
Offline Multi-Objective Optimization (OMOO) in
Search Page Layout Optimization Using Off-policy
Evaluation
Pratik Lahiri1, Zhou Qin1 and Wenyang Liu1

1Amazon. 550 Terry Ave N, Seattle, Washington 98109

Abstract
E-commerce stores typically test changes to ranking algorithms through rigorous A/B testing which
requires a change to satisfy some predefined success criteria on multiple metrics. This problem of
simultaneously optimization of multiple metrics is multi-objective-optimization (MOO). A common
method for MOO is to choose a set of weights to scalarize the multiple metrics into one ranking objective.
However, in practical settings, rather than simply improving all metrics, the experimenter might be
interested in improving a few metrics significantly with negligible trade-off for others. We can refer
to such requirements as a desired policy. An experimenter chooses weights to scalarize the objective
such that it best approximates the desired policy. Repeated A/B testing to arrive at a set of weights
that approximates the desired policy well enough is costly and inefficient. This problem lends itself to
off-policy evaluation methods. In this paper, we develop a framework for approximate Offline Multi-
Objective Optimization for 𝜋,𝑤 explore-exploit policies where a small (𝜖 = 1− 5%) traffic is reserved
for exploration while the majority is served by exploiting the current best arm under the policy. Further,
the metrics being optimized in our use case are highly skewed with zero-inflation. We then develop
a simulator/ reward vector generator using a neural network that learns a distribution of rewards for
a given context from exploration data. We empirically show that this reward vector generator is an
unbiased estimator of such policies. Finally, we demonstrate empirical data that this estimator is able to
correctly predict the order of treatments from an A/B test in an e-commerce page layout ranker across 4
different metrics.

Keywords
Multio-objective Optimization, Off-policy Evaluation

1. Introduction

Page layouts for e-commerce search determine the different kinds of content displayed on the
search page. These layouts are aimed at providing excellent shopping experience to customers
and improving various metrics such as clicks, purchases etc. Typically, these page layouts
vary the number and type of item slots. Determining the most appropriate page layout can be
thought of as a ranking problem which takes as input some customer and query features and
chooses a layout from a set of well designed candidates [1].

To continuously learn from customer behaviour, explore-exploit policies such as contextual
bandits are effective and widely used in production systems [2]. A page layout ranker (PLR)

SIGIR’24: Workshop on eCommerce, July 18, 2024, Washington DC
$ lahirip@amazon.com (P. Lahiri); qinzhouhit@hotmail.com (Z. Qin); lwenyang@amazon.com (W. Liu)
� https://zhouqin.info (Z. Qin)
� 0000-0002-9664-4948 (P. Lahiri); 0000-0002-1641-772X (Z. Qin)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:lahirip@amazon.com
mailto:qinzhouhit@hotmail.com
mailto:lwenyang@amazon.com
https://zhouqin.info
https://orcid.org/0000-0002-9664-4948
https://orcid.org/0000-0002-1641-772X
https://creativecommons.org/licenses/by/4.0


can be trained on contextual features to optimize for one or more metrics. Typically, in an e-
commerce system, we are interested in optimizing multiple metrics- multi objective optimization
(MOO). To make ranking decisions, we can then choose a set of weights to scalarize the multiple
metrics into one ranking objective. To launch any changes to the ranking objective we follow
the standard A/B testing approach. We embed this ranking objective in the PLR and evaluate it
on a segment of live traffic for some sufficiently long time-period. If the new ranking objective
outperforms the current one, it is accepted and either stored for future use or deployed right
after. This approach has three major limitations. Firstly, each iteration of A/B testing takes a
long time and many iterations are needed to find an ideal choice. Secondly, it is expensive; it
requires substantial engineering effort (in deploying each treatment to the live traffic). Lastly
and most importantly, it can have negative customer experience impact.

Given the multi-dimensional nature of MOO and its post-facto nature, it is desirable to have
some systematic way of selecting a few good choices of ranking objectives that can then be
deployed online for final A/B testing. Using Off Policy Evaluation Methods for solving MOO
has been described in IMO3[3]. However, in that paper the authors devised a method to learn
the preferences of the experimenter with regards to tradeoffs between metrics and assumed
that a good enough off policy estimator was available. In this work, we tackle the problem of
devising a good enough estimator when the reward distributions are skewed, zero-inflated and
multi-modal as in our applicationand formulate a framework for applying this in production.

2. Problem Formulation

In this section, we develop our notation and formulate the MOO problem as a contextual bandit
problem with delayed vector-valued rewards.

Let us consider a decision-maker (in this case, PLR along with its prediction module), which
interacts with an environment (the customer population) over a large number of time-steps
𝑡 = 1, 2, . . . , 𝑇 , with the goal of optimizing a fixed number of distinct objectives, say 𝐾 . The
interaction of the decision-maker with the environment is modeled as follows.

1. The environment reveals a (random) context 𝑐𝑡 to the decision-maker as well as a fixed
set of possible actions 𝐴(𝑐𝑡). Each such action is also referred to as an arm permissible for
context 𝑐𝑡. Let us denote the set of all possible contexts by 𝐶 .

2. The decision-maker chooses an arm 𝑎𝑡 from 𝐴(𝑐𝑡) according to some behavioral policy 𝜋.
3. Our policy is policy space restricted to all 𝜋𝜖,𝑤-policies where 𝜋𝜖,𝑤 is defined as (𝜋𝜖,𝑤-

Policy) For any 𝜖[0, 1] and any 𝑤 ∈ Δ𝐾 , by 𝜋𝜖,𝑤 = 𝜋𝜖,𝑤(·|𝑐𝑡, 𝜑𝑡), we denote a policy that,
given a context 𝑐𝑡,

i) with probability 𝜖, chooses an arm from 𝐴(𝑐𝑡) randomly,
ii) with probability 1 − 𝜖, chooses an arm with the highest predicted scalar reward

𝑤𝑇 𝑟𝑡(𝑐𝑡, 𝑎, 𝜑𝑡).
. Let Π be the set of all behavioral policies.

4. Once 𝑎𝑡 is chosen, the environment generates a (random) vector-valued reward 𝑟𝑡 =

(𝑟
(1)
𝑡 , 𝑟

(2)
𝑡 , . . . , 𝑟

(𝐾)
𝑡

Σ) ∈ 𝑅𝐾 that is revealed to the decision-maker after a delay such as in
the batched bandits setting[4].



Below are our assumptions for our problem setup.

1. Assumption 1: The contexts {(𝑐𝑡)}𝑇𝑡=1 are drawn in an i.i.d (independent and identically
distributed) manner from some fixed/time-invariant unknown distribution 𝐷𝑐(·).

2. Assumption 2: Given 𝑐𝑡 and decision-maker’s chosen action 𝑎𝑡 ∈ 𝐴(𝑐𝑡), the reward 𝑟𝑡
is drawn from some fixed/time-invariant unknown distribution 𝐷𝑟(·|𝑐𝑡, 𝑎𝑡).1

3. Assumption 3: The reward-vector is almost-surely bounded, i.e., ‖𝑟𝑡‖2 ≤ 𝑀 < ∞ for
all 𝑡 = 1, 2, . . . , 𝑇 .2 Here, each 𝑟

(𝑗)
𝑡 denotes the reward obtained for the 𝑗𝑡ℎ-objective at

time 𝑡.

In 𝑇 rounds, the expected average reward of the decision-maker in objective 𝑗 ∈ [𝐾]3, if they
follow a behavioral policy 𝜋, is given by,

𝑉 (𝑗)(𝜋;𝑇 )
1

𝑇
[
𝑇∑︁
𝑡=1

𝑟
(𝑗)
𝑡 ]. (1)

The goal of the decision-maker is to learn a behavioral policy that optimizes over all the 𝐾
objectives simultaneously, i.e., the decision-maker seeks a policy 𝜋⋆ that satisfies,

𝜋⋆ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝜋∈Π (𝑉 (1)(𝜋;𝑇 ), 𝑉 (2)(𝜋;𝑇 ), . . . , 𝑉 (𝐾)(𝜋;𝑇 ))𝑇⏟  ⏞  
𝑉 (𝜋;𝑇 )𝑇

. (2)

With slight abuse of notation, assume that Π is the set of all policies that at time 𝑡 take action
by using the current context 𝑐𝑡 and some statistic 𝜑𝑡 that is a summary/compression of the
decision-maker’s observations in the previous time-steps 1, 2, . . . , 𝑡 − 1. Also, we will call
𝑉 (𝜋;𝑇 ) as the value-function of policy 𝜋 when the horizon is 𝑇 time-steps.

If we consider a weight-vector

𝑤 ∈ Δ𝐾{𝑤 ∈ 𝑅𝐾 : 𝑤 ≥ 0, 𝑤𝑇 1 =

𝐾∑︁
𝑗=1

𝑤(𝑗) = 1Σ}, (3)

then from the definition of Pareto-optimality, it is clear that a policy 𝜋 that solves the scalarized
optimization problem,

𝜋⋆ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝜋∈Π𝑤
𝑇𝑉 (𝜋;𝑇 ), (4)

is a Pareto-optimal policy. Thanks to linearity of expectation, this is equivalent to optimizing in
a contextual bandit setting with delayed scalar rewards of the form 𝑤𝑇 𝑟𝑡.

In OPE, a target-policy 𝜋 is evaluated using experience-data collected from some logging-
policy 𝜇 that should preferably satisfy the below coverage(/absolute-continuity) criterion.
Assumption 4: For any context 𝑐 and corresponding permissible action 𝑎 ∈ 𝐴(𝑐), if (𝜋(𝑐))(𝑎) >
0, then (𝜇(𝑐))(𝑎) > 0.

Any soft explore-exploit based policy, 𝜇, will satisfy Assumption 4 for all policies 𝜋. (However,
this does not mean that it is a good candidate for generating experience-data for OPE).

Now, in principle, the general scheme to explore all choices of 𝑤 could work as follows
1Here, we do not assume that the components of 𝑟𝑡 are conditionally-independent given 𝑐𝑡 and 𝑎𝑡.
2This assumption is useful when 𝑇 = ∞.
3For all 𝑏 ∈ 𝑁 , we define [𝑏]{1, 2, . . . , 𝑏}.



1. Sample a weight-vector 𝑤 from the weight-simplex Δ𝐾 .
2. Find the estimate 𝑉 (𝜋𝜖,𝑤;𝑇 ) according to one of the algorithms presented in Section 3.
3. Save (𝜖, 𝑤, 𝑉 (𝜋𝜖,𝑤;𝑇 )).

We refer to this scheme as pseudo-Pareto-front generation. The usage of the term pseudo highlights
that we are only exploring 𝜋,𝑤-policies. One way to explore the set

⋃︀
𝑤∈Δ𝐾

{𝑉 (𝜋,𝑤;𝑇 )} rather
quickly would be to simulate simultaneous (possibly biased) random-walks in the weight-
simplex Δ𝐾 through multiple worker-nodes. We do not address methods of random walks in
this paper.

3. Offline Policy Evaluation (OPE) Methods

Suppose we are given a 𝜋𝜖,𝑤-policy whose value-function we would like to estimate us-
ing the experience data, 𝑆𝑒𝑥𝑝𝑙𝑜𝑟𝑒. There are off-the-shelf algorithms, mainly including
Simulation-method/Reward-vector-generator (described here), Direct-method, Vanilla Esti-
mator [5], Inverse-Propensity-Score (IPS) Based Estimator [6], Doubly-Robust (DR) Estimator
[7].

3.1. Our Recommendation of OPE Method

Distributions 𝐷𝑐 and {𝐷𝑟(·|*)} on contexts and rewards can change over time. But they should
remain more or less time-invariant for some small time-frame. Performing off-policy evaluation
on fresh experience-data helps ensure that value-function estimates of a given policy are
reasonably accurate. Using experience-data from far off in the past may produce bad estimates
if there has been a distribution-shift in the contexts and/or rewards (seasonal variations in
customer’s preferences of a specific locale, change in national economies etc.). In the limit
of large-data, i.e., |𝑆𝑒𝑥𝑝| = 𝑛 → ∞, the Vanilla, IPS, and DR estimators provide (1− 𝛿)-type
probabilistic guarantees for reliable accuracy. Amongst these algorithms, DR is preferable.
However, its accuracy guarantees in the case of a finite data-set and for non-stationary policies
(such as in our case) are different. Even for stationary policies, the accuracy of the DR estimator
depends on the the accuracies of the IPS and the DM parts. Most of the work on OPE has been
focused on improving the IPS part [8, 9]. One work [10] addressed this gap by designing the
loss function of the DM part of the DR estimator to minimize the variance of the DR estimator.
However, they assume that the target policy is known beforhand to design the loss function.

To use the DR estimator, either we require a mean-reward-vector predictor

𝑅 : (𝑐, 𝑎) ↦→ 𝑟 (𝑐 ∈ 𝐶, 𝑎 ∈ 𝐴(𝑐), 𝑟 ∈ 𝑅𝐾). (5)

or a (possibly random) reward-vector generator,

𝑅 : (𝑐, 𝑎) ↦→ 𝑟 (𝑐 ∈ 𝐶, 𝑎 ∈ 𝐴(𝑐), 𝑟 ∈ 𝑅𝐾). (6)

Typically, the mean-reward-vector predictor is obtained by taking a dataset other than 𝑆𝑒𝑥𝑝

and then performing supervised learning on it. The performance of DR estimator relies greatly
on the performance of the mean-reward-vector predictor (or the reward-vector generator). In



succeeding sections we empirically show that the reward-vector generator approach achieves a
lower bias than the mean-reward-vector predictor and describe how we construct the reward-
vector-generator. We also emperically estimate its variance and compare against the variance
of SNIPS [9].

4. Datasets

We used two datasets for our experiments. The small dataset we used for our experiments was
obtained by 5% random sampling of PLR model training dataset from a policy deployed in
production. This base data-set consists of 25MM samples and has a total of 13 fields. The online
experiment dataset we used for our experiments was obtained by 10% random sampling of
PLR model training datasets for treatments during an online A/B test of different policies.
We used one policy as the logging policy and two (T1, T2) for testing.

The first eight features make up the context, the ninth feature is the action, and the remaining
four are the corresponding rewards which are Reward 1, Reward 2, Reward 3, and Reward 4
respectively. In practice, there is a tension between these metrics.

We split the training data-sets into train, validation, and test data-sets using a split of
70%, 15%, and 15% respectively. A few important statistics of the unlogged versions of the
target-labels are provided in Table 6 where we observe the below three properties.

1. The metrics Reward 1 (log), Reward 2 (log), and Reward 3 (log) are zero-inflated.
2. Conditioned on being non-zero, the histograms of Reward 1 (log) and Reward 3 (log) are

unimodal.4

3. On the other hand, the histogram of Reward 2 (log) conditioned on being non-zero is
bimodal.

5. Reward-Vector-Generator Model

We will assume a simple reward-vector generation model that incorporates the three properties
we mentioned above. Let us denote the context and action random variables at time 𝑡 by 𝐶𝑡

and 𝐴𝑡 respectively. For the random variables that represent the metrics Reward 1, Reward 2,
Reward 3, and Reward 4 at time 𝑡, we will use 𝑅

(1)
𝑡 , 𝑅(2)

𝑡 , 𝑅(3)
𝑡 , and 𝑅

(4)
𝑡 respectively.

• Conditional Distribution of 𝑅(1)
𝑡 and 𝑅

(3)
𝑡 : 𝑅(1)

𝑡 and 𝑅
(3)
𝑡 respectively correspond to

Reward 1 and Reward 3. We assume that the conditional distribution of 𝑅(𝑗)
𝑡 (𝑗 = 1, 3) is

given by

𝑑P(𝑗)(𝑟|𝑐, 𝑎) =

{︃
𝑝𝑗0(𝑐, 𝑎), 𝑟 = 0,

𝑝𝑗1(𝑐, 𝑎)𝑓
(𝑗)̃︀𝑁1

(𝑟|𝑐, 𝑎), 𝑟 > 0,
(7)

where 𝑝𝑗0(𝑐, 𝑎) + 𝑝𝑗1(𝑐, 𝑎) = 1 and 𝑓 ̃︀𝑁(𝑗)
1

(·|𝑐, 𝑎) represents a pdf obtained from trimming

some gaussian-pdf 𝑓
𝑁

(𝑗)
1

(·|𝑐, 𝑎) to the positive real line (0,∞). If we respectively denote

4Importantly, the histogram of log(Reward 1) is significantly skewed to the right.



the mean and standard-deviation of 𝑁 (𝑗)
1 by 𝑚

(𝑗)
1 and 𝜎

(𝑗)
1 , then

𝑓
𝑁

(𝑗)
1

(𝑟|𝑐, 𝑎) = 1
√
2𝜋𝜎

(𝑗)
1 (𝑐, 𝑎)

exp(−(𝑟 −𝑚
(𝑗)
1 (𝑐, 𝑎))2

2(𝜎
(𝑗)
1 (𝑐, 𝑎))2

). (8)

Intuitively speaking, we are assuming that in response to a (context, action) pair, (𝑐, 𝑎), the
nature conducts a Bernoulli trial with (failure, success) probabilities, (𝑝(𝑗)0 (𝑐, 𝑎), 𝑝

(𝑗)
1 (𝑐, 𝑎)).

If the result of this trial is a success, the nature draws a sample using a pdf that is obtained
from trimming some gaussian pdf to the positive real line. In the case of failure, the
reward assumes the zero value.

• Conditional Distribution of 𝑅(2)
𝑡 : 𝑅(2)

𝑡 corresponds to Reward 2. We assume that the
conditional distribution of 𝑅(2)

𝑡 is given by

𝑑P(2)(𝑟|𝑐, 𝑎) =

⎧⎪⎪⎨⎪⎪⎩
𝑝
(2)
0 (𝑐, 𝑎), 𝑟 = 0,

𝑝
(2)
1 (𝑐, 𝑎)𝑓

(2)̃︀𝑁1
(𝑟|𝑐, 𝑎), 𝑟 > 0,

𝑝
(2)
2 (𝑐, 𝑎)𝑓

(2)̃︀𝑁2
(𝑟|𝑐, 𝑎), 𝑟 < 0.

(9)

Here, 𝑝(2)0 (𝑐, 𝑎) + 𝑝
(2)
1 (𝑐, 𝑎) + 𝑝

(2)
2 (𝑐, 𝑎) = 1. The symbols 𝑓 ̃︀𝑁(2)

1

(·|𝑐, 𝑎), 𝑓 ̃︀𝑁(2)
2

(·|𝑐, 𝑎)
represent pdfs that are obtained from trimming some gaussian pdfs, 𝑓

𝑁
(2)
1

, 𝑓
𝑁

(2)
2

, to

the positive and negative real lines respectively. The intuition behind this conditional
distribution is similar to above except that we have three categories, category-0 for
zero-inflation, and categories 1 and 2 for the right and left modes.

• Conditional Distribution of 𝑅(4)
𝑡 : 𝑅(4)

𝑡 corresponds to Reward 4 which is a Bernoulli
reward. Therefore, the model of a Bernoulli trial with (context, action)-dependent failure
and success probabilities suffices, i.e.,

𝑑P(4)(𝑟|𝑐, 𝑎) =

{︃
𝑝
(4)
0 (𝑐, 𝑎), 𝑟 = 0,

𝑝
(4)
1 (𝑐, 𝑎), 𝑟 = 1.

(10)

Joint Conditional Distribution of Reward Vector 𝑅𝑡: We assume that the scalar rewards
are conditionally independent given a (context, action) pair. Therefore, the joint conditional
distribution is given by

𝑑P(𝑟|𝑐, 𝑎) = Π4
𝑗=1𝑑P(𝑗)(𝑟(𝑗)|𝑐, 𝑎). (11)

This gives us the below negative log-likelihood,

− log 𝑑P(𝑟|𝑐, 𝑎) = −
4∑︁

𝑗=1

log 𝑑P(𝑗)(𝑟(𝑗)|𝑐, 𝑎). (12)

5.1. Advantages of Reward-Vector Generator Model

1. Inherently Random: Can play the role of a simulator that can generate instantaneous-
reward-vectors.



2. Retrievable Conditional Means and Variances: Both the conditional means and
variances of individual metrics are retrievable from the model outputs.

3. Better Performance as Mean-Reward-Vector Predictor: Our Bayesian model tries
to better capture the distributions of Reward 1, Reward 2, and Reward 3. Compared
to a typical regression, we should expect better performance in mean-reward-vector
prediction. Our results show this is true.

6. Reward-Vector Generator Training

6.1. Framing Reward-Vector Generator Learning as a Supervised Multi-Task
Learning Problem

Given our reward-vector generator model, we have to learn 17 functions of the (context, action)
pair. These are

• {𝑚(𝑗)
1 (𝑐, 𝑎)}3𝑗=1, 𝑚(2)

2 (𝑐, 𝑎) (4 tasks for predicting conditional means);

• {𝜎(𝑗)
1 (𝑐, 𝑎)}3𝑗=1, 𝜎(2)

2 (𝑐, 𝑎) (4 tasks for predicting conditional variances);

• {𝑝(𝑗)0 (𝑐, 𝑎), 𝑝
(𝑗)
1 (𝑐, 𝑎)}4𝑗=1, 𝑝(𝑗)2 (𝑐, 𝑎) (together make 4 classification tasks from 8 func-

tions).

The learning of these 17 functions can be framed as a supervised multi-task learning (sMTL)
problem with 12 tasks because while {𝑝(𝑗)0 (𝑐, 𝑎), 𝑝

(𝑗)
1 (𝑐, 𝑎)}4𝑗=1 are 8 functions, they are two

classification tasks (as indicated in the parentheses above). Since conditional variances are part
of our reward-vector generator model, there is no need to set any weights for the first 8 tasks. For
the remaining tasks, (the 4 classification tasks), let us use temperatures 𝜎 = {𝜎(𝑗)

𝑐 , 𝑗 = 1, 2, 3, 4Σ}.
Then, using the model-uncertainty method [11], we can derive the below neural-network (𝜃-
based) approximation of the log-likelihood function (12).

-log 𝑑(𝑟|𝑐, 𝑎; 𝜃, 𝜎)
≈ −[

∑︀
𝑗=1,3 1[𝑟

(𝑗) = 0]
log 𝑝

(𝑗)
0

(𝜎
(𝑗)
𝑐 )2

+ 1[𝑟(𝑗) > 0](
log 𝑝

(𝑗)
1

(𝜎
(𝑗)
𝑐 )2

+ 1

2(𝜎
(𝑗)
1 )2

(𝑟(𝑗) −𝑚
(𝑗)
1 )2 + log

√
2𝜋𝜎

(𝑗)
1 )]

− [1[𝑟(2) = 0]
log 𝑝

(2)
0

(𝜎
(2)
𝑐 )2

+ 1[𝑟(2) > 0](
log 𝑝

(2)
1

(𝜎
(2)
𝑐 )2

+ 1

2(𝜎
(2)
1 )2

(𝑟(2) −𝑚
(2)
1 )2 + log

√
2𝜋𝜎

(2)
1 ).

.+ 1[𝑟(2) < 0](
log 𝑝

(2)
2

(𝜎
(2)
𝑐 )2

+ 1

2(𝜎
(2)
2 )2

(𝑟(2) −𝑚
(2)
2 )2 + log

√
2𝜋𝜎

(2)
2 )]

− 1

(𝜎
(4)
𝑐 )2

[log 𝑝
(4)
0 1[𝑟(4) = 0]+ log 𝑝

(4)
1 1[𝑟(4) = 1]]+

∑︀4
𝑗=1 log 𝜎

(𝑗)
𝑐 = − log 𝑑P̃(𝑟|𝑐, 𝑎; 𝜃, 𝜎).(13)

Making the standard assumption that the training-examples {(𝑐𝑖, 𝑎𝑖, 𝑟𝑖)}𝑛𝑖=1 are generated
in an i.i.d5 manner, one justifies training a neural-network for minimizing the negative log-
likelihood, i.e.,

𝜃,𝜎−
1

𝑛

𝑛∑︁
𝑖=1

log 𝑑P̃(𝑟𝑖|𝑐𝑖, 𝑎𝑖; 𝜃, 𝜎). (14)

5Independent and identically distributed.



There is one little caveat we need to address. The empirical-risk-function in 14 has variances
and temperatures in the denominators which would cause errors in our implementation if they
are initialized to zero or get close to zero during the training. To solve this issue, let us use the
substitution,

𝛼 = log 𝜎. (15)

Thus, the optimization problem we will solve in our implementation is given by

𝜃,𝜎−
1

𝑛

𝑛∑︁
𝑖=1

log 𝑑P̃(𝑟𝑖|𝑐𝑖, 𝑎𝑖; 𝜃, 𝑒𝛼). (16)

6.2. Other Reward-Vector Generator Models

1. We currently use regression for estimation of Reward 1, Reward 2, and Reward 3, i.e., by
assuming the conditional-distributions to be some gaussian pdfs. Together with Reward
4, this assumption about conditional distributions results in 4 tasks. Let us call a neural-
network model learnt by setting the weights of each task to 1 as type-1 model, whereas
when the weights are obtained using the model-uncertainty method, we will call it type-2
model.

2. In our reward-vector generator model, if we enforce all (context, page-layout)-conditioned
variances of Reward 1, pos. Reward 2, neg. Reward 2, Reward 3 to be the same, we retrieve
the model-uncertainty method. This reduces the number of tasks to 8. Let us call this
type-3 model.

We will call the model learned by solving function 16 as type-4 model. Without loss of
generality, we used the Multi-gate Mixture of Experts (MMoE) architecture [12] for training
purposes.

7. Evaluation Results

Table 1
Comparision of model-types as reward-vector generators on test dataset.

Reward Statistic Ground-
truth

Model-type

1 2 3 4

Reward
1

Mean 0.5702 1.1617 1.0102 0.4809 0.4840
Variance 4.3392 0.0248 0.3040 1.2947 2.8331

Reward
2

Mean 0.8123 1.0809 0.4165 0.7444 0.7723
Variance 48.2461 0.1171 1.8136 24.9843 56.6592

Reward
3

Mean 14.1212 2.1394 19.5134 12.4750 14.0277
Variance 9656.9371 1.3290 31689.6621 2004.1919 85994.1797

Reward 4 Mean 0.7438 0.7455 0.7409 0.7402 0.7409



While the primary purpose of the models is not as a mean reward predictor, we performed
an experiment to compare the model types for the task of predicting mean rewards. These
results are summarized in Table 5 in Appendix A. We consider this as evidence that our choice
of conditional distributions better models the rewards.

7.1. Comparision of Model-Types as Reward-Vector Generators

The results of our experiments for the comparision of model-types 1 through 4 for the task of
generating reward-vectors are summarized in Table 1. Each row corresponds to some statistic
of a reward signal and the highlighted values are the ones closest to the ground-truth. We can
observe that overall type-4 model performs better in replicating the statistics.

Table 2
Using model-4 as Random Vector Generator (RVG) and Direct methods on small dataset. The policy
being evaluated (𝜋) is the logging policy (𝜇) itself (policy that generated the small dataset).

Reward 1 Reward 2 Reward 3 Reward 4

Ground-Truth 0.57 0.816 14.1578 0.7441
Direct-method 1.1764 1.0835 2.1532 0.7404

RVG 0.4853 0.7697 14.0201 0.7404

7.2. Using Model-4 in Simulation and Direct Methods

Having obtained a trained reward-vector-generator which can also output mean-reward-vector
predictors, we ran the simulation and direct methods on the entire small dataset using model-
type 4. The results of these two methods are listed in Table 2. The values closest to the
ground-truth are highlighted. We note that the simulation-method performed better than the
direct-method. In Table 3, we see that on the online experiment dataset, Model-4 was able
to correctly predict winners among two treatments in 3 out of 4 metrics. Here the model was
trained using experience data from a separate online logging policy from the same period. These
results demonstrate the generalisability of our simulator/reward vector generator.

Table 3
Comparision of Random Vector Generator (RVG) Metrics for Online Experiment Dataset with At-
tributed/Ground Truth Data using model-type 4 trained on randomized traffic. Here logging policy and
evaluation policies are different. GT means Ground Truth.

Means Reward 1 Reward 2 Reward 3 Reward 4

T2 T1 T2 T1 T2 T1 T2 T1

GT 0.389 0.387 0.621 0.619 9.984 9.983 0.822 0.822
RVG 0.372 0.372 0.549 0.548 11.46 11.45 0.811 0.811

Since the reward vector generator/simulation method samples from a distribution, which is
atypical of model based methods, we expect some variance in the estimates. We empirically



estimated the variance of this method and compared it to the variance of the the Self Normalized
IPS (SNIPS) method in Table 4. We see that our random vector generator method has 3 to 6
orders of magnitude less variance than the SNIPS estimator.

Table 4
Comparing the Simulator/Reward-Vector Generator (RVG) Variance with SNIPS

Method Reward 1 Reward 2 Reward 3

T1 T2 T1 T2 T1 T2

RVG 2.84−7 2.26−7 3.57−6 4.15−6 5.24−4 6−4
SNIPS 0.16 0.13 4892.07 2052.97 0.23 0.24

8. Conclusion

Many eCommerce applications use contextual bandit models for decision making. These models
often optimize for an objective that is a linear combination of multiple objectives. Finding a
pareto-optimal linear scalarization of the objectives is an OPE problem in this setting.

Amongst the OPE methods, theoretically, under mild assumptions, the Dobuly Robust (DR)
estimator has low bias, and also enjoys good variance properties as long as one of the estimators
(model or IPS) is accurate. However, in practice, this is rarely the case. On the other hand, the
simulation and direct methods do not have good theoretical guarantees of the DR-estimator, but
they do not require any attributions apart from tuples of the form (context, considered-actions,
action, reward), which are already widely available in our current deployment of PLR. Keeping
this in mind, we developed a random vector generator methods. In doing so, we formulated
and implemented a Bayesian model (model-4) about the ground-truth conditional distributions
of rewards. In our results, we noted that model-4 can improve upon the performance of a
baseline MMOE model as the mean reward-vector predictor. Interestingly, we also found that
the random vector generator method performed better than the direct-method on our small
dataset. Further, we trained our random vector generator on an online policy and validated
that it predicted the correct winner among two treatments of an A/B test (online experiment
dataset). The random vector generator method does this at 3 to 6 orders of magnitue lower
variance than Self Normalized IPS (SNIPS) method. This is an interesting observation, one that
is worth exploring both theoretically and empirically.

References

[1] X. Zhao, L. Xia, L. Zhang, Z. Ding, D. Yin, J. Tang, Deep reinforcement learning for page-
wise recommendations, in: Proceedings of the 12th ACM Conference on Recommender
Systems, RecSys ’18, Association for Computing Machinery, New York, NY, USA, 2018, p.
95–103. URL: https://doi.org/10.1145/3240323.3240374. doi:10.1145/3240323.3240374.

[2] A. Slivkins, Introduction to multi-armed bandits, CoRR abs/1904.07272 (2019). URL:
http://arxiv.org/abs/1904.07272. arXiv:1904.07272.

https://doi.org/10.1145/3240323.3240374
http://dx.doi.org/10.1145/3240323.3240374
http://arxiv.org/abs/1904.07272
http://arxiv.org/abs/1904.07272


[3] N. Wang, H. Wang, M. Karimzadehgan, B. Kveton, C. Boutilier, Imo3: Interactive multi-
objective off-policy optimization, CoRR abs/2201.09798 (2022). URL: https://arxiv.org/abs/
2201.09798. arXiv:2201.09798.

[4] Z. Gao, Y. Han, Z. Ren, Z. Zhou, Batched multi-armed bandits problem, 2019.
arXiv:1904.01763.

[5] L. Li, W. Chu, J. Langford, X. Wang, Unbiased offline evaluation of contextual-bandit-
based news article recommendation algorithms, in: Proceedings of the fourth ACM
international conference on Web search and data mining - WSDM '11, ACM Press, 2011.
URL: https://doi.org/10.1145%2F1935826.1935878. doi:10.1145/1935826.1935878.

[6] D. G. Horvitz, D. J. Thompson, A generalization of sampling without replacement from a
finite universe, Journal of the American Statistical Association 47 (1952) 663–685. URL:
http://www.jstor.org/stable/2280784.

[7] M. Dudik, J. Langford, L. Li, Doubly robust policy evaluation and learning, in: Proceedings
of the 28th International Conference on Machine Learning, 2011, pp. 1097–1104. URL:
https://arxiv.org/pdf/1503.02834.

[8] E. L. Ionides, Truncated importance sampling, Journal of Computational and Graphical
Statistics 17 (2008) 295–311. URL: http://www.jstor.org/stable/27594308.

[9] A. Swaminathan, T. Joachims, The self-normalized estimator for counterfactual learning, in:
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, R. Garnett (Eds.), Advances in Neural Informa-
tion Processing Systems, volume 28, Curran Associates, Inc., 2015. URL: https://proceedings.
neurips.cc/paper_files/paper/2015/file/39027dfad5138c9ca0c474d71db915c3-Paper.pdf.

[10] M. Farajtabar, Y. Chow, M. Ghavamzadeh, More robust doublt robust off-policy evaluation,
in: Proceedings of the 35th International Conference on Machine Learning, Stockholm,
Sweden, PMLR 80, 2018. URL: https://arxiv.org/pdf/1802.03493.

[11] A. Kendall, Y. Gal, R. Cipolla, Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics, 2017. URL: https://arxiv.org/abs/1705.07115. doi:10.
48550/ARXIV.1705.07115.

[12] J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, E. H. Chi, Modeling task relationships in multi-
task learning with multi-gate mixture-of-experts, in: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery Data Mining, KDD ’18,
Association for Computing Machinery, New York, NY, USA, 2018, p. 1930–1939. URL:
https://doi.org/10.1145/3219819.3220007. doi:10.1145/3219819.3220007.

A. Supplementary Evaluation Results

More results are shown in Table 5.

B. Training Data Statistics

The training data statistics are in Table 6.

https://arxiv.org/abs/2201.09798
https://arxiv.org/abs/2201.09798
http://arxiv.org/abs/2201.09798
http://arxiv.org/abs/1904.01763
https://doi.org/10.1145%2F1935826.1935878
http://dx.doi.org/10.1145/1935826.1935878
http://www.jstor.org/stable/2280784
https://arxiv.org/pdf/1503.02834
http://www.jstor.org/stable/27594308
https://proceedings.neurips.cc/paper_files/paper/2015/file/39027dfad5138c9ca0c474d71db915c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/39027dfad5138c9ca0c474d71db915c3-Paper.pdf
https://arxiv.org/pdf/1802.03493
https://arxiv.org/abs/1705.07115
http://dx.doi.org/10.48550/ARXIV.1705.07115
http://dx.doi.org/10.48550/ARXIV.1705.07115
https://doi.org/10.1145/3219819.3220007
http://dx.doi.org/10.1145/3219819.3220007


Table 5
Comparision of model-types as mean reward-vector predictors. Each row corresponds to a model-type
and lists its prediction metrics on train and test datasets for Reward 1, Reward 2, Reward 3, and Reward
4 rewards. These metrics are root-mean-square-error (RMSE) for Reward 1, Reward 2, Reward 3, and
area-under-receiver-operating-curve (AUROC) for Reward 4. The best metric values in each column are
highlighted.

Model Reward 1 Reward 2 Reward 3 Reward 4

Type Train Test Train Test Train Test Train Test

1 2.2209 2.161 6.8975 6.9468 111.4532 98.9076 .6425 .6409
2 2.2211 2.1613 6.8974 6.9468 111.4529 98.9067 .6432 .6412
3 2.1334 2.0711 6.8834 6.9329 110.6313 97.9745 .6430 .6412
4 2.1343 2.0717 6.8824 6.9319 110.6608 98.0126 .6434 .6417

Table 6
Important Statistics of Train, Validation and Test Data-sets.

Metric Statistic Data-set

Train Validation Test

Reward
1

Mean 0.5713 0.5706 0.5702
Variance 4.6034 4.33 4.3392

Zeroes 14511963 3110180 3108955
Positives 3230605 691800 693024

Cond’l Mean Pos 3.1377 3.1358 3.1283
Cond’l Mean Pos 17.2293 15.7528 15.8030

Reward
2

Mean 0.8154 0.8236 0.8123
Variance 47.5675 305.2215 48.2461

Zeroes 16571130 3551870 3551820
Positives 1028124 219576 219373

Negatives 143314 30534 30786
Cond’l Mean Non-zero 12.3501 12.5191 12.3449

Cond’l Var Non-zero 578.003 4493.3414 590.8888
Cond’l Mean Pos 14.9443 15.1495 14.9548

Cond’l Var Pos 578.2699 5029.9224 598.3940
Cond’l Mean Neg -6.2609 -6.3966 -6.2523

Cond’l Var Neg 181.4392 227.1482 143.0220

Reward
3

Mean 14.1044 14.4436 14.1212
Variance 12296.421 301423.6155 9656.9371

Zeroes 14619342 3132516 3132948
Positives 3123226 669464 669031

Cond’l Mean Pos 80.1251 82.0273 80.2480
Cond’l Mean Pos 64564.1866 1706285.3960 49572.0939

Reward 4 Mean 0.7441 0.7441 0.7438


	1 Introduction
	2 Problem Formulation
	3 Offline Policy Evaluation (OPE) Methods
	3.1 Our Recommendation of OPE Method

	4 Datasets
	5 Reward-Vector-Generator Model
	5.1 Advantages of Reward-Vector Generator Model

	6 Reward-Vector Generator Training
	6.1 Framing Reward-Vector Generator Learning as a Supervised Multi-Task Learning Problem
	6.2 Other Reward-Vector Generator Models

	7 Evaluation Results
	7.1 Comparision of Model-Types as Reward-Vector Generators
	7.2 Using Model-4 in Simulation and Direct Methods

	8 Conclusion
	A Supplementary Evaluation Results
	B Training Data Statistics

