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Abstract

Vision-language transformer models play a pivotal role in e-commerce product search. When using
product description (e.g. product title) and product image pairs to train such models, there are often non-
visual-descriptive text attributes in the product description, which makes the visual textual alignment
challenging. We introduce MultiModal Learning with online Token Pruning (MML-TP). MML-TP lever-
ages token pruning, conventionally used for computational efficiency, to perform online text cleaning
during multimodal model training. Evaluation on the e-commerce dataset comprising over 710k unique
Amazon products validates that refining text tokens enhances the paired image branch’s training, which
leads to significantly improved visual search performance.
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1. Introduction

Multimodal transformer models have been widely adopted in e-commerce product search,
including but not limited to caption-to-image search, image-to-image search, and multimodal-
to-image search [1, 2, 3, 4, 5]. The success of applying multimodal models in e-commerce product
search can be attributed to its strength in understanding vision and language representations of
product contents. One of the key factors for training an effective vision-language multimodal
model relies on the alignment of image-text pairs in the dataset. In practice, the training dataset
is usually collected in an automatic fashion with limited manual cleaning or annotation. As a
result, the alignment between text and image is far from ideal.

This misalignment issue is bi-directional: it could be the case that not all the text content
is reflected by the paired image, or the corresponding text does not fully describe the image
content. In e-commerce applications, the former issue is more common [7, 8] because sellers
are inclined to include as many as product attributes in the product title in order to promote
their listings. In the example shown in Figure 1, most phrases in the product title are not visual-
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Product Image Product Title
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.. PretendiPlay, Motor Skills, Kids
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Embedding

phthalates, PVC. Dishwasher Safe, Similarity
Recycled Plastic, Made in USA.

4.8 Wk v 6,140 ratings

Figure 1: Example of a product’s image-text pair from an e-commerce website. Phrases in the product
title are color-coded by their embedding similarity to the image embedding. Both image and text
embeddings are generated by the BLIP-2 [6] model.

descriptive — how can you tell it is "No BPA" by looking at the image? Such non-visual-descriptive
phrases have significantly lower similarity to the image compared to other phrases. We assume
cleaning out such phrases could enhance multimodal alignment learning and lead to better
image embedding models.

In this paper, we introduce MultiModal Learning with online Token Pruning (MML-TP),
a simple yet effective method for training the multimodal transformer models with noisy e-
commerce image-text training data. The method leverages token pruning technique, which was
conventionally used for improving models’ computational efficiency by discarding unimportant
tokens [9, 10], to perform online text cleaning during multimodal model training. The key idea
is that given that each phrase has a different importance in describing the image, we can let the
model learn to remove unimportant/unrelated tokens alongside its original multimodal training
task. As a result, the model can be trained with implicitly-cleaned image-text pairs.

Given the scarcity of publicly available e-commerce datasets, we establish a benchmark
multimodal e-commerce dataset based on the uni-modal Amazon ESCI dataset [11] with over
710k unique products sold on Amazon.com. Extensive experiements on ALBEF [12] and CLIP
[13] frameworks validates the effectiveness of MML-TP. MML-TP boosts the image retrieval
performance by over 5 percentage point measured by Recall@1.

2. Related Work

The success of large-scale transformer-based pre-training in the field of Natural Language
Processing [14] has boosted research works in vision-language pre-training.

Vision-language transformer models are trained on large-scale image-text pairs and learn a
joint vision-language embedding space for various downstream tasks. CLIP model [13] leverages
a broader source of supervision from text to train a predictive model that aligns text with image,
resulting in a task-agnostic model comparable to task-specific supervised models. ALIGN [15]
scales up the CLIP model with a noisy dataset without expensive filtering or post-processing
steps that cover more than one billion image alt-text pairs. CLIP and ALIGN show promising
results in vision-based downstream tasks, however, they ignore the interaction between two
modalities and vision-language downstream tasks.

Later studies propose to learn joint embeddings of image contents and natural language
during pre-training, like OSCAR [16], UNIMO [17] and UNITER [18]. These works use an
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Figure 2: Overview of the MML-TP method. It is flexible to work with the self-attention matrix in the
text encoder or cross-attention matrix if the model has fusion network layers. It takes the attention
score matrix to calculate the importance score for each query text token. The unimportant tokens are
masked following a learnable thresholding mechanism.

object detector backbone to capture vision features first, then a transformer-based model is
applied to the concatenated vision and text features to learn joint embeddings. ViLT [19]
further breaks through the regional feature from convolutional networks and adopts vision
transformer [20] to fuse the whole global image feature with natural languages. ALBEF [12]
and TCL [21] further exploit contrastive loss functions to align image and text features before
modeling their joint embeddings, increasing the interaction between two modalities and
achieving a state-of-the-art performance (SOTA).

3. Methodology

In a nutshell, our method masks text tokens based on token importance derived from the
attention score matrix. We present how we define token importance in Section 3.1 and how
to mask text tokens based on their importance scores in Section 3.2. The overview of the two
components are illustrated in Figure 2.

3.1. Token Importance

For vision-language model learning frameworks like ALBEF, cross attention is used to directly
measure the relevance between image and text tokens. For frameworks like CLIP with no rele-
vance measurement between image and text tokens, self attention in the text branch measures
the importance of different text tokens. Given that the learning objective aligns text embedding
with image embedding, the text token attentions are learnt guided by visual features. we hy-
pothesize that analyzing the self-attention patterns within the text encoder reveals fine-grained
textual dependencies and also tokens’ importance in grounding visual content. Therefore, we
propose to use the attention score matrix from both self attention and cross attention to quantify
the importance of text tokens.

Given an input query sequence x € R™*" with m tokens, and input key sequence z € R**!



with k tokens, the attention score matrix is calculated as:
XWquZT

Ja
where W, € R4 and Wy, € R4 are trainable weight matrices. For self-attention, we have
m = k and n = [. This attention score matrix measures each input query token’s pairwise
importance on every key token.

Note that the text tokens are used as query tokens in cross-attention. Therefore we could
aggregate the attention scores along key tokens to define text token importance score follow-
ing [22, 23, 10]. However, we find empirically that using key [CLS] token only gives better
performance. In cross-attention, the image [CLS] token encodes aggregated visual concepts.
In self-attention, the text [CLS] represents the overall linguistic context. Attending to these
consolidated representations provides a less noisy measure compared to all the key tokens.

Therefore, we calculate importance score of the i-th query token as the average of its attention
to the key [CLS] token from all heads as shown blow.

Attn(x,z) = (1)

1 H
S(XZ‘> = H Z Attnh(xi, Z())7 (2)
h=1

where Attny, is the attention matrix for the h—th head and we assume the [CLS] token is in the
first (0-th) position of the key token sequence.

3.2. Pruning with Learned Threshold

Given each query token’s importance score, MML-TP prunes unimportant tokens by comparing
the score with a threshold 7. This process allows the model to discard noisy tokens that
contribute negatively or less to multimodal alignment and fusion. However, setting the value
of 7’ s is a nontrivial task. The appropriate threshold may differ between tasks and datasets.
The threshold may also vary across transformer layers, as deeper layers capture higher-level
concepts where fewer tokens may be relevant. Therefore, we model 7 as a learnable parameter,
allowing it to adapt to the specific requirements of each task, data, and layer.

Inspired by Tempered Sigmoid Activations [24], the differentiable pruning mask defined for
the ¢-th query token (x;) in the [-th attention layer is defined as:

Mifx) = o(MELT) ®

where T is the temperature parameter and 7; is the threshold learnt for the [-th layer. To mask
the text tokens, we update query token embedding features by multiplying them with their
associated mask score which is between 0 and 1. For tokens whose importance scores are
smaller than the threshold, their mask score is close to zero and hence they will not become
major information sources in succeeding layer.

To encourage token pruning, we adopt pruning loss[10] as an additional training objective.

L
1 [ Mi(x) |1
L rune — xt -0 4
prne = 3 @



where de is the sequence length of the Query at layer [. The scaling factor de is designed for
models with dynamic Query length, which is helpful for normalizing the mask’s L1 norm to a
unified scale. Intuitively, when more tokens are situated close to the threshold, the gradient
Lpdriﬁ"e becomes larger. Consequently, this causes an increase in the threshold value, resulting
in the pruning of a greater number of tokens that are proximate to the threshold boundary.
Generally, for models with original training objectives L£as,4¢, the updated training objective
is:

L= EModel +A- ['Prunev (5)

where ) is the regularization parameter to control the aggressiveness of pruning.

4. Experiments

We in this section first describe the evaluation dataset, implementation details and evaluation
metrics. We consider the evaluation of MML-TP in two application scenarios. We can directly
use MML-TP to finetune a public available vision-language model. Or if we already have a
model finetuned on e-commerce dataset, which is often the case, we can further finetune the
model with few epochs using MML-TP on the same finetune dataset and achieve better product
search performance. We evaluate both scenarios with two models, that is, CLIP and ALBEF. We
also present ablation study on the two different token importance score definitions.

4.1. Dataset

Public multimodal e-commerce datasets are not suitable for our evaluation. Fashion-Gen [25],
Fashion 200k [26], Shopping100 [27], and FashionIQ [28] focus on the fashion domain, instead
of general purpose product search. M5 Product Data [7] and Product 1M Data [29] are in the
form of Chinese product titles, as the unique characteristics of the Chinese language and its
tokenizing effect on the proposed MML-TP is out of the scope of this work. We therefore
establish a new benchmark multimodal e-commerce dataset based on Amazon ECSI dataset
[11], which is a uni-modal dataset for product shopping queries. We add product catalog images
to Amazon ESCI dataset. After removing products that are no longer available or have less
than two images, the dataset covers over 710k products sold on Amazon.com. For each product,
we have a product title, a main image, and multiple (1 to 10) auxiliary images. We reserve 80k
products for test where 186k image-image pairs are generated for visual search (image to image
retrieval) evaluation. The other 630k products are used for training where 858k image-text pairs
are generated for multimodal learning. This dataset covers most common product categories,
including but not limited to Hardlines (e.g., electronics, furniture, ...), Softlines (apparel, shoes,..),
Consumables (personal care, pantry, ...), etc.

4.2. Implementation Details and Metric

All experiments were conducted using 8 NVIDIA A100 GPUs, utilizing the PyTorch deep learning
framework [30] and the Ray distributed computing framework [31]. Both the CLIP and ALBEF
models employ a standard ViT-B/16 [20] vision encoder with 12 layers and 86M parameters.
CLIP’s text encoder is a 12-layer transformer with 63M parameters, while ALBEF’s text and



fusion encoders are built on a 6-layer transformer, totaling 124M parameters. In token pruning,
layer-wise thresholds are initialized with linearly rising values, ending with a fixed threshold of
0.01 at the final layer. The temperature parameter T is set at 1e~*. From empirical exploration,
a pruning loss’s regularization parameter A of 0.1 is found suitable for all experiments.

We adopt the standard evaluation metric in image to image retrieval, i.e., Recall@K (denoted
as R@K), which is defined as the proportion of test queries for which the correct targets are
successfully identified within the top-K retrieved samples [32]. Unless specified, the unit in
tables of retrieval performance is the percentage (%.)

4.3. MML-TP for Public Model Finetune

R@1 R@5 R@10 R@1 R@5 R@10
Pre-train 38.60 47.40 53.03

. Standard finetune 51.68 62.27  68.68
Standard finetune 53.59 63.24  69.03 MML-TP, CAonly 5459  65.09 7136

MMLTP finetune  55.21 6513  70.97 MML-TP finetune ~ 57.06 67.54 73.74
1 162 189 194 T

Pre-train 4256 51.29 56.62

5.38 5.27 5.06

Table 1

Left table for CLIP results and right table for ALBEFL results. CLIP finetune with MML-TP leads to
1-2pps recall increase compared to standard finetune. ALBEF fintune with MML-TP leads to 5+pps recall
increase. CA only in the right table means token pruning applied only for cross-attention layers.

We finetune CLIP with 100 epochs with a batch size of 1360, using the AdamW optimizer
[33] with a weight decay of 0.02. The learning rate was initialized at 5¢~%, warmed up to
2¢ 79 after 10 epochs, and then decreased to 5¢~° using the cosine decay strategy. Evaluation
results in Table 1 left part shows that MML-TP finetune improves CLIP image to image retrieval
performance by 1-2 percentage points (pps) compared to standard finetune. This implies that
in vision-language frameworks where image and text tokens are not attended to each other
directly, token pruning in text self-attention layers still improves multimodal learning.

We finetune ALBEF with its pre-training configuration and adjust the batch size to 320
due to memory limitation. We use MML-TP in two different setups, token pruning only on
cross-attention layers and token pruning on all the attention layers. As shown in 1 right part,
MML-TP with cross attention layers improves standard finetune method by about 3pps and
MML-TP with all attention layers further improves the performance by about 2pps. The results
not only validate the effectiveness of MML-TP but also imply the importance of token pruning
in self-attention layers.

4.4. MML-TP for Second-Stage Fintune

When there exists a production model which is finetuned from public model with e-commerce
dataset. It takes time and resources to repeat the finetune process with MML-TP method. We
therefore propose to do a second-stage finetune, where only few-epoch MML-TP finuetune is
conducted based on the finetuned model. Note that it’s possible that standard second-stage



R@1 R@5 R@10 R@1 R@5 R@10

FT1 53.59 63.24 69.03 FT1 51.68 62.27 68.68
FT2, standard 54.55 64.29  70.08 FT2, standard 53.83 64.44 70.83
FT2, MML-TP  55.95 65.81 71.57 FT2, MML-TP 56.75 67.39 73.65
T 2.36 2.57 2.54 T 5.07 5.12 4.97

Table 2

Left table for CLIP results and right table for ALBEFL results. Second-stage MML-TP fintune on CLIP
improves image retrieval performance by about 1.5pps. Second-stage MML-TP fintune on ALBEF
improves image retrieval performance by about 5pps.

finetune improves the first-stage finetune performance because the latter is under-fitting. We
therefore provide standard second-stage finetune results as baseline.

Results in Table 2 shows that second-stage finetune with MML-TP improves CLIP first-stage
finetune retrieval performance by about 2.5pps. The improvement is even more significant,
about 5pps, for ALBEF model, probably because we have token pruning for both text self
attention layers and cross attention layers in ALBEF while it’s only text self attention layers for
CLIP.

4.5. Ablation Study

R@1 R@5 R@10 R@1 R@5 R@10
Average over tokens 5492 6475 70.65 Average over tokens 3 56.82  67.46  73.70
[CLS] token only, ours  55.21  65.13  70.97 [CLS] token only, ours  57.06 67.54 73.74

Table 3
Left table for CLIP results and right table for ALBEFL results. Token importance based on key [CLS]
token scores performs better than averaging the attention scores among all the key tokens.

We do ablation study for the two ways of calculating token importance score. One is to follow
[22, 23, 10] and calculate the query token importance by using the average attention scores
over all the key tokens. The other one is proposed by us, that is, to use only the key [CLS]
token instead of all the key tokens. We experiment with the two methods to finetune the public
CLIP and ALBEF models. Results in Table 3 shows consistent better performance achieved by
using only the [CLS] token. Our explanation is that attending to consolidated [CLS] token
representation provides a less noisy importance measure compared to attending to all the key
tokens.

4.6. Grad-CAM Visualization

To get more insights on how the token pruning mask works for vision-language transformer
models. We visualize the attention map on the product image associated with each word in
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Figure 3: Grad-CAM visualizations on the cross-attention maps of the MML-TP fintuned ALBEF model,
corresponding to individual words in the product title.

the product title calculated by the MML-TP finetuned ALBEF model. We do Grad-CAM [34]
visualization on the fusion encoder’s third layer following [12].

The attention maps reveal distinct patterns of focus. Words that are visually descriptive, such
as "valve,' "dog," and "handle," exhibit concentrated attention areas. This suggests that the model
emphasizes regions in the image that correspond to these descriptive terms. In contrast, brand
names or words that lack a direct visual counterpart in the image, like "zurn," "ichoue," and
"estwing," show diffused and scattered attention patterns.

The difference in attention distribution demonstrates the model’s ability to discern between
text tokens. The model diminishes its attention toward text tokens that are potentially noisy or
less relevant while honing in on tokens that provide meaningful visual cues. Such behavior
aligns with our fundamental hypothesis and motivation: to prioritize informative text tokens
and reduce the influence of extraneous ones. This selective attention mechanism not only
highlights the model’s capability to differentiate between visually grounded and non-grounded
textual information but also provides a rationale for our token pruning approach.

5. Conclusion

In this paper, we address the challenge of noisy image-text pair alignment in e-commerce
datasets and propose MML-TP. Leveraging token pruning, MML-TP facilitates multimodal
transformer model learning with cleaner image-text pairings. By pruning noisy text tokens
implicitly, MML-TP denoises the text branch and strengthens the vision encoder, leading to a
more efficient multimodal model for e-commerce applications. Our evaluation with a large-scale
e-commerce dataset has demonstrated MML-TP’s effectiveness in improving visual search
performance. Also, the proposed method is flexible and compatible with models like CLIP that
rely on alignment loss and those like ALBEF with fusion networks.
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