
DBSCAN parallelization by spatial dataset division and
hyperparameter adjustment

Vadim Romanuke1,∗,†, Sergii Pavlov2,†, Svitlana Yaremko1,†, Artem Guralnyk1,† and
Olena Smetaniuk2,†

1 Vinnytsia Institute of Trade and Economics of State University of Trade and Economics, Soborna str., 87, 21050,
Vinnytsia, Ukraine
2 Vinnytsia National Technical University, Khmelnytske sh., 95, 21021, Vinnytsia, Ukraine

Abstract
An approach to parallelizing the DBSCAN algorithm without losing in accuracy is presented to
further improve quality of arbitrary-shape clustering. The dataset is divided into a number of
subsets, one of which should be labeled to adjust the DBSCAN hyperparameters — the
neighborhood radius and minimum-neighbors number. The neighborhood radius, set to a
minimum, is adjusted first, where the original DBSCAN is applied to a subset of points with known
ground truth labels. While the current accuracy of clustering is not improved, the neighborhood
radius is increased by an increment step. The original DBSCAN algorithm is applied with the best
neighborhood radius to the remaining subsets. The minimum-neighbors number, set to 3, is
adjusted second by the best neighborhood radius. Compared to the performance of the original
DBSCAN algorithm, the parallelized DBSCAN performs more accurately being extremely fast. As
the dataset size increases and the number of clusters increases, one by one or together, the
parallelized DBSCAN outperforms the original DBSCAN more. However, the DBSCAN
parallelization by spatial dataset division and hyperparameter adjustment is less efficient on
datasets with more complex structure. Nevertheless, the average speedup exceeds 80 times for
planar datasets and exceeds 300 times for three-dimensional datasets.

Keywords
arbitrary-shape clustering, DBSCAN, parallelization, hyperparameter adjustment, neighborhood

radius, spatial dataset division1

1. Introduction

DBSCAN is one of the most commonly used clustering algorithms whose purpose is to reveal
clusters of arbitrary shape by domain minimal knowledge [1, 2]. DBSCAN groups points
based on the notion of -neighborhood of a point and a specified minimum number of
neighboring points , which further are supplemented with the notions of core points,
directly reachable points, non-directly reachable points, and outliers [3, 4]. Besides, to rectify
the non-symmetric relation of the reachability [5, 6], a symmetric notion of density-

1BAIT’2024: The 1st International Workshop on “Bioinformatics and applied information technologies”, October 02-04,
2024, Zboriv, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 romanukevadimv@gmail.com (V. Romanuke); psv@vntu.edu.ua (S. Pavlov); svitlana_yaremko@ukr.net
(S. Yaremko); artem.guralnyk@gmail.com (A. Guralnyk); smetaniuk@vntu.edu.ua (O. Smetaniuk)

 0000-0001-9638-9572 (V. Romanuke); 0000-0002-0051-5560 (S. Pavlov); 0000-0002-0605-9324 (S. Yaremko); 0000-
0003-1977-6338 (A. Guralnyk); 0000-0001-5207-6451 (O. Smetaniuk)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0002-5385-5761
mailto:t.princesales@utwente.nl

connectedness is added [7, 8]. The density is defined by the neighborhood radius and
number , where a cluster contains at least points. The -neighborhood is defined as
a set of points falling within radius by a distance function [5, 9, 10]. Apart from DBSCAN
hyperparameters and , the distance function is seen as an additional parameter of the
DBSCAN algorithm [7, 11, 12].

For points in a dataset, the DBSCAN average runtime complexity is ,

although the worst case of is not excluded [3, 4, 7], especially when there is probable

incompleteness in data [9, 10, 13] or the neighborhood radius can vary in a wide range [5, 12,
14]. Whereas the overall performance of DBSCAN is quite satisfactory, and it successfully
reveals outliers and identifies nonglobular shapes (contrary to other commonly used
clustering algorithms like, e. g., k-means [9, 15, 16]), it fails to handle datasets whose clusters
are of much varying densities [17, 18]. The second drawback is the neighborhood radius
selection [8, 11, 14]. While datasets of planar points or points in the three-dimensional space
are visualized, the neighborhood radius is well understood and assessed, but higher
dimensions are problematic to “see” a meaningful distance [19, 20]. Moreover, quality of
features may be pretty different and may change through a domain which is clustered [8].
This hinders in obtaining accurately partitioned datasets by coarsely applying DBSCAN [17].
There are domains whose factual clusters have multiple meaningful radii of the neighborhood
[11, 13, 20].

Both the weaknesses of DBSCAN are addressed by OPTICS [21, 22], which is another
algorithm whose purpose is to detect meaningful clusters in data of varying density [23, 24].
OPTICS also requires two hyperparameters and , although the neighborhood radius is
not necessary. The radius can be set to the maximum possible value, but this results in

runtime close to [25]. Besides, OPTICS is mainly intended for hierarchical clustering,

and OPTICS is reported to have an actual constant slowdown factor of 1.6 compared to
DBSCAN [21, 26].

Another DBSCAN drawback, being reported less frequently, is its poorer performance on
large datasets [27]. This especially concerns high-dimensional data, where it is difficult to find
an appropriate value for due to adjusting this hyperparameter takes significant amounts of
time and computational resources. Overall, tunability of DBSCAN hyperparameters (as well in
other clustering algorithms) worsens as the dataset enlarges [28, 29].

Nevertheless, when a large dataset is assumed to have tightly connected or not sparsely
scattered clusters, it is possible to divide the dataset into multiple subdatasets in order to
apply the DBSCAN algorithm to every subdataset separately. This resembles divide-and-
conquer approach successfully applied to solving large combinatorial optimization problems
like the traveling salesman problem with thousands of nodes and larger [30]. In particular, the
traveling salesman problem nodes are grouped into a definite number of clusters, each of
which corresponds to an open-tour traveling salesman subproblem subsequently solved
independently of solving other subproblems [31, 32].

2. Problem statement

In cluster analysis, spatial dataset division is effective when possible clusters are not sparsely

scattered. Otherwise, the problem of clustering tends to be almost trivial — the distinctly
distanced groups of objects can be more efficiently separated by the support vector machine
(linearly inseparable data are projected onto a higher dimensional space to become linearly
separable [33, 34]) or other similar approaches including k-means with evaluating the optimal
number of clusters using the silhouette clustering evaluation criterion [15, 35, 36]. To the
contrary, potential clusters closely packed together are totally indistinguishable without
considering spatial densities if, for instance, the clusters have at least a partially hierarchical
structure [2, 37, 38]. A marginal example of such a structure is a dataset consisting of non-
overlapping enclosed hyperspheres or hyperellipsoids (for planar objects, they are non-
overlapping enclosed circles or ellipses), or objects of similar form being irregularly distorted
or nonconvex [29, 39]. Another major example frequently occurred in practice is a dataset
consisting of cluster bands, where serpentine-like clusters have a resembling structure [40].

Naturally, the DBSCAN algorithm could have been easily sped up if it was generally
parallelizable [1, 2, 7]. Unfortunately, the algorithm is of two loops, and there is the nested
loop which cannot be made independent of the outside loop [1, 4]. The outside loop, working
with each point in a given dataset, is based on the range query which can be implemented
using database indexing for better performance rather than a slow linear scanning. Although
some efforts have been made in this direction to parallelize the outside loop, the gain does not
seem to have a significant impact [2, 17, 19].

A follow-up DBSCAN algorithm named HDBSCAN [2, 17] was an attempt to rectify the
DBSCAN flat-result drawbacks rather its poor parallelizability. Neither did GDBSCAN
advances in parallelizability [5, 7], which only moved the original DBSCAN algorithm
parameters and to the predicates.

Issuing from unsatisfactory runtime complexity of the DBSCAN algorithm for large
datasets, the goal is to suggest an approach to DBSCAN parallelization without losing much in
accuracy. The approach should be algorithmized by automatically adjusting neighborhood
radius to the most efficient value. A series of computational experiments is to be carried out
in order to see the performance of the parallelized DBSCAN algorithm with the
hyperparameter adjustment compared to the performance of the original DBSCAN algorithm.
The comparative results are then to be discussed by underlining limitations and drawbacks of
the suggested DBSCAN parallelization.

3. DBSCAN parallelization

To adjust DBSCAN hyperparameters automatically, consider an ultimate repetition of trying
to improve the accuracy. As there are more possible versions of the neighborhood radius than
those of the minimum number of neighboring points, the neighborhood radius is adjusted

first. For this, denote the maximum number of accuracy improvement fails by . While

the minimum number of neighboring points is adjusted, the maximum number of accuracy

improvement fails denoted by is used. These hyperparameters are adjusted as

follows:
1. Divide the dataset into subsets.
2. Set to a minimum and apply the DBSCAN algorithm to a subset of points with known

ground truth labels.

3. While the current number of accuracy improvement fails is fewer than , increase

 by . Once the number of outliers and redundant labels becomes fewer, set the current
number of accuracy improvement fails to 0, and store the current value of as the best one;
otherwise, increase the current number of accuracy improvement fails by 1.

4. Denote the best neighborhood radius by .

5. Apply the DBSCAN algorithm to the remaining subsets.

6. Set to 3 and apply the DBSCAN algorithm to the subset by the best neighborhood

radius .

7. While the current number of accuracy improvement fails is fewer than ,

increase by 1. Once the number of outliers and redundant labels becomes fewer, set the

current number of accuracy improvement fails to 0, and store the current value of as the
best one; otherwise, increase the current number of accuracy improvement fails by 1.

Obviously, running the DBSCAN algorithm on the remaining subsets can be
executed in parallel. Moreover, as the hyperparameters are adjusted (on a labeled subset), the
size of a labeled subset can be set to a few different versions, and the adjustment can be
executed in parallel on these differently sized subsets [16, 37, 38]. Differently sized subsets are
obtained by changing number .

First of all, the DBSCAN parallelization is expected to significantly reduce the computation
time. Secondly, the clustering accuracy is believed to remain comparable to the DBSCAN
algorithm itself, if even the adjusted hyperparameters are used in it. The correctness of these
hypotheses is going to be ascertained or falsified by computational experiments. A specificity
of such experiments is that the dataset can be visualized, with better or worse extent of cluster
appearance and distinguishability.

4. Computational experiments

The performance of the parallelized DBSCAN algorithm with the hyperparameter adjustment
is estimated by running the above-stated algorithm on planar datasets whose potential
clusters are closely packed together. There are two types of such datasets: developing and
enveloping. Serpentine-like clusters form a developing dataset (Figure 1). Non-overlapping
enclosed circles or ellipses modulated by sinusoidal functions form an enveloping dataset
(Figure 2). For abbreviation, these clusters (datasets) will be called serpentine and circular
clusters (datasets), respectively.

0 50 100 150 200 250 300 350 400 450
-60

-50

-40

-30

-20

-10

0

10

20

30

Figure 1: An example of a dataset comprised by 10 serpentine-like clusters (each cluster
contains 1000 points).

A serpentine dataset point is randomly generated using values

, , ,

of normally distributed random variables with zero mean and unit variance for point
belonging to cluster , where

 and , , (1)

i. e., , the dataset size is , and is the number of clusters of size each.

Besides, values and of two additional normally distributed random variables with zero
mean and unit variance are used for this dataset. Thus, the horizontal component is

(2)

by (1), where is chosen randomly between 0.1 and 1 with a step of . The vertical
component is

(3)

by (2), (1),

, (4)

, (5)

Figure 2: An example of a dataset comprised by six enclosed circular clusters (each cluster
contains 1000 points).

where both and are independent being chosen randomly between 3 and 4 with a

step of 0.001; both and are independent being chosen randomly between 0.01 and 0.1

with a step of ; is chosen randomly between 0.0005 and 0.005 with a step of

, whereupon it is set negative if ; is varied between 0.1 and 0.5 with a step

of 0.1; is chosen randomly between 0.0005 and 0.005 with a step of , whereupon

it is set negative if .
The serpentine dataset by (2), (3), (1), (4), (5) is generated with three to 18 clusters,

, for five versions of noise magnitude,

,

where each cluster contains 1000 to 10000 points with a step of 1000 points,

.

Clusters contain the same number of points . The dataset is divided into
subsets so that each cluster would contain the same number of points within every subset,
where

(6)

and subset is clustered, if is even and

if is odd. Therefore, for a one generation of the serpentine dataset, there are 10 versions of
the dataset size, 16 versions of the dataset cluster number, five versions of noise magnitude,
and five versions of the dataset division. Applied to a dataset, the parallelized DBSCAN
algorithm returns the best neighborhood radius , the best minimum number of neighboring

points , the number of outliers (labeled by), the number of points incorrectly

labeled as non-existing clusters (their labels are greater than , as if there are some

other one or a few clusters), and the number of points incorrectly labeled as existing clusters

 (being between 1 and , their labels are factually incorrect or confused). The total

number of missed (incorrectly labeled) points is

(7)

whose percentage is

. (8)

The serpentine dataset generation is repeated for 100 times, whereupon the results are
averaged over the 100 repetitions. The averages are presented as a array whose
entry is a set of

, , , , , , . (9)

Another array presents averages of the computation time. To compare
results (9) with those produced by the DBSCAN algorithm itself, the parallelized DBSCAN
algorithm with the hyperparameter adjustment is also used, but with and . The

original DBSCAN algorithm results are stored as a array with (9). Another
 array presents averages of the DBSCAN computation time.

Comparative computation time statistics for the planar serpentine dataset is presented in
Table 1, where every entry is an averaged ratio of the original DBSCAN algorithm
computation time to the parallelized DBSCAN algorithm computation time. Ratio

 is a computation time function of the dataset size and the number of dataset

clusters, which is a matrix preliminarily averaged over noise; is a

matrix preliminarily averaged over dataset size; is a matrix preliminarily

averaged over the number of dataset clusters. The advantage of the parallelized DBSCAN
algorithm is quite obvious — it is much faster, while, prudently speaking, the speedup
minimum is above 10 times and the speedup maximum exceeds 100 times. On overall average,
the parallelized DBSCAN is 97.21 times faster.

Table 1
Comparative computation time statistics for the planar serpentine dataset

Statistics Minimum Average Maximum
Standard
deviation

13.78549 82.3331 157.3137 35.78136

52.49892 91.56534 117.2529 16.80617

22.08231 87.4891 139.2775 34.42707

Comparative performance statistics for the planar serpentine dataset is presented in Table
2, where rows with

, , (10)

contain percentages, “Five intervals” stands for the parallelized DBSCAN with five versions of
the dataset division, and “Best interval” stands for the parallelized DBSCAN with the version
at which percentage (8) of missed (incorrectly labeled) points is minimal. Herein and below,
the DBSCAN accuracy is decomposed into rates for (10) and (8). The parallelized DBSCAN
misses (loses) points at a rate of about 7 %, whereas it is above 26 % by the original DBSCAN.
Points misidentified as outliers are lost at almost equal rates, although a little advantage of the
parallelized DBSCAN exists whose rate is below 1.95 % (while the original DBSCAN loses
above 2.1 % of points misidentified as outliers). The original DBSCAN incorrectly assigns
above 3.1 % of points to non-existing clusters, but this rate is as 2.5 times as lower for the
parallelized DBSCAN. The original DBSCAN confuses clusters even more exceeding 21 % of
points incorrectly assigned to existing clusters, while this rate for the parallelized DBSCAN is

slightly above 3.8 %. When the best interval is selected, the mentioned rates for (10) and (8)
drop below 0.21 %, 0.26 %, 0.73 %, 1.19 %, respectively. However, the worst cases of the rates
for (10) and (8) are not excluded even by the parallelized DBSCAN with the best interval
(Figure 3).

Table 2
Comparative performance statistics for the planar serpentine dataset

Statistics Minimum Average Maximum
Standard
deviation

DBSCAN 0.04 0.93991 2.87 0.3686
Five

intervals
0.06 1.1708 3.53 0.43709

Best
interval

0.31 1.34179 3.53 0.46328

DBSCAN 3 4.03313 27 2.39181
Five

intervals
3 3.0225 17 0.34669

Best
interval

3 3.00113 9 0.06324

DBSCAN 0 2.16369 99.90769 13.575
Five

intervals
0 1.93919 99.55 10.98534

Best
interval

0 0.20774 66.50909 0.8341

DBSCAN 0 3.13743 82.32462 8.84055
Five

intervals
0 1.22586 79.81176 3.53786

Best
interval

0 0.25967 31.83636 1.03566

DBSCAN 0 21.45342 94.44389 28.24494
Five

intervals
0 3.80889 80.86471 8.94931

Best
interval

0 0.72118 77.975 2.92216

DBSCAN 0 26.75454 99.97692 33.20733
Five

intervals
0 6.97394 99.9 16.30767

Best
interval

0 1.1886 87.35455 4.06603

A circular dataset point is randomly generated using values , of

normally distributed random variables with zero mean and unit variance and values ,

of uniformly distributed random variables on interval for point belonging to cluster

 by (1), where

(11)

and

(12)

by

, (13)

0 50 100 150 200 250 300 350 400
-50

-40

-30

-20

-10

0

Figure 3: The worst case of the planar serpentine dataset of 11000 points and 11 clusters,
where the best result of is produced by the best-interval parallelized DBSCAN.

and values and of two additional normally distributed random variables with zero mean

and unit variance, wherein is chosen randomly between 0.1 and 3 with a step of ;

 if and if ; is chosen randomly between 2 and 18 with a step of

1; is chosen randomly between 0 and with a step of ; if and

if ; is varied between 0.2 and 1 with a step of 0.2.
The planar circular dataset by (11), (12), (1), (13) is generated with three to eight clusters,

, for five versions of noise magnitude,

,

where each cluster contains 1000 to 10000 points with a step of 1000 points,

.

The remaining parameters of the circular dataset and its processing including (6) — (9) are
the same as for the serpentine dataset, except for the array size that is now (the
second dimension has 6 entries, which influences the subsequent arrays upon averaging,
minimizing, and maximizing).

Presented in Table 3, comparative computation time statistics for the planar circular
dataset resemble that in Table 1 for the planar serpentine dataset. Thus, the parallelized
DBSCAN speedup minimum is, prudently speaking, above 15 times and the speedup
maximum exceeds 125 times, by roughly the same standard deviations. On overall average,
the parallelized DBSCAN is 99.67 times faster (particularly, it is due to the maximum number
of clusters here is fewer than that for the planar serpentine dataset).

Table 3
Comparative computation time statistics for the planar circular dataset

Statistics Minimum Average Maximum
Standard
deviation

17.38579 87.96091 151.3004 38.82666

71.587 99.31722 137.7623 16.79144

18.54298 88.55638 169.5846 40.77947

Presented in Table 4, comparative performance statistics for the planar circular dataset
confirms the advantage of the parallelized DBSCAN algorithm. The parallelized DBSCAN
loses points at a rate of about 7.12 % (slightly higher than that for the planar dataset), whereas
it is 11.85 % by the original DBSCAN being 2.25 times lower than that for the planar dataset.
Points misidentified as outliers are lost at rates of 1 % and 1.42 % by the original and
parallelized DBSCAN algorithms, respectively. So, the parallelized DBSCAN may lose more
circularly located points than the original DBSCAN. The original DBSCAN incorrectly assigns
above 5.59 % of points to non-existing clusters, but this rate is as 4.26 times as lower for the
parallelized DBSCAN. The cluster confusion is at similar rates — it is 5.25 % and 4.39 % by the
original and parallelized DBSCAN algorithms, respectively. When the best interval is selected,
the mentioned rates for (10) and (8) drop below 0.7 %, 0.3 %, 1.97 %, 2.96 %, respectively. These

rates are clearly higher than those for the planar serpentine dataset. Nevertheless, the planar
circular dataset worst case (Figure 4) is not a complete fail like the planar serpentine dataset
worst case is.

Table 4
Comparative performance statistics for the planar circular dataset

Statistics Minimum Average Maximum
Standard
deviation

DBSCAN 0.34 0.99729 2.46 0.32409
Five

intervals
0.01 1.20794 3.51 0.53009

Best
interval

0.31 1.33544 3.37 0.55512

DBSCAN 3 4.68783 30 3.56671
Five

intervals
3 3.10963 28 0.95433

Best
interval

3 3.16067 20 1.22944

DBSCAN 0 1.01034 35.72857 2.6169
Five

intervals
0 1.41552 100 4.8618

Best
interval

0 0.69079 20.01563 1.21654

DBSCAN 0 5.59503 67.76286 12.54719
Five

intervals
0 1.3124 46.65625 3.22294

Best
interval

0 0.29938 11.75 0.8674

DBSCAN 0 5.24657 74.58056 10.69118
Five

intervals
0 4.38885 67.45 7.23762

Best
interval

0 1.96513 29.9125 3.54033

DBSCAN 0 11.85194 80.95 19.0927
Five

intervals
0 7.11677 100 10.6957

Best
interval

0 2.9553 44.9 4.55293

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

Figure 4: The worst case of the planar circular dataset of 8000 points and 8 clusters, where
the best result of is produced by the best-interval parallelized DBSCAN.

It is worth noting that the dataset worst case in Figure 4 has far much more variety in its
structure than that in the worst case in Figure 3. Despite this, the best-interval parallelized
DBSCAN performs relatively much better than the original DBSCAN. The latter has 73.7 % of
missed points versus 44.9 % of points missed by the parallelized DBSCAN with
(Figure 5). The percentage of outliers, however, is 13.1 % by the parallelized DBSCAN,
whereas the original DBSCAN leaves here 7.225 % of points as outliers. Meanwhile, the
original DBSCAN assigns 59.925 % of points to non-existing clusters, and this rate is just 8.3 %
for the parallelized DBSCAN (the black-square marked points are clearly seen in Figure 5).
Due to this, the cluster confusion is lower at the original DBSCAN — it is 6.55 % versus 23.5 %
at the parallelized DBSCAN.

Figure 5: The original DBSCAN performance (above) versus the best-interval parallelized
DBSCAN performance (below) in the worst case of the planar circular dataset in Figure 4
(black squares mark points assigned to non-existing clusters, and red squares mark outliers).

In this particular example, the parallelized DBSCAN performance significantly worsens as
the dataset is divided into fewer subsets. Thus, and the rates for (10) are 6.7625 %,

13.1625 %, 28.15 % with , but and the rates for (10) are 5.9875 %, 26.9125 %,
30.7625 % with (Figure 6). Furthermore, these rates are 52.9625 %, 1.1875 %, 3.2625 %,
48.5125 % with , and 69.25 %, 0.7875 %, 1.0125 %, 67.45 % with , respectively
(Figure 7), i. e. the rate of the cluster confusion grows while the rate of outliers drops. The rate
of points assigned to non-existing clusters becomes lower as the subset is made larger (or, in
other words, number is taken fewer).

For creating three-dimensional serpentine-like clusters, a circular dataset point

is randomly generated using values

, , , ,

of normally distributed random variables with zero mean and unit variance and values

, ,

of uniformly distributed random variables on interval for point belonging to cluster

 by (1), where

, (14)

, (15)

(16)

by (13),

, , (17)

, , (18)

and values , , of three additional normally distributed random variables with zero mean

and unit variance, wherein is chosen randomly between 0.1 and 3 with a step of ;

 if and if ; is chosen randomly between 2 and 18 with a step of

1; is chosen randomly between 0 and with a step of ; if and

Figure 6: The parallelized DBSCAN performance in the planar circular dataset worst case
(Figure 4) with the dataset division into 50 (above) and 25 (below) intervals (subsets).

Figure 7: The parallelized DBSCAN performance in the planar circular dataset worst case
(Figure 4) with the dataset division into 20 (above) and 10 (below) intervals (subsets).

 if ; if and if ; is varied between 0.1 and 0.5 with a
step of 0.1. Three-dimensional serpentine-like clusters form a developing dataset whose
visualization is far much more complicated than that of the planar circular dataset (Figure 8).

Figure 8: An example of the three-dimensional dataset comprised by 8 serpentine-like
clusters (each cluster contains 1000 points); the , , and views are shown below
exemplifying that such datasets bear distinct features of circular datasets.

The three-dimensional serpentine dataset by (14) — (16), (1), (13), (17), (18) is generated

with three to eight clusters, , for five versions of noise magnitude,

,

where each cluster contains 1000 to 10000 points with a step of 1000 points,

.

The remaining parameters of the three-dimensional serpentine dataset and its processing
including (6) — (9) are the same as for the planar circular dataset.

Presented in Table 5, comparative computation time statistics for the three-dimensional
serpentine dataset does not resemble that in Tables 1 and 2 for the planar datasets. Here, the
parallelized DBSCAN speedup minimum is, prudently speaking, above 40 times and the
speedup maximum exceeds 600 times, although standard deviations are higher than those for
the planar datasets. On overall average, the parallelized DBSCAN over three-dimensional
serpentine datasets is 342 times faster.

Table 5
Comparative computation time statistics for the three-dimensional serpentine dataset

Statistics Minimum Average Maximum
Standard
deviation

43.01525 304.0213 1136.548 218.268

218.7431 338.8232 679.8032 116.2364

44.25815 309.3223 953.4824 211.2102

Eventually presented in Table 6, comparative performance statistics for the three-
dimensional serpentine dataset again confirms the advantage of the parallelized DBSCAN
algorithm, but if the best subset size (best interval) is selected. The parallelized DBSCAN loses
points at a higher rate (roughly, 12.5 %) than the original DBSCAN does (roughly, 8.6 %), but
the best-interval parallelized DBSCAN misses points at a rate of below 4.8 %. The original
DBSCAN rarely “sees” outliers having their average rate below 0.1 % and its maximum below
12.5 %, but it “sees” non-existing clusters at a rate of 2.97 % and confuses clusters at a rate of
5.57 %. The respective rates of non-existing clusters and cluster confusion for the parallelized
DBSCAN are 5.37 % and 4.39 %, whereas they drop to 2.086 % and 2.065 % with the best-
interval parallelized DBSCAN.

The worst three-dimensional case is in Figure 8, where 76.725 % of points are missed by the
best-interval parallelized DBSCAN with the dataset division into 100 subsets. Meanwhile, the
original DBSCAN performs at a rate of 24.25 % on this dataset. It is worth noting that in this
case the noise magnitude is minimal. It appears to be paradoxical, but at greater noise
magnitudes the best-interval parallelized DBSCAN performs even worse on some instances of
the three-dimensional dataset with the maximum of clusters. The particular dataset in Figure
8 turns out to be the worst case due to the original DBSCAN performs far better on it (it could
be even acceptable in some practical situations), and thus the difference between the original
and best-interval parallelized DBSCAN algorithms is paradoxically huge.

Table 6

Comparative performance statistics for the three-dimensional serpentine dataset

Statistics Minimum Average Maximum
Standard
deviation

DBSCAN 0.31 2.35159 4.86 0.72883
Five

intervals
0.01 1.51307 5.4 0.7421

Best
interval

0.29 1.73727 5.26 0.80428

DBSCAN 3 3.51867 23 1.98233
Five

intervals
3 3.0972 14 0.65372

Best
interval

3 3.03367 9 0.29922

DBSCAN 0 0.05302 12.17857 0.29464
Five

intervals
0 2.75551 100 10.64053

Best
interval

0 0.62252 56.16667 2.80441

DBSCAN 0 2.97478 71.8 8.54771
Five

intervals
0 5.37361 67.63 8.39236

Best
interval

0 2.08576 51.025 4.12471

DBSCAN 0 5.56964 58.4 10.04399
Five

intervals
0 4.38729 74.45714 6.41309

Best
interval

0 2.06541 54.625 4.71045

DBSCAN 0 8.59744 75.0875 14.35587
Five

intervals
0 12.51642 100 18.76093

Best
interval

0 4.77369 76.725 9.18129

5. Discussion and conclusion

Compared to the performance of the original DBSCAN algorithm, the parallelized DBSCAN
performs more accurately being extremely fast. The latter is straightforwardly inferred from
Tables 1, 3, 5, where the average speedup exceeds 80 times for planar datasets and exceeds 300
times for three-dimensional datasets. The gain in accuracy is not that unambiguous. While the
parallelized DBSCAN outperforms the original DBSCAN on planar datasets (Tables 2 and 4),
even without selecting the best size of the subset (called the best interval due to planarity), it

underperforms on three-dimensional datasets without selecting the best-interval result. Only
the best-interval parallelized DBSCAN outperforms the original DBSCAN on three-
dimensional datasets. It is likely reasoned by a higher complexity of the structure of such
datasets (see Figure 8) compared to the structure of planar datasets (see Figures 1 — 4). In
other words, the DBSCAN parallelization by spatial dataset division and hyperparameter
adjustment is less efficient on datasets with more complex structure. However, the series of
computational experiments has exposed a possibility of the parallelized DBSCAN
underperformance for simple-structured datasets also (see Figure 3 with the worst case of the
planar serpentine dataset, although its structure is far much simpler than the structure of
planar circular dataset in Figure 4).

The growing number of clusters may additionally affect the parallelized DBSCAN
performance. Nevertheless, as the dataset size increases and the number of clusters increases,
one by one or together, the parallelized DBSCAN outperforms the original DBSCAN more.
The gain in accuracy ranges from 4.9072 to 276.8096 times for the planar serpentine dataset,
when an averaged over noise ratio of the original DBSCAN accuracy to the parallelized
DBSCAN accuracy is considered as a function of the dataset size and the number of clusters.
The accuracy gain drastically drops for the planar circular dataset ranging from 1.4636 to
5.5163 times. For the three-dimensional serpentine dataset, the accuracy gain ranges from
0.0004 to 10.9631, i. e. it is below 1 for three and four clusters (it is just 0.1007 and 0.3179 for
three and four clusters, respectively). For five clusters and more, along with the dataset size
increasing, the parallelized DBSCAN outperforms the original DBSCAN. The poorer
performance on the fewest number of clusters is an obvious limitation of the parallelized
DBSCAN.

Another limitation is the poorer performance on datasets with circularity. Dividing into
intervals is uncommon for circular datasets, whose natural division would be circular-sector,
especially for three-dimensional datasets. Moreover, it is hard to divide so that each cluster
would contain (approximately) the same number of points within every subset. In addition,
the DBSCAN parallelization efficiency is impossible to estimate without known ground truth
labels.

The DBSCAN parallelization efficiency expectedly deteriorates when density is changeable.
The dataset in Figure 3 is seemingly the case, where each serpentine has significantly thinner
and thicker intervals observable via zoom-in. This is the most common drawback of density-
based clustering methods, although they all, and the DBSCAN algorithm in particular, are
intended to handle varying densities of points. However, the datasets used for the
computational experiments have density-modulated regions (i. e., varying density of regions
of changeable densities of points), which have served as a close-to-the-worst-case scenario in
order to reveal weaknesses of the suggested DBSCAN parallelization.

Overall, it is a promising approach to speed up arbitrary-shape clustering without losing in
accuracy. Posed as a local optimization versus global optimization, the parallelized DBSCAN
performs well on serpentine datasets but not limited only to them. The hyperparameters,
neighborhood radius and minimum-neighbors number, are gradually adjusted with some
steps, which are tunable also (basically, the neighborhood radius increment step). Apart from
the subsets of the divided dataset, the suggested modification of the DBSCAN algorithm can
be run in parallel for multiple labeled subset sizes, as well as for a few versions of the
neighborhood radius increment step.

References

[1] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering
clusters in large spatial databases with noise, in: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD-96), AAAI Press, 1996, pp.
226–231.

[2] R. J. G. B. Campello, D. Moulavi, J. Sander, Density-based clustering based on hierarchical
density estimates, in: J. Pei, V. S. Tseng, L. Cao, H. Motoda (Eds.), Advances in Knowledge
Discovery and Data Mining, Vol. 7819, Springer Berlin Heidelberg, 2013, pp. 160–172.
doi:10.1007/978-3-642-37456-2_14.

[3] S. Weng, Z. Fan, J. Gou, A fast DBSCAN algorithm using a bi-directional HNSW index
structure for big data, International Journal of Machine Learning and Cybernetics 15
(2024) 3471–3494. doi:10.1007/s13042-024-02104-8.

[4] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, X. Xu, DBSCAN Revisited, revisited: Why
and how you should (still) use DBSCAN, ACM Transactions on Database Systems 42 (3)
(2017) 1–21. doi:10.1145/3068335.

[5] J. Sander, Generalized Density-Based Clustering for Spatial Data Mining, Herbert Utz
Verlag, München, 1998.

[6] X. Yang, X. Zhou, B. Wan et al., Load spectra extrapolation by bandwidth-optimized
kernel density estimation based on DBSCAN algorithm, Journal of Vibration Engineering
& Technologies 12 (2024) 1445–1456. doi:10.1007/s42417-023-00919-3.

[7] J. Sander, M. Ester, H.-P. Kriegel, X. Xu, Density-based clustering in spatial databases:
The algorithm GDBSCAN and its applications, Data Mining and Knowledge Discovery
2 (2) (1998) 169–194. doi:10.1023/A:1009745219419.

[8] W. Zhang, An improved DBSCAN algorithm for hazard recognition of obstacles in
unmanned scenes, Soft Computing 27 (2023) 18585–18604. doi:10.1007/s00500-023-09319-
x.

[9] V. V. Romanuke, Speedup of the k-means algorithm for partitioning large datasets of flat
points by a preliminary partition and selecting initial centroids, Applied Computer
Systems 28 (1) (2023) 1–12. doi:10.2478/acss-2023-0001.

[10] V. V. Romanuke, S. V. Merinova, H. A. Yehoshyna, Optimized centroid-based clustering
of dense nearly-square point clouds by the hexagonal pattern, Electrical, Control and
Communication Engineering 19 (1) (2023) 29–39. doi:10.2478/ecce-2023-0005.

[11] S. Xiao, Z. Zhou, Z. Chen, Y. Qi, Bus station location selection method based on
DBSCAN-DPC clustering algorithm, in: Y. Qu, M. Gu, Y. Niu, W. Fu (Eds.), Proceedings of
3rd 2023 International Conference on Autonomous Unmanned Systems (3rd ICAUS 2023),
ICAUS 2023, Lecture Notes in Electrical Engineering, vol. 1177, Springer, Singapore, 2024.
doi:10.1007/978-981-97-1103-1_13.

[12] Y. Mao, D. S. Mwakapesa, Y. Li et al., Assessment of landslide susceptibility using
DBSCAN-AHD and LD-EV methods, Journal of Mountain Science 19 (2022) 184–197.
doi:10.1007/s11629-020-6491-7.

[13] Z. Qi, H. Wang, Z. Dong, Density-Based Clustering for Incomplete Data, in: Dirty Data
Processing for Machine Learning, Springer, Singapore, 2024. doi:10.1007/978-981-99-7657-
7_5.

[14] A. Starczewski, A Novel Approach to Determining the Radius of the Neighborhood
Required for the DBSCAN Algorithm, in: L. Rutkowski, R. Scherer, M. Korytkowski, W.

Pedrycz, R. Tadeusiewicz, J. M. Zurada (Eds.), Artificial Intelligence and Soft Computing,
ICAISC 2021, Lecture Notes in Computer Science, vol. 12854, Springer, Cham, 2021.
doi:10.1007/978-3-030-87986-0_32.

[15] J. A. Hartigan, M. A. Wong, Algorithm AS 136: A k-means clustering algorithm, Journal
of the Royal Statistical Society, Ser. C 28 (1) (1979) 100–108. doi:10.2307/2346830.

[16] M. E. Celebi, H. A. Kingravi, P. A. Vela, A comparative study of efficient initialization
methods for the k-means clustering algorithm, Expert Systems with Applications 40 (1)
(2013) 200–210. doi:10.1016/j.eswa.2012.07.021.

[17] R. J. G. B. Campello, D. Moulavi, A. Zimek, J. Sander, Hierarchical density estimates for
data clustering, visualization, and outlier detection, ACM Transactions on Knowledge
Discovery from Data 10 (1) (2015) 1–51. doi:10.1145/2733381.

[18] H.-P. Kriegel, P. Kröger, J. Sander, A. Zimek, Density-based clustering, Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1 (3) (2011) 231–240.
doi:10.1002/widm.30.

[19] Y. Zuo, Z. Hu, S. Yuan et al., Identification of convective and stratiform clouds based on
the improved DBSCAN clustering algorithm, Advances in Atmospheric Sciences 39 (2022)
2203–2212. doi:10.1007/s00376-021-1223-7.

[20] G. Habib, S. Qureshi, Convolutional neural networks (CNN) and DBSCAN clustering for
SARs-CoV challenges: complete deep learning solution, in: D. Gupta, A. Khanna, S.
Bhattacharyya, A. E. Hassanien, S. Anand, A. Jaiswal (Eds.), International Conference on
Innovative Computing and Communications, Lecture Notes in Networks and Systems,
vol. 471, Springer, Singapore, 2023. doi:10.1007/978-981-19-2535-1_35.

[21] M. Ankerst, M. M. Breunig, H.-P. Kriegel, J. Sander, OPTICS: Ordering points to identify
the clustering structure, in: ACM SIGMOD International Conference on Management of
Data, ACM Press, 1999, pp. 49–60.

[22] R. J. G. B. Campello, D. Moulavi, A. Zimek, J. Sander, A framework for semi-supervised
and unsupervised optimal extraction of clusters from hierarchies, Data Mining and
Knowledge Discovery 27 (3) (2013) 344. doi:10.1007/s10618-013-0311-4.

[23] Z. F. Wang, P. Y. Yuan, Z. Y. Cao et al., Feature reduction of unbalanced data classification
based on density clustering, Computing 106 (2024) 29–55. doi:10.1007/s00607-023-01206-5.

[24] Z. Qi, H. Wang, Z. Dong, Density-Based Clustering for Incomplete Data, in: Dirty Data
Processing for Machine Learning, Springer, Singapore, 2024. doi:10.1007/978-981-99-7657-
7_5.

[25] H. Zhang, B. Liu, P. Cui, Y. Sun, Y. Yang, S. Guo, An outlier detection algorithm for
electric power data based on DBSCAN and LOF, in: Q. Liu, X. Liu, L. Li, H. Zhou, H. H.
Zhao (Eds.), Proceedings of the 9th International Conference on Computer Engineering
and Networks, Advances in Intelligent Systems and Computing, vol. 1143, Springer,
Singapore, 2021. doi:10.1007/978-981-15-3753-0_110.

[26] D. Rangaprakash, T. Odemuyiwa, D. Narayana Dutt et al., Density-based clustering of
static and dynamic functional MRI connectivity features obtained from subjects with
cognitive impairment, Brain Informatics 7 (2020) 19. doi:10.1186/s40708-020-00120-2.

[27] H. T. Nguyen, T. H. Phan, L. T. T. Pham et al., Clustering-based visualizations for
diagnosing diseases on metagenomic data, Signal, Image and Video Processing 18 (2024)
5685–5699. doi:10.1007/s11760-024-03264-4.

[28] P. Sarang, Density-Based Clustering, in: Thinking Data Science, The Springer Series in

Applied Machine Learning, Springer, Cham, 2023. doi:10.1007/978-3-031-02363-7_12.
[29] Y. R. Pan, Y. H. Xia, L. J. Long et al., Power-line extraction and modelling from 3D point

clouds data based on K-D tree DBSCAN algorithm, Journal of Electrical Engineering &
Technology 19 (2024) 3587–3597. doi:10.1007/s42835-023-01641-6.

[30] C. L. Valenzuela, A. J. Jones, Evolutionary divide and conquer (I): A novel genetic
approach to the TSP, Evolutionary Computation 1 (4) (1993) 313–333.
doi:10.1162/evco.1993.1.4.313.

[31] V. V. Romanuke, Traveling salesman problem parallelization by solving clustered
subproblems, Foundations of Computing and Decision Sciences 48 (4) (2023) 453–481.
doi:10.2478/fcds-2023-0020.

[32] V. V. Romanuke, Deep clustering of the traveling salesman problem to parallelize its
solution, Computers & Operations Research 165 (2024) 106548.
doi:10.1016/j.cor.2024.106548.

[33] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (3) (1995) 273–297.
doi:10.1007/BF00994018.

[34] A. Ben-Hur, D. Horn, H. Siegelmann, V. Vapnik, Support vector clustering, Journal of
Machine Learning Research 2 (2001) 125–137.

[35] V. V. Romanuke, Optimization of a dataset for a machine learning task by clustering and
selecting closest-to-the-centroid objects, Herald of Khmelnytskyi national university.
Technical sciences 6 (1) (2018) 263–265.

[36] V. V. Romanuke, Optimal partitioning of an initial dataset into subdatasets to be clustered
for getting rid off the dataset superfluities for a machine learning task, Herald of
Khmelnytskyi national university. Technical sciences 6 (2) (2018) 213–215.

[37] V. V. Romanuke, Random centroid initialization for improving centroid-based clustering,
Decision Making: Applications in Management and Engineering 6 (2) (2023) 734–746.
doi:10.31181/dmame622023742.

[38] V. V. Romanuke, Parallelization of the traveling salesman problem by clustering its nodes
and finding the best route passing through the centroids, Applied Computer Systems
28 (2) (2023) 189–202. doi:10.2478/acss-2023-0019.

[39] K. C. Bhupathi, H. Ferdowsi, Sharp curve detection of autonomous vehicles using
DBSCAN and augmented sliding window techniques, International Journal of Intelligent
Transportation Systems Research 20 (2022) 651–671. doi:10.1007/s13177-022-00317-1.

[40] Y. Zack, Cluster analysis for multidimensional objects in fuzzy data conditions, System
Research and Information Technologies 2 (2021) 18–34. doi:10.20535/SRIT.2308-
8893.2021.2.02.

	1. Introduction
	2. Problem statement
	3. DBSCAN parallelization
	4. Computational experiments
	5. Discussion and conclusion

