported  to  have  an actual  constant  slowdown factor  of  1.6  compared to 
DBSCAN [21, 26].

Another DBSCAN drawback, being reported less frequently, is its poorer performance on 
large datasets [27]. This especially concerns high-dimensional data, where it is difficult to find 
an appropriate value for  due to adjusting this hyperparameter takes significant amounts of 
time and computational resources. Overall, tunability of DBSCAN hyperparameters (as well in 
other clustering algorithms) worsens as the dataset enlarges [28, 29].

Nevertheless, when a large dataset is assumed to have tightly connected or not sparsely 
scattered clusters,  it  is possible to divide the dataset into multiple subdatasets in order to 
apply  the  DBSCAN algorithm to  every  subdataset  separately.  This  resembles  divide-and-
conquer approach successfully applied to solving large combinatorial optimization problems 
like the traveling salesman problem with thousands of nodes and larger [30]. In particular, the 
traveling salesman problem nodes are grouped into a definite number of clusters,  each of 
which  corresponds  to  an  open-tour  traveling  salesman  subproblem  subsequently  solved 
independently of solving other subproblems [31, 32].

2. Problem statement

In cluster analysis, spatial dataset division is effective when possible clusters are not sparsely 



scattered.  Otherwise,  the problem of clustering tends to be almost trivial  — the distinctly 
distanced groups of objects can be more efficiently separated by the support vector machine 
(linearly inseparable data are projected onto a higher dimensional space to become linearly 
separable [33, 34]) or other similar approaches including k-means with evaluating the optimal 
number of clusters using the silhouette clustering evaluation criterion [15, 35,  36].  To the 
contrary,  potential  clusters  closely  packed  together  are  totally  indistinguishable  without 
considering spatial densities if, for instance, the clusters have at least a partially hierarchical 
structure [2, 37, 38]. A marginal example of such a structure is a dataset consisting of non-
overlapping  enclosed  hyperspheres  or  hyperellipsoids  (for  planar  objects,  they  are  non-
overlapping enclosed circles or ellipses), or objects of similar form being irregularly distorted 
or nonconvex [29, 39]. Another major example frequently occurred in practice is a dataset 
consisting of cluster bands, where serpentine-like clusters have a resembling structure [40].

Naturally,  the  DBSCAN algorithm could  have  been  easily  sped  up  if  it  was  generally 
parallelizable [1, 2, 7]. Unfortunately, the algorithm is of two loops, and there is the nested 
loop which cannot be made independent of the outside loop [1, 4]. The outside loop, working 
with each point in a given dataset, is based on the range query which can be implemented 
using database indexing for better performance rather than a slow linear scanning. Although 
some efforts have been made in this direction to parallelize the outside loop, the gain does not 
seem to have a significant impact [2, 17, 19].

A follow-up DBSCAN algorithm named HDBSCAN [2, 17] was an attempt to rectify the 
DBSCAN  flat-result  drawbacks  rather  its  poor  parallelizability.  Neither  did  GDBSCAN 
advances  in  parallelizability  [5,  7],  which  only  moved  the  original  DBSCAN  algorithm 
parameters  and  to the predicates.

Issuing  from  unsatisfactory  runtime  complexity  of  the  DBSCAN  algorithm  for  large 
datasets, the goal is to suggest an approach to DBSCAN parallelization without losing much in 
accuracy.  The approach should be algorithmized by automatically adjusting neighborhood 
radius  to the most efficient value. A series of computational experiments is to be carried out 
in  order  to  see  the  performance  of  the  parallelized  DBSCAN  algorithm  with  the 
hyperparameter adjustment compared to the performance of the original DBSCAN algorithm. 
The comparative results are then to be discussed by underlining limitations and drawbacks of 
the suggested DBSCAN parallelization.

3. DBSCAN parallelization

To adjust DBSCAN hyperparameters automatically, consider an ultimate repetition of trying 
to improve the accuracy. As there are more possible versions of the neighborhood radius than 
those of the minimum number of neighboring points, the neighborhood radius is adjusted 

first. For this, denote the maximum number of accuracy improvement fails by . While 

the minimum number of neighboring points is adjusted, the maximum number of accuracy 

improvement  fails  denoted by   is  used.  These  hyperparameters  are  adjusted as 

follows:
1. Divide the dataset into  subsets.
2. Set  to a minimum and apply the DBSCAN algorithm to a subset of points with known 

ground truth labels.



3. While the current number of accuracy improvement fails is fewer than , increase 

 by . Once the number of outliers and redundant labels becomes fewer, set the current 
number of accuracy improvement fails to 0, and store the current value of  as the best one; 
otherwise, increase the current number of accuracy improvement fails by 1.

4. Denote the best neighborhood radius by .

5. Apply the DBSCAN algorithm to the remaining  subsets.

6. Set  to 3 and apply the DBSCAN algorithm to the subset by the best neighborhood 

radius .

7.  While  the  current  number  of  accuracy improvement  fails  is  fewer  than  , 

increase  by 1. Once the number of outliers and redundant labels becomes fewer, set the 

current number of accuracy improvement fails to 0, and store the current value of  as the 
best one; otherwise, increase the current number of accuracy improvement fails by 1.

Obviously,  running  the  DBSCAN  algorithm  on  the  remaining   subsets  can  be 
executed in parallel. Moreover, as the hyperparameters are adjusted (on a labeled subset), the 
size of a labeled subset can be set to a few different versions, and the adjustment can be  
executed in parallel on these differently sized subsets [16, 37, 38]. Differently sized subsets are 
obtained by changing number .

First of all, the DBSCAN parallelization is expected to significantly reduce the computation 
time.  Secondly,  the clustering accuracy is  believed to remain comparable to the DBSCAN 
algorithm itself, if even the adjusted hyperparameters are used in it. The correctness of these 
hypotheses is going to be ascertained or falsified by computational experiments. A specificity 
of such experiments is that the dataset can be visualized, with better or worse extent of cluster 
appearance and distinguishability.

4. Computational experiments

The performance of the parallelized DBSCAN algorithm with the hyperparameter adjustment 
is  estimated  by  running  the  above-stated  algorithm  on  planar  datasets  whose  potential 
clusters are closely packed together. There are two types of such datasets: developing and 
enveloping. Serpentine-like clusters form a developing dataset (Figure 1).  Non-overlapping 
enclosed circles  or  ellipses  modulated by sinusoidal  functions form an enveloping dataset 
(Figure 2).  For abbreviation, these clusters (datasets) will  be called serpentine and circular 
clusters (datasets), respectively.
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Figure  1: An example of  a dataset  comprised by 10 serpentine-like clusters (each cluster 
contains 1000 points).

A serpentine dataset point  is randomly generated using values 

, , ,  

of  normally  distributed  random variables  with  zero  mean  and  unit  variance  for  point   
belonging to cluster , where 

 and , , (1)

i. e.,  , the dataset size is  , and  is the number of clusters of size   each. 

Besides, values  and  of two additional normally distributed random variables with zero 
mean and unit variance are used for this dataset. Thus, the horizontal component is

(2)

by (1), where  is chosen randomly between 0.1 and 1 with a step of . The vertical 
component is 



(3)

by (2), (1), 

, (4)

, (5)

Figure 2: An example of a dataset comprised by six enclosed circular clusters (each cluster 
contains 1000 points).

where both  and  are independent being chosen randomly between 3 and 4 with a 

step of 0.001; both  and  are independent being chosen randomly between 0.01 and 0.1 



with a  step of  ;   is  chosen randomly between 0.0005 and 0.005 with a  step of 

, whereupon it is set negative if ;  is varied between 0.1 and 0.5 with a step 

of 0.1;  is chosen randomly between 0.0005 and 0.005 with a step of , whereupon 

it is set negative if .
The  serpentine  dataset  by  (2),  (3),  (1),  (4),  (5)  is  generated  with  three  to  18  clusters, 

, for five versions of noise magnitude, 

, 

where each cluster contains 1000 to 10000 points with a step of 1000 points, 

. 

Clusters  contain  the  same  number  of  points  .  The  dataset  is  divided  into   
subsets so that each cluster would contain the same number of points within every subset, 
where 

(6)

and subset  is clustered,  if  is even and 

 

if  is odd. Therefore, for a one generation of the serpentine dataset, there are 10 versions of 
the dataset size, 16 versions of the dataset cluster number, five versions of noise magnitude, 
and  five  versions  of  the  dataset  division.  Applied  to  a  dataset,  the  parallelized  DBSCAN 
algorithm returns the best neighborhood radius , the best minimum number of neighboring 

points , the number of outliers  (labeled by ), the number of points incorrectly 

labeled as non-existing clusters  (their labels are greater than , as if there are some 

other one or a few clusters), and the number of points incorrectly labeled as existing clusters 

 (being between 1 and , their labels are factually incorrect or confused). The total 

number of missed (incorrectly labeled) points is

(7)

whose percentage is

. (8)

The serpentine dataset generation is repeated for 100 times, whereupon the results are 
averaged over the 100 repetitions. The averages are presented as a  array whose 
entry is a set of 



, , , , , , . (9)

Another   array  presents  averages  of  the  computation  time.  To  compare 
results (9) with those produced by the DBSCAN algorithm itself, the parallelized DBSCAN 
algorithm with the hyperparameter adjustment is also used, but with  and . The 

original  DBSCAN  algorithm  results  are  stored  as  a   array  with  (9).  Another 
 array presents averages of the DBSCAN computation time. 

Comparative computation time statistics for the planar serpentine dataset is presented in 
Table  1,  where  every  entry  is  an  averaged  ratio  of  the  original  DBSCAN  algorithm 
computation  time  to  the  parallelized  DBSCAN  algorithm  computation  time.  Ratio 

 is a computation time function of the dataset size and the number of dataset 

clusters, which is a  matrix preliminarily averaged over noise;  is a  

matrix preliminarily averaged over dataset size;   is a   matrix preliminarily 

averaged over the number of dataset clusters.  The advantage of the parallelized DBSCAN 
algorithm  is  quite  obvious  —  it  is  much  faster,  while,  prudently  speaking,  the  speedup 
minimum is above 10 times and the speedup maximum exceeds 100 times. On overall average, 
the parallelized DBSCAN is 97.21 times faster.

Table 1
Comparative computation time statistics for the planar serpentine dataset

Statistics Minimum Average Maximum
Standard 
deviation

13.78549 82.3331 157.3137 35.78136

52.49892 91.56534 117.2529 16.80617

22.08231 87.4891 139.2775 34.42707

Comparative performance statistics for the planar serpentine dataset is presented in Table 
2, where rows with

, , (10)

contain percentages, “Five intervals” stands for the parallelized DBSCAN with five versions of 
the dataset division, and “Best interval” stands for the parallelized DBSCAN with the version 
at which percentage (8) of missed (incorrectly labeled) points is minimal. Herein and below, 
the DBSCAN accuracy is decomposed into rates for (10) and (8). The parallelized DBSCAN 
misses (loses) points at a rate of about 7 %, whereas it is above 26 % by the original DBSCAN. 
Points misidentified as outliers are lost at almost equal rates, although a little advantage of the 
parallelized DBSCAN exists whose rate is below 1.95 % (while the original DBSCAN loses 
above 2.1 % of  points  misidentified as  outliers).  The original  DBSCAN incorrectly  assigns 
above 3.1 % of points to non-existing clusters, but this rate is as 2.5 times as lower  for the 
parallelized DBSCAN. The original DBSCAN confuses clusters even more exceeding 21 % of 
points incorrectly assigned to existing clusters, while this rate for the parallelized DBSCAN is 



slightly above 3.8 %. When the best interval is selected, the mentioned rates for (10) and (8) 
drop below 0.21 %, 0.26 %, 0.73 %, 1.19 %, respectively. However, the worst cases of the rates 
for (10) and (8) are not excluded even by the parallelized DBSCAN with the best interval 
(Figure 3).

Table 2
Comparative performance statistics for the planar serpentine dataset

Statistics Minimum Average Maximum
Standard 
deviation

DBSCAN 0.04 0.93991 2.87 0.3686
Five 

intervals
0.06 1.1708 3.53 0.43709

Best 
interval

0.31 1.34179 3.53 0.46328

DBSCAN 3 4.03313 27 2.39181
Five 

intervals
3 3.0225 17 0.34669

Best 
interval

3 3.00113 9 0.06324

DBSCAN 0 2.16369 99.90769 13.575
Five 

intervals
0 1.93919 99.55 10.98534

Best 
interval

0 0.20774 66.50909 0.8341

DBSCAN 0 3.13743 82.32462 8.84055
Five 

intervals
0 1.22586 79.81176 3.53786

Best 
interval

0 0.25967 31.83636 1.03566

DBSCAN 0 21.45342 94.44389 28.24494
Five 

intervals
0 3.80889 80.86471 8.94931

Best 
interval

0 0.72118 77.975 2.92216

DBSCAN 0 26.75454 99.97692 33.20733
Five 

intervals
0 6.97394 99.9 16.30767

Best 
interval

0 1.1886 87.35455 4.06603

A circular dataset point   is  randomly generated using values  ,   of 

normally distributed random variables with zero mean and unit variance and values ,  



of uniformly distributed random variables on interval  for point  belonging to cluster 

 by (1), where 

(11)

and 

(12)

by

, (13)
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Figure 3: The worst case of the planar serpentine dataset of 11000 points and 11 clusters, 
where the best result of  is produced by the best-interval parallelized DBSCAN.

and values  and  of two additional normally distributed random variables with zero mean 

and unit variance, wherein   is chosen randomly between 0.1 and 3 with a step of  ; 

 if  and  if ;  is chosen randomly between 2 and 18 with a step of 



1;  is chosen randomly between 0 and  with a step of ;  if  and  

if ;  is varied between 0.2 and 1 with a step of 0.2.
The planar circular dataset by (11), (12), (1), (13) is generated with three to eight clusters, 

, for five versions of noise magnitude, 

, 

where each cluster contains 1000 to 10000 points with a step of 1000 points, 

. 

The remaining parameters of the circular dataset and its processing including (6) — (9) are 
the same as for the serpentine dataset, except for the array size that is  now (the 
second dimension  has  6  entries,  which  influences  the  subsequent  arrays  upon averaging, 
minimizing, and maximizing).

Presented  in  Table  3,  comparative  computation  time  statistics  for  the  planar  circular 
dataset  resemble  that  in  Table  1  for  the  planar  serpentine  dataset.  Thus,  the  parallelized 
DBSCAN  speedup  minimum  is,  prudently  speaking,  above  15  times  and  the  speedup 
maximum exceeds 125 times, by roughly the same standard deviations. On overall average, 
the parallelized DBSCAN is 99.67 times faster (particularly, it is due to the maximum number 
of clusters here is fewer than that for the planar serpentine dataset).

Table 3
Comparative computation time statistics for the planar circular dataset

Statistics Minimum Average Maximum
Standard 
deviation

17.38579 87.96091 151.3004 38.82666

71.587 99.31722 137.7623 16.79144

18.54298 88.55638 169.5846 40.77947

Presented in Table 4,  comparative performance statistics for the planar circular dataset 
confirms the advantage of  the  parallelized DBSCAN algorithm.  The parallelized DBSCAN 
loses points at a rate of about 7.12 % (slightly higher than that for the planar dataset), whereas 
it is 11.85 % by the original DBSCAN being 2.25 times lower than that for the planar dataset. 
Points  misidentified  as  outliers  are  lost  at  rates  of  1 %  and  1.42 %  by  the  original  and 
parallelized DBSCAN algorithms, respectively. So, the parallelized DBSCAN may lose more 
circularly located points than the original DBSCAN. The original DBSCAN incorrectly assigns 
above 5.59 % of points to non-existing clusters, but this rate is as 4.26 times as lower for the 
parallelized DBSCAN. The cluster confusion is at similar rates — it is 5.25 % and 4.39 % by the 
original and parallelized DBSCAN algorithms, respectively. When the best interval is selected, 
the mentioned rates for (10) and (8) drop below 0.7 %, 0.3 %, 1.97 %, 2.96 %, respectively. These 



rates are clearly higher than those for the planar serpentine dataset. Nevertheless, the planar 
circular dataset worst case (Figure 4) is not a complete fail like the planar serpentine dataset 
worst case is.

Table 4
Comparative performance statistics for the planar circular dataset

Statistics Minimum Average Maximum
Standard 
deviation

DBSCAN 0.34 0.99729 2.46 0.32409
Five 

intervals
0.01 1.20794 3.51 0.53009

Best 
interval

0.31 1.33544 3.37 0.55512

DBSCAN 3 4.68783 30 3.56671
Five 

intervals
3 3.10963 28 0.95433

Best 
interval

3 3.16067 20 1.22944

DBSCAN 0 1.01034 35.72857 2.6169
Five 

intervals
0 1.41552 100 4.8618

Best 
interval

0 0.69079 20.01563 1.21654

DBSCAN 0 5.59503 67.76286 12.54719
Five 

intervals
0 1.3124 46.65625 3.22294

Best 
interval

0 0.29938 11.75 0.8674

DBSCAN 0 5.24657 74.58056 10.69118
Five 

intervals
0 4.38885 67.45 7.23762

Best 
interval

0 1.96513 29.9125 3.54033

DBSCAN 0 11.85194 80.95 19.0927
Five 

intervals
0 7.11677 100 10.6957

Best 
interval

0 2.9553 44.9 4.55293
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Figure 4: The worst case of the planar circular dataset of 8000 points and 8 clusters, where  
the best result of  is produced by the best-interval parallelized DBSCAN.

It is worth noting that the dataset worst case in Figure 4 has far much more variety in its 
structure than that in the worst case in Figure 3. Despite this, the best-interval parallelized 
DBSCAN performs relatively much better than the original DBSCAN. The latter has 73.7 % of 
missed  points  versus  44.9 %  of  points  missed  by  the  parallelized  DBSCAN with   
(Figure  5).  The  percentage  of  outliers,  however,  is  13.1 %  by  the  parallelized  DBSCAN, 
whereas  the  original  DBSCAN  leaves  here  7.225 %  of  points  as  outliers.  Meanwhile,  the 
original DBSCAN assigns 59.925 % of points to non-existing clusters, and this rate is just 8.3 % 
for the parallelized DBSCAN (the black-square marked points are clearly seen in Figure 5). 
Due to this, the cluster confusion is lower at the original DBSCAN — it is 6.55 % versus 23.5 % 
at the parallelized DBSCAN.



Figure 5: The original  DBSCAN performance (above) versus the best-interval  parallelized 
DBSCAN performance (below) in the worst case of the planar circular dataset in Figure 4 
(black squares mark points assigned to non-existing clusters, and red squares mark outliers).



In this particular example, the parallelized DBSCAN performance significantly worsens as 
the dataset is divided into fewer subsets. Thus,  and the rates for (10) are 6.7625 %, 

13.1625 %, 28.15 % with , but  and the rates for (10) are 5.9875 %, 26.9125 %, 
30.7625 % with   (Figure 6). Furthermore, these rates are 52.9625 %, 1.1875 %, 3.2625 %, 
48.5125 %  with  ,  and  69.25 %,  0.7875 %,  1.0125 %,  67.45 %  with  ,  respectively 
(Figure 7), i. e. the rate of the cluster confusion grows while the rate of outliers drops. The rate 
of points assigned to non-existing clusters becomes lower as the subset is made larger (or, in 
other words, number  is taken fewer).

For creating three-dimensional serpentine-like clusters, a circular dataset point 

 

is randomly generated using values 

, , , ,  

of normally distributed random variables with zero mean and unit variance and values 

, ,  

of uniformly distributed random variables on interval  for point  belonging to cluster 

 by (1), where 

, (14)

, (15)

(16)

by (13),

,  , (17)

,  , (18)

and values , ,  of three additional normally distributed random variables with zero mean 

and unit variance, wherein   is chosen randomly between 0.1 and 3 with a step of  ; 

 if  and  if ;  is chosen randomly between 2 and 18 with a step of 

1;  is chosen randomly between 0 and  with a step of ;  if  and 



Figure 6: The parallelized DBSCAN performance in the planar circular dataset worst case 
(Figure 4) with the dataset division into 50 (above) and 25 (below) intervals (subsets).



Figure 7: The parallelized DBSCAN performance in the planar circular dataset worst case 
(Figure 4) with the dataset division into 20 (above) and 10 (below) intervals (subsets).



 if ;  if  and  if ;  is varied between 0.1 and 0.5 with a 
step  of  0.1.  Three-dimensional  serpentine-like  clusters  form  a  developing  dataset  whose 
visualization is far much more complicated than that of the planar circular dataset (Figure 8).

 

  
 

  
 

    

  
 

  
 

  

  
 

  
 

    

Figure  8: An  example  of  the  three-dimensional  dataset  comprised  by  8  serpentine-like 
clusters (each cluster contains 1000 points);  the  ,  ,  and   views are shown below 
exemplifying that such datasets bear distinct features of circular datasets.

The  three-dimensional serpentine  dataset by (14) — (16), (1),  (13),  (17),  (18) is generated 

with three to eight clusters, , for five versions of noise magnitude, 



, 

where each cluster contains 1000 to 10000 points with a step of 1000 points, 

. 

The  remaining parameters  of  the  three-dimensional  serpentine  dataset  and its  processing 
including (6) — (9) are the same as for the planar circular dataset.

Presented in Table 5, comparative computation time statistics for the three-dimensional 
serpentine dataset does not resemble that in Tables 1 and 2 for the planar datasets. Here, the 
parallelized  DBSCAN  speedup  minimum  is,  prudently  speaking,  above  40  times  and  the 
speedup maximum exceeds 600 times, although standard deviations are higher than those for 
the  planar  datasets.  On overall  average,  the  parallelized  DBSCAN over  three-dimensional 
serpentine datasets is 342 times faster.

Table 5
Comparative computation time statistics for the three-dimensional serpentine dataset

Statistics Minimum Average Maximum
Standard 
deviation

43.01525 304.0213 1136.548 218.268

218.7431 338.8232 679.8032 116.2364

44.25815 309.3223 953.4824 211.2102

Eventually  presented  in  Table  6,  comparative  performance  statistics  for  the  three-
dimensional  serpentine dataset  again confirms the advantage of  the parallelized DBSCAN 
algorithm, but if the best subset size (best interval) is selected. The parallelized DBSCAN loses 
points at a higher rate (roughly, 12.5 %) than the original DBSCAN does (roughly, 8.6 %), but 
the best-interval parallelized DBSCAN misses points at a rate of below 4.8 %. The original 
DBSCAN rarely “sees” outliers having their average rate below 0.1 % and its maximum below 
12.5 %, but it “sees” non-existing clusters at a rate of 2.97 % and confuses clusters at a rate of 
5.57 %. The respective rates of non-existing clusters and cluster confusion for the parallelized 
DBSCAN are 5.37 % and 4.39 %,  whereas they drop to 2.086 % and 2.065 % with the best-
interval parallelized DBSCAN.

The worst three-dimensional case is in Figure 8, where 76.725 % of points are missed by the 
best-interval parallelized DBSCAN with the dataset division into 100 subsets. Meanwhile, the 
original DBSCAN performs at a rate of 24.25 % on this dataset. It is worth noting that in this 
case  the  noise  magnitude  is  minimal.  It  appears  to  be  paradoxical,  but  at  greater  noise 
magnitudes the best-interval parallelized DBSCAN performs even worse on some instances of 
the three-dimensional dataset with the maximum of clusters. The particular dataset in Figure 
8 turns out to be the worst case due to the original DBSCAN performs far better on it (it could 
be even acceptable in some practical situations), and thus the difference between the original 
and best-interval parallelized DBSCAN algorithms is paradoxically huge.

Table 6



Comparative performance statistics for the three-dimensional serpentine dataset

Statistics Minimum Average Maximum
Standard 
deviation

DBSCAN 0.31 2.35159 4.86 0.72883
Five 

intervals
0.01 1.51307 5.4 0.7421

Best 
interval

0.29 1.73727 5.26 0.80428

DBSCAN 3 3.51867 23 1.98233
Five 

intervals
3 3.0972 14 0.65372

Best 
interval

3 3.03367 9 0.29922

DBSCAN 0 0.05302 12.17857 0.29464
Five 

intervals
0 2.75551 100 10.64053

Best 
interval

0 0.62252 56.16667 2.80441

DBSCAN 0 2.97478 71.8 8.54771
Five 

intervals
0 5.37361 67.63 8.39236

Best 
interval

0 2.08576 51.025 4.12471

DBSCAN 0 5.56964 58.4 10.04399
Five 

intervals
0 4.38729 74.45714 6.41309

Best 
interval

0 2.06541 54.625 4.71045

DBSCAN 0 8.59744 75.0875 14.35587
Five 

intervals
0 12.51642 100 18.76093

Best 
interval

0 4.77369 76.725 9.18129

5. Discussion and conclusion

Compared to the performance of the original DBSCAN algorithm, the parallelized DBSCAN 
performs more accurately being extremely fast. The latter is straightforwardly inferred from 
Tables 1, 3, 5, where the average speedup exceeds 80 times for planar datasets and exceeds 300 
times for three-dimensional datasets. The gain in accuracy is not that unambiguous. While the 
parallelized DBSCAN outperforms the original DBSCAN on planar datasets (Tables 2 and 4), 
even without selecting the best size of the subset (called the best interval due to planarity), it 



underperforms on three-dimensional datasets without selecting the best-interval result. Only 
the  best-interval parallelized  DBSCAN  outperforms  the  original  DBSCAN  on  three-
dimensional datasets. It is likely reasoned by a higher complexity of the structure of such 
datasets (see Figure 8) compared to the structure of planar datasets (see Figures 1 — 4). In 
other  words,  the  DBSCAN parallelization  by  spatial  dataset  division  and  hyperparameter 
adjustment is less efficient on datasets with more complex structure. However, the series of 
computational  experiments  has  exposed  a  possibility  of  the  parallelized  DBSCAN 
underperformance for simple-structured datasets also (see Figure 3 with the worst case of the 
planar serpentine dataset,  although its structure is far much simpler than the structure of 
planar circular dataset in Figure 4).

The  growing  number  of  clusters  may  additionally  affect  the  parallelized  DBSCAN 
performance. Nevertheless, as the dataset size increases and the number of clusters increases, 
one by one or together, the parallelized DBSCAN outperforms the original DBSCAN more. 
The gain in accuracy ranges from 4.9072 to 276.8096 times for the planar serpentine dataset, 
when an  averaged  over  noise  ratio  of  the  original  DBSCAN accuracy  to  the  parallelized 
DBSCAN accuracy is considered as a function of the dataset size and the number of clusters. 
The accuracy gain drastically drops for the planar circular dataset ranging from 1.4636 to 
5.5163 times.  For the three-dimensional serpentine dataset,  the accuracy gain ranges from 
0.0004 to 10.9631, i. e. it is below 1 for three and four clusters (it is just 0.1007 and 0.3179 for 
three and four clusters, respectively). For five clusters and more, along with the dataset size 
increasing,  the  parallelized  DBSCAN  outperforms  the  original  DBSCAN.  The  poorer 
performance on the fewest number of clusters is  an obvious limitation of the parallelized 
DBSCAN.

Another limitation is the poorer performance on datasets with circularity. Dividing into 
intervals is uncommon for circular datasets, whose natural division would be circular-sector, 
especially for three-dimensional datasets. Moreover, it is hard to divide so that each cluster 
would contain (approximately) the same number of points within every subset. In addition, 
the DBSCAN parallelization efficiency is impossible to estimate without known ground truth 
labels.

The DBSCAN parallelization efficiency expectedly deteriorates when density is changeable. 
The dataset in Figure 3 is seemingly the case, where each serpentine has significantly thinner 
and thicker intervals observable via zoom-in. This is the most common drawback of density-
based clustering methods, although they all,  and the DBSCAN algorithm in particular, are 
intended  to  handle  varying  densities  of  points.  However,  the  datasets  used  for  the 
computational experiments have density-modulated regions (i. e., varying density of regions 
of changeable densities of points), which have served as a close-to-the-worst-case scenario in 
order to reveal weaknesses of the suggested DBSCAN parallelization.

Overall, it is a promising approach to speed up arbitrary-shape clustering without losing in 
accuracy. Posed as a local optimization versus global optimization, the parallelized DBSCAN 
performs well  on serpentine datasets  but not limited only to them. The hyperparameters, 
neighborhood  radius  and  minimum-neighbors  number,  are  gradually  adjusted  with  some 
steps, which are tunable also (basically, the neighborhood radius increment step). Apart from 
the subsets of the divided dataset, the suggested modification of the DBSCAN algorithm can 
be  run  in  parallel  for  multiple  labeled  subset  sizes,  as  well  as  for  a  few versions  of  the 
neighborhood radius increment step.



References

[1] M.  Ester,  H.-P.  Kriegel,  J.  Sander,  X.  Xu,  A  density-based  algorithm  for  discovering 
clusters in large spatial databases with noise, in: Proceedings of the Second International 
Conference on Knowledge Discovery and Data Mining (KDD-96), AAAI Press, 1996, pp. 
226–231.

[2] R. J. G. B. Campello, D. Moulavi, J. Sander, Density-based clustering based on hierarchical 
density estimates, in: J. Pei, V. S. Tseng, L. Cao, H. Motoda (Eds.), Advances in Knowledge 
Discovery and Data Mining, Vol.  7819, Springer Berlin Heidelberg, 2013, pp. 160–172. 
doi:10.1007/978-3-642-37456-2_14.

[3] S. Weng, Z. Fan, J. Gou, A fast DBSCAN algorithm using a bi-directional HNSW index 
structure for  big data,  International  Journal  of  Machine Learning and Cybernetics  15 
(2024) 3471–3494. doi:10.1007/s13042-024-02104-8.

[4] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, X. Xu, DBSCAN Revisited, revisited: Why 
and how you should (still) use DBSCAN, ACM Transactions on Database Systems 42 (3) 
(2017) 1–21. doi:10.1145/3068335.

[5] J.  Sander,  Generalized Density-Based Clustering for Spatial  Data Mining,  Herbert  Utz 
Verlag, München, 1998.

[6] X.  Yang,  X.  Zhou,  B.  Wan et  al.,  Load spectra extrapolation by bandwidth-optimized 
kernel density estimation based on DBSCAN algorithm, Journal of Vibration Engineering 
& Technologies 12 (2024) 1445–1456. doi:10.1007/s42417-023-00919-3.

[7] J. Sander, M. Ester, H.-P. Kriegel, X. Xu, Density-based clustering in spatial databases: 
The algorithm GDBSCAN and its applications, Data Mining and Knowledge Discovery 
2 (2) (1998) 169–194. doi:10.1023/A:1009745219419.

[8] W.  Zhang,  An  improved  DBSCAN  algorithm  for  hazard  recognition  of  obstacles  in 
unmanned scenes, Soft Computing 27 (2023) 18585–18604. doi:10.1007/s00500-023-09319-
x.

[9] V. V. Romanuke, Speedup of the k-means algorithm for partitioning large datasets of flat 
points  by  a  preliminary  partition  and  selecting  initial  centroids,  Applied  Computer 
Systems 28 (1) (2023) 1–12. doi:10.2478/acss-2023-0001.

[10] V. V. Romanuke, S. V. Merinova, H. A. Yehoshyna, Optimized centroid-based clustering 
of dense nearly-square point clouds by the hexagonal pattern,  Electrical,  Control and 
Communication Engineering 19 (1) (2023) 29–39. doi:10.2478/ecce-2023-0005.

[11] S.  Xiao,  Z.  Zhou,  Z.  Chen,  Y.  Qi,  Bus  station  location  selection  method  based  on 
DBSCAN-DPC clustering algorithm, in: Y. Qu, M. Gu, Y. Niu, W. Fu (Eds.), Proceedings of 
3rd 2023 International Conference on Autonomous Unmanned Systems (3rd ICAUS 2023), 
ICAUS 2023, Lecture Notes in Electrical Engineering, vol. 1177, Springer, Singapore, 2024. 
doi:10.1007/978-981-97-1103-1_13.

[12] Y.  Mao,  D.  S.  Mwakapesa,  Y.  Li  et  al.,  Assessment  of  landslide  susceptibility  using 
DBSCAN-AHD and LD-EV methods,  Journal  of  Mountain Science 19  (2022)  184–197. 
doi:10.1007/s11629-020-6491-7.

[13] Z. Qi, H. Wang, Z. Dong, Density-Based Clustering for Incomplete Data, in: Dirty Data 
Processing for Machine Learning, Springer, Singapore, 2024. doi:10.1007/978-981-99-7657-
7_5.

[14] A.  Starczewski,  A  Novel  Approach  to  Determining  the  Radius  of  the  Neighborhood 
Required for the DBSCAN Algorithm, in: L. Rutkowski, R. Scherer, M. Korytkowski, W. 



Pedrycz, R. Tadeusiewicz, J. M. Zurada (Eds.), Artificial Intelligence and Soft Computing, 
ICAISC  2021,  Lecture  Notes  in  Computer  Science,  vol.  12854,  Springer,  Cham,  2021. 
doi:10.1007/978-3-030-87986-0_32.

[15] J. A. Hartigan, M. A. Wong, Algorithm AS 136: A k-means clustering algorithm, Journal 
of the Royal Statistical Society, Ser. C 28 (1) (1979) 100–108. doi:10.2307/2346830.

[16] M. E. Celebi, H. A. Kingravi, P. A. Vela, A comparative study of efficient initialization 
methods for the  k-means clustering algorithm, Expert Systems with Applications 40 (1) 
(2013) 200–210. doi:10.1016/j.eswa.2012.07.021.

[17] R. J. G. B. Campello, D. Moulavi, A. Zimek, J. Sander, Hierarchical density estimates for 
data clustering,  visualization,  and outlier  detection,  ACM Transactions on Knowledge 
Discovery from Data 10 (1) (2015) 1–51. doi:10.1145/2733381.

[18] H.-P.  Kriegel,  P.  Kröger,  J.  Sander,  A.  Zimek,  Density-based  clustering,  Wiley 
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1 (3) (2011) 231–240. 
doi:10.1002/widm.30.

[19] Y. Zuo, Z. Hu, S. Yuan et al., Identification of convective and stratiform clouds based on 
the improved DBSCAN clustering algorithm, Advances in Atmospheric Sciences 39 (2022) 
2203–2212. doi:10.1007/s00376-021-1223-7.

[20] G. Habib, S. Qureshi, Convolutional neural networks (CNN) and DBSCAN clustering for 
SARs-CoV  challenges:  complete  deep  learning  solution,  in:  D.  Gupta,  A.  Khanna,  S. 
Bhattacharyya, A. E. Hassanien, S. Anand, A. Jaiswal (Eds.), International Conference on 
Innovative Computing and Communications, Lecture Notes in Networks and Systems, 
vol. 471, Springer, Singapore, 2023. doi:10.1007/978-981-19-2535-1_35.

[21] M. Ankerst, M. M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: Ordering points to identify 
the clustering structure, in: ACM SIGMOD International Conference on Management of 
Data, ACM Press, 1999, pp. 49–60.

[22] R. J. G. B. Campello, D. Moulavi, A. Zimek, J. Sander, A framework for semi-supervised 
and  unsupervised  optimal  extraction  of  clusters  from  hierarchies,  Data  Mining  and 
Knowledge Discovery 27 (3) (2013) 344. doi:10.1007/s10618-013-0311-4.

[23] Z. F. Wang, P. Y. Yuan, Z. Y. Cao et al., Feature reduction of unbalanced data classification 
based on density clustering, Computing 106 (2024) 29–55. doi:10.1007/s00607-023-01206-5.

[24] Z. Qi, H. Wang, Z. Dong, Density-Based Clustering for Incomplete Data, in: Dirty Data 
Processing for Machine Learning, Springer, Singapore, 2024. doi:10.1007/978-981-99-7657-
7_5.

[25] H. Zhang, B. Liu, P.  Cui,  Y.  Sun, Y. Yang, S.  Guo, An outlier detection algorithm for 
electric power data based on DBSCAN and LOF, in: Q. Liu, X. Liu, L. Li, H. Zhou, H. H.  
Zhao (Eds.), Proceedings of the 9th International Conference on Computer Engineering 
and  Networks,  Advances  in  Intelligent  Systems  and  Computing,  vol.  1143,  Springer, 
Singapore, 2021. doi:10.1007/978-981-15-3753-0_110.

[26] D. Rangaprakash, T. Odemuyiwa, D. Narayana Dutt et al., Density-based clustering of 
static  and dynamic  functional  MRI  connectivity  features  obtained from subjects  with 
cognitive impairment, Brain Informatics 7 (2020) 19. doi:10.1186/s40708-020-00120-2.

[27] H.  T.  Nguyen,  T.  H.  Phan,  L.  T.  T.  Pham  et  al.,  Clustering-based  visualizations  for 
diagnosing diseases on metagenomic data, Signal, Image and Video Processing 18 (2024) 
5685–5699. doi:10.1007/s11760-024-03264-4.

[28] P. Sarang, Density-Based Clustering, in: Thinking Data Science, The Springer Series in 



Applied Machine Learning, Springer, Cham, 2023. doi:10.1007/978-3-031-02363-7_12.
[29] Y. R. Pan, Y. H. Xia, L. J. Long et al., Power-line extraction and modelling from 3D point 

clouds data based on K-D tree DBSCAN algorithm, Journal of Electrical Engineering & 
Technology 19 (2024) 3587–3597. doi:10.1007/s42835-023-01641-6.

[30] C.  L.  Valenzuela,  A.  J.  Jones,  Evolutionary  divide  and  conquer  (I):  A  novel  genetic 
approach  to  the  TSP,  Evolutionary  Computation  1 (4)  (1993)  313–333. 
doi:10.1162/evco.1993.1.4.313.

[31] V.  V.  Romanuke,  Traveling  salesman  problem  parallelization  by  solving  clustered 
subproblems,  Foundations of  Computing and Decision Sciences 48 (4)  (2023)  453–481. 
doi:10.2478/fcds-2023-0020.

[32] V.  V.  Romanuke,  Deep clustering of  the traveling salesman problem to parallelize its 
solution,  Computers  &  Operations  Research  165  (2024)  106548. 
doi:10.1016/j.cor.2024.106548.

[33] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (3) (1995) 273–297. 
doi:10.1007/BF00994018.

[34] A. Ben-Hur, D. Horn, H. Siegelmann, V. Vapnik, Support vector clustering, Journal of 
Machine Learning Research 2 (2001) 125–137.

[35] V. V. Romanuke, Optimization of a dataset for a machine learning task by clustering and 
selecting  closest-to-the-centroid  objects,  Herald  of  Khmelnytskyi  national  university. 
Technical sciences 6 (1) (2018) 263–265.

[36] V. V. Romanuke, Optimal partitioning of an initial dataset into subdatasets to be clustered 
for  getting  rid  off  the  dataset  superfluities  for  a  machine  learning  task,  Herald  of 
Khmelnytskyi national university. Technical sciences 6 (2) (2018) 213–215.

[37] V. V. Romanuke, Random centroid initialization for improving centroid-based clustering, 
Decision Making:  Applications  in  Management  and Engineering 6 (2)  (2023)  734–746. 
doi:10.31181/dmame622023742.

[38] V. V. Romanuke, Parallelization of the traveling salesman problem by clustering its nodes 
and finding the best route passing through the centroids,  Applied Computer Systems 
28 (2) (2023) 189–202. doi:10.2478/acss-2023-0019.

[39] K.  C.  Bhupathi,  H.  Ferdowsi,  Sharp  curve  detection  of  autonomous  vehicles  using 
DBSCAN and augmented sliding window techniques, International Journal of Intelligent 
Transportation Systems Research 20 (2022) 651–671. doi:10.1007/s13177-022-00317-1.

[40] Y. Zack, Cluster analysis for multidimensional objects in fuzzy data conditions, System 
Research  and  Information  Technologies  2  (2021)  18–34.  doi:10.20535/SRIT.2308-
8893.2021.2.02.


	1. Introduction
	2. Problem statement
	3. DBSCAN parallelization
	4. Computational experiments
	5. Discussion and conclusion

