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Abstract
Analyzing program similarity is useful in automated assessment grading, plagiarism detection, or proving refac-

tor equivalence. The precondition of existing approaches to program similarity is that the programs to compare

are expected to be similar, as for example in the case of program evolution. We note that existing similarity ap-

proaches are not appropriate for analyzing programs that may use different implementations to solve a problem.

Moreover, existing approaches still are not able to measure the actual differences between program implementa-

tions. We propose an improvement to existing similarity techniques using the control flow graph representation

of programs. In our approach, we exploit the input graphs’ structure and avoid costly subgraph isomorphism

comparisons, to reach a metric to measure similarity between programs. Furthermore, we obtain a better similar-

ity detection when comparing similar and different programs, with respect to the state-of-the-art. To validate our

approach, we use a new corpus of competitive programming problems to discover similarity between solutions

submitted by contestants. Our results show that our approach correctly detects similarity between different pro-

gram implementations with a precision improvement of up to 77% in some cases, and marks as different those

implementations to unrelated programs, with a performance comparable to existing approaches.
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1. Introduction

In software engineering, program similarity refers to how closely related is the behavior and struc-

ture of two programs. Analyzing similarity between programs is useful in application domains like

automated assessment grading in programming courses, plagiarism detection, and refactor equiva-

lence. Current approaches to analyze similarity between programs focus on semantic similarity (i.e.,
behavior), comparing programs that are known, or expected, to be similar in advance (e.g., different

versions of a program). That is, when analyzing the similarity between different versions of a program,

most of the structure of the program is expected to remain the same, with only a few lines of code

changing. For example, automated grading systems expect students’ programs to be similar to one of

the model programs provided by course instructors. This, however, rises questions about similarity

between programs describing the same behavioral purpose but using completely different algorithmic

ideas and structures. This question is of particular interest for algorithmic diversity in evolutionary

environments [1]. When comparing programs that are actually similar, we answer questions like: Is

program A similar to program B? In some cases, this question is more restrictive and only concerned

with checking semantic equivalence between two programs, and not similarity.

In this paper, we study program similarity between any two programs. We are interested in programs

that correspond to the same functional behavior –that is, programs that respond the same output to the

same input, but that are built with a different structure. As programs with the same response to a same

input can still differ, similarity requires a deeper perspective: evaluating programs’ structure. Take

for example the case of search algorithms, is QuickSort most similar to MergeSort or HeapSort? Even

though the three sorting algorithms have the same output for the same input, their time complexity and

abstract idea differ. The structure of the programs is also different. Therefore, we propose an algorithm
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that takes into account programs’ structure to assess similarity. We define two programs to be similar if

they define similar control structures, have a similar usage of variables and data structures, and follow

the same order of the program statements. It is not the same to sort an array at the very beginning

of a program, or to sort it at the end of the program. Program pre-conditions exist if we sort at the

beginning; we could write completely different programs from that point on.

The motivation for measuring program similarity comes from algorithmic diversity [1], which is

concerned with improving systems’ performance by utilizing multiple different algorithm implemen-

tations for a program feature at the same time. Example domains in which algorithmic diversity can

present improvements are: security, N-version programming, collective systems like smart camera

networks, or load balancers. While there are areas in which using different algorithmic solutions for

a given problem can be beneficial, there is still a lack of measuring tools to dictate how different the

actual implementations are. This is precisely one of the major drawbacks for techniques like N-version

programming, and a contribution of our work.

Our proposal (Section 2) tackles the problem of program similarity comparing the structure of

programs, within a same domain, that are meant to be different beforehand [2]. Specifically, we use the

Control Flow Graph (CFG) [3] program representation and add information about the graph structure as

input for our comparison [4]. Furthermore, we avoid complicated subgraph isomorphism detection [5]

by normalizing the similarity value of the CFG nodes to the total number of nodes in the graph for each

program. To validate our approach (Section 3), we created a corpus of 566 C++ programs extracted from

the competitive programming platform Codeforces. Our corpus consists of multiple implementations of

five different programming problems. Our results (Section 4) show a clear clustering of the different

solutions to each of the problems, demonstrating the effectiveness of our approach in detecting similar

and disimilar implementations across different multi-function programs. The results present a similar

performance with respect to existing approaches, showing a precision improvement of up to 77%.

Additionally, our approach is effective in detecting disimilar implementations as such, providing a

balanced metric to program similarity.

Concretely, the main contributions of our paper are:

• Definition of a new similarity metric and algorithm between different programs.

• Creation of a corpus to evaluate similarity between any two programs, rather than comparing

program versions differentiating in small deltas.

• Evaluation of the proposed metric with respect to the state-of-the-art in node base similarity

analysis.

2. Similarity Among Programs

2.1. Motivating Example

To motivate the concept of similarity between programs, and to assess the perspectives of functional

behavior and structural similarity, we consider as example single function algorithms in three concrete

cases: linear search (Figure 1 left), max (Figure 2 left), and binary search (Figure 3 left).

int main() {
int a[] = {1, 2, 3, 4, 5};
int n = 5, k = 4;
int ans = -1;
for (int i = 0; i < n; ++i)

if (a[i] == k) { ans = i; }
return 0;

}

a = [1,2,3,4,5]
n,k = 5, 4

lo, hi, ans = 0, n-1, -1
for i in range(n):

return 0
if a[i] == k: ans = i

range(n)
a[i] != k

a[i]==k

Figure 1: Linear search C++ implementation with its CFG



int main() {
int a[] = {1, 2, 3, 4, 5};
int n = 5;
int ans = -1;
for (int i = 0; i < n; ++i)
if (ans == -1 || a[i] >= a[ans]) { ans

= i; }
return 0;

}

a = [1,2,3,4,5]
n,ans = 5, -1 for i in range(n):

if ans == -1 or a[i] >= a[ans]return 0

ans = i

not(ans==-1 or a[i]>=a[ans])

ans==-1 or a[i]>=a[ans]

range(n)

Figure 2: Max C++ implementation with its CFG

int main() {
int a[] = {1, 2, 3, 4, 5};
int k = 4, n = 5;
int lo = 0, hi = n - 1, ans = -1;
while(lo < hi) {

int mid= (lo + hi)/2;
if(k <= a[mid]) { hi = mid; }
else { lo=mid+1; }

}
if(a[lo] == k) { ans = lo; }
return 0;

}

a = [1,2,3,4,5]
n,k = 5, 4

lo, hi, ans = 0, n-1, -1
while lo < hi:

mid = (lo + hi) / 2
if k <= a[mid]:

if a[lo] == k:

ans = lo

return 0hi = mid lo = mid + 1

lo<hi
lo>=hi

a[lo]==k

a[lo]!=k

k>a[mid]
k<=a[mid]

Figure 3: Binary search C++ implementation with its CFG

All programs receive a number array as parameter and iterate over it to compute the corresponding

operation. The main functionality of the programs is characterized by a loop with an internal condi-

tional statement, as seen in the code snippets. To assure the similarity analysis is agnostic to specific

syntax elements, the loops and conditionals use different syntax (e.g., for vs. while loops). The CFGs

corresponding to each of the algorithms are on the right-hand side of Figures 1 to 3.

These examples raise the question of which of these algorithms are more cloesely related to the

others (if any)? Linear search should be more similar to binary search, as these two algorithms belong

to the same domain, and their end result is the same to the same given input. However, linear search is

structurally closer to max, as their CFGs are closer to each other than to binary search. We can conclude

that focusing on just one dimension of similarity analysis can lead to erroneous assessments. As a

consequence, with our proposal we measure the similarity of programs that are functionally equivalent

but that have different structures to identify diversity or different versions, as in the case between linear

and binary search.

2.2. Program similarity

We now turn our attention to the problem of assessing the similarity between two programs, A and

B. As discussed previously, different factors dictate the way programs may compare with each other,

beyond their functional equivalence. These are: (1) programs’ structure, (2) statements’ order, (3) control

structures used, and (4) data structures used.

We build on the approach taken by the LAV program similarity evaluation [6] for our similarity

analysis. The LAV algorithm analyzes similarity between programs using their CFG representation,

according to the information stored in the CFG’s nodes (i.e., sequences of LLVM instructions). To

calculate the similarity between two given CFGs, the algorithm uses the neighbor matching method [7].

The neighbor matching method defines similarity for a CFG, 𝐺 = ⟨𝑉,𝐸⟩, based on the similarity

scores of its individual nodes. Two nodes, 𝑖 ∈ 𝑉𝐴 and 𝑗 ∈ 𝑉𝐵 , abstracted from programs A and B

respectively, are defined as similar, if the neighbors of 𝑖 can be matched to neighbors of 𝑗. Therefore,

the neighbor matching method relies in the assignment problem. The goal of the assignment problem

is to find a matching of elements of CFGs 𝐺𝐴 to 𝐺𝐵 with the highest weight. A matching of nodes



for programs A and B is a set of pairs 𝑀 = {⟨𝑖, 𝑗⟩ | 𝑖 ∈ 𝑉𝐴, 𝑗 ∈ 𝑉𝐵} such that no element of one

set (say 𝑉𝐴) is paired with more than one element of the other set (𝑉𝐵). For the matching 𝑀 , we

have two enumeration functions 𝑓 : {1, 2, ..., 𝑘} → 𝑉𝐴 and 𝑔 : {1, 2, ..., 𝑘} → 𝑉𝐵 , such that 𝑀 =
{⟨𝑓(𝑙), 𝑔(𝑙)⟩ | 𝑙 = 1, 2, ..., 𝑘}where 𝑘 = |𝑀 |. The similarity of nodes 𝑖 and 𝑗 is defined as the average of

the similarity of the matched in-nodes (i.e., in-neighbors) and the matched out-nodes (i.e., out-neighbors)

for 𝑖 and 𝑗, as in Equation (1),

𝑥𝑘+1
𝑖𝑗 ←

𝑆𝑘+1
𝑖𝑛 (𝑖, 𝑗) + 𝑆𝑘+1

𝑜𝑢𝑡 (𝑖, 𝑗)

2
(1)

𝑆𝑘+1
𝑖𝑛 (𝑖, 𝑗)← 1

𝑚𝑖𝑛

𝑛𝑖𝑛∑︁
𝑙=1

𝑥𝑘𝑓 𝑖𝑛
𝑖𝑗 (𝑙)𝑔𝑖𝑛𝑖𝑗 (𝑙)

(2)

𝑆𝑘+1
𝑜𝑢𝑡 (𝑖, 𝑗)←

1

𝑚𝑜𝑢𝑡

𝑛𝑖𝑛∑︁
𝑙=1

𝑥𝑘𝑓𝑜𝑢𝑡
𝑖𝑗 (𝑙)𝑔𝑜𝑢𝑡𝑖𝑗 (𝑙) (3)

where 𝑚𝑖𝑛 = 𝑚𝑎𝑥(𝑖𝑑(𝑖), 𝑖𝑑(𝑗)), 𝑚𝑜𝑢𝑡 = 𝑚𝑎𝑥(𝑜𝑑(𝑖), 𝑜𝑑(𝑗)) with 𝑖𝑑(𝑖) the in-degree of node 𝑖, and

𝑜𝑑(𝑖) the out-degree of node 𝑖. The functions 𝑓 𝑖𝑛
𝑖𝑗 and 𝑔𝑖𝑛𝑖𝑗 are the enumeration functions of the optimal

matching of in-neighbors for nodes 𝑖 and 𝑗 with weight function 𝑤(𝑎, 𝑏) = 𝑥𝑘𝑎𝑏. Analogously 𝑓𝑜𝑢𝑡
𝑖𝑗 and

𝑔𝑜𝑢𝑡𝑖𝑗 are the enumeration functions of the optimal matchings of out-neighbors for nodes 𝑖 and 𝑗. The

algorithm terminates the comparison between the CFGs when 𝑚𝑎𝑥𝑖𝑗 |𝑥𝑘𝑖𝑗 −𝑥𝑘−1
𝑖𝑗 | < 𝜖, or after reaching

a given number of iterations.

The similarity of the CFGs (i.e., 𝑆𝑖𝑛(𝑖, 𝑗) and 𝑆𝑜𝑢𝑡(𝑖, 𝑗)) is computed as the weight of the optimal

matching of nodes divided by the number of matched nodes [7].

The original neighbor matching method of LAV [7] analyzes the graphs based only on their topology.

Our approach extends this by annotating nodes with valuable information related to the program (LLVM

instructions) extracted from the CFG. Furthermore, we use the edit distance between the sequences

of instructions of every pair of nodes 𝑖 ∈ 𝑉𝐴 and 𝑗 ∈ 𝑉𝐵 [6] to calculate their similarity. The edit

distance 𝑑(𝑖, 𝑗) is the minimal number of insertions, deletions, and substitutions needed to transform

one sequence of characters into another. In LAV, the cost of insertion and deletion of an instruction

is defined to be 1. The substitution cost depends on whether the instruction is a function call. If the

instruction is a function call to different functions, then the substitution cost is 1. If the instruction is a

call to the same function, then the cost is 0. If the instruction is not a function call, then the cost is 1,

unless the instructions in both nodes are exactly the same. Finally, the similarity of the sequences of

instructions of the nodes 𝑖 ∈ 𝑉𝐴 and 𝑗 ∈ 𝑉𝐵 is defined as 𝑦𝑖𝑗 = 1− 𝑑(𝑖, 𝑗)/𝑚𝑎𝑥(|𝑖|, |𝑗|), where |𝑖| is
the number of instructions in the sequence [6]. The update rule is modified to calculate the similarity

of nodes taking into account nodes’ sequences of instructions, as in Equation (4).

𝑥𝑘+1
𝑖𝑗 ←

√︃
𝑦𝑖𝑗 ·

𝑆𝑘+1
𝑖𝑛 (𝑖, 𝑗) + 𝑆𝑘+1

𝑜𝑢𝑡 (𝑖, 𝑗)

2
(4)

We observe that the similarity evaluation described by LAV presents problems when we compare two

programs, A and B, in the case program A is contained in program B. In such case, the similarity value

of the programs will be unusually high, disregarding the additional instructions from the container

program B. This anomaly exacerbates whenever the size of program B is much larger than size of

program A. The reason for this anomaly is that the neighbor matching method is designed to determine

subgraph isomorphism. However, this property is not necessarily desired when analyzing programs.

For instance, an automated grading system using this approach could be fooled by an empty program

as it is contained by every other program. Therefore, to strengthen the neighbor matching method for

similarity analysis, we improve the algorithm by taking into account the topological context of the

graphs. Additionally, we normalize the output of the node similarity algorithm based on the maximum

number of nodes between the CFGs of the two programs under analysis.



To counter the aforementioned problem and to take into account information about the graphs’

topology, we modify the similarity metric between nodes, so it also contains information about the

structure of the nodes’ neighborhood (a level beyond of the current approach). Therefore, given two

CFGs 𝐺𝐴 and 𝐺𝐵 , we compute a similarity matrix 𝑍 , where the position 𝑧𝑖𝑗 indicates the similarity

between the nodes 𝑖 ∈ 𝑉𝐴 and 𝑗 ∈ 𝑉𝐵 . The similarity index 𝑧𝑖𝑗 is calculated based on the Local

Relative Entropy (LRE) index [8]. In contrast to the neighbor matching method described previously,

our approach considers the similarity based only on the neighborhood structure –that is, comparing

the degrees of a node’s neighborhood without considering the value of the nodes itself.

To calculate the LRE we need to: (1) Find local networks 𝐿𝑖(𝑁,𝐷), and their probability sets 𝑃 (𝑖).
(2) Calculate the relative entropy between all node pairs based on the probability sets for each node.

(3) Calculate the similarity of each pair of nodes based on their relative entropy [8]. The local network

of a node 𝑖 is defined as 𝐿𝑖(𝑁,𝐷) where 𝑁 is the set of nodes in the local network, composed of the

node 𝑖 and its neighbors, and 𝐷 the set of degrees of 𝑁 . The total degree of a local network is defined

by Equation (5), where 𝐷(𝑘) is the degree of the 𝑘 neighbor of node 𝑖.

𝐷𝐿(𝑖) =

|𝐷|∑︁
𝑘=1

𝐷(𝑘) (5)

The probability set 𝑃 (𝑖) for node 𝑖 describes the ratio between the degree of a node 𝑘 in the local

network and the total degree of the local network of node 𝑖. The probability set must have the same

magnitude for all nodes. All probability sets have a fixed size equal to the largest degree in the graph

(𝐷𝑚𝑎𝑥) and the node itself, |𝑃 (𝑖)| = 𝐷𝑚𝑎𝑥 + 1, as in Equation (6).

𝑃 (𝑖) = {𝑝(𝑖, 1), 𝑝(𝑖, 2), ..., 𝑝(𝑖, 𝑘), ..., 𝑝(𝑖,𝐷𝑚𝑎𝑥 + 1)} (6)

where the probability for node 𝑘 relative to node 𝑖 is

𝑝(𝑖, 𝑘) =

⎧⎨⎩
𝐷(𝑘)

𝐷𝐿(𝑖)
, 𝑘 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖) + 1

0, 𝑘 > 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖) + 1
(7)

To compute LRE, the probability sets are sorted in decreasing order (𝑃 ′(𝑖) = 𝑠𝑜𝑟𝑡𝑒𝑑(𝑃 (𝑖), 𝑑𝑒𝑐)). Now,

the relative entropy between two nodes is defined as in Equation (8).

𝐷𝐾𝐿(𝑃
′
(𝑖)||𝑃 ′

(𝑗)) =

𝑚𝑖𝑛(|𝐷𝑖|,|𝐷𝑗 |)+1∑︁
𝑘=1

𝑝
′
(𝑖, 𝑘)𝑙𝑛

𝑝
′
(𝑖, 𝑘)

𝑝′(𝑗, 𝑘)
(8)

Based on the relative entropy for each pair of nodes, the relevance matrix 𝑅 is created, such that 𝑟𝑖𝑗 =

𝐷𝐾𝐿(𝑃
′
(𝑖)||𝑃 ′

(𝑗)) +𝐷𝐾𝐿(𝑃
′
(𝑗)||𝑃 ′

(𝑖)). Finally, the LRE similarity score is defined in Equation (9).

𝑧𝑖𝑗 = 1− 𝑟𝑖𝑗
𝑚𝑎𝑥(𝑅)

(9)

Even though, LRE is described for nodes within the same graph, we used it for calculating similarity

between nodes across different graphs. This is part of our contribution to the algorithm to calculate the

LRE and similarity for pairs of nodes 𝑖 ∈ 𝑉𝐴 and 𝑗 ∈ 𝑉𝐵 .

Once we compute the 𝑍 matrix, we combine it with the edit distance stored in the 𝑌 matrix, such

that 𝑦𝑖𝑗 :=
𝑦𝑖𝑗 + 𝑧𝑖𝑗

2
, the average of the edit distance score and the LRE score. Finally, the similarity of

the graphs corresponds to the weight of the optimal matching of nodes divided by the number of nodes

of the CFG with the largest number of nodes.

Note that using our approach, the similarity of a program compared with itself is not 1, but rather is

the highest value of the comparison with all the other programs in the analysis. Values closer to the

comparison of a program with itself, mean that the programs are more similar.



3. Evaluation

We evaluate our program similitude analysis in two stages. First, we validate the effectiveness of our

approach using algorithms from known domains. These algorithms are well understood so that their

semantic behavior is known. Additionally, the programs used are complex enough so that all language

features are evaluated. Second, use a new corpus for program similitude analysis, to evaluate our

algorithm on larger multi-function codebases. The programs in the corpus are divided in 5 domains,

including implementations that are alike and that are structurally different –that is, differ further than

small deltas, but still provide the same result to a problem.

3.1. Evaluation Environment

To execute all the evaluation scenarios we use an Intel core i5-5257U processor with 8GB RAM running

Ubuntu 18.04.2 LTS. Our evaluation uses version 3.3 of LLVM and C++11. All data used, and the

full evaluation results are available in our online appendix https://flaglab.github.io/SimCorp/web/

sqamia2024.html, here we focus the attention to the evaluation of our corpus.

3.2. Data Corpus

Our corpus consists of 566 different C++ programs extracted from the Codeforces competitive progra-

mming online judge. The extracted programs are solution submissions to five problems (domains). The

problems used present different implementation characteristics, ranging from simple straightforward

implementations (the difficulty level of the problems is given by their accompanying letter starting with

A as the simplest problem), to implementations using multiple functions, requiring to manage complex

data structures (e.g., DSU) or advanced algorithms (e.g., dynamic programming (dp), or computational

geometry). For each of the problems we extracted up to 50 submissions from the categories: (1) (OK)

complete all test cases, (2) (RUNTIME_ERROR) yield a runtime error, and (3) (WRONG_ANSWER) do

not solve the problem properly. Table 1 shows the distribution of the data set classified by solution

category, each containing the average Lines of Code (LOC) per submission.

Table 1
Corpus of Codeforces programs

Problem Domain OK RUNTIME_ERROR WRONG_ANSWER
558B implementation 25 (avg. 28LOC) 44 (avg. 38LOC) 50 (avg. 26LOC)
922E dp 12 (avg. 27LOC) 47 (avg. 53LOC) 49 (avg. 26LOC)
1142C geometry 48 (avg. 34LOC) 25 (avg. 130LOC) 46 (avg. 31LOC)
1579A math, strings 50 (avg. 17LOC) 21 (avg. 35LOC) 41 (avg. 19LOC)
1553G brute force, constructive

algorithms, dsu, hash-
ing, number theory

46 (avg. 55LOC) 12 (avg. 57LOC) 50 (avg. 51LOC)

An important characteristic of the data set is that all OK solutions for a problem are assured to

provide the same output to the same input. However, there is a wide disparity on the submissions for

the other two categories, RUNTIME_ERROR and WRONG_ANSWER. In these cases, the submitted

solutions may variate from empty programs, to programs close to a solution, to programs that solve

completely different problems.

3.3. Experiment Design

The similarity evaluation of the programs in our corpus first computes a similarity matrix containing

the similarity score for every pair of programs compared, as explained in Section 2.2. We use Principal

Component Analysis (PCA) [9] to reduce the dimension of the matrix to two principal components, and

plot these components using the PCA index. Furthermore, we use the silhouette coefficient [10] on the

https://flaglab.github.io/SimCorp/web/sqamia2024.html
https://flaglab.github.io/SimCorp/web/sqamia2024.html


similarity matrix to evaluate the cohesion and separation of the clusters per problem. The silhouette

score is bounded between −1 and 1, similar programs have a score close to 1, overlapped clusters have

a score close to 0, and dissimilar programs have a negative score.

We evaluate our algorithm using the LAV similarity analysis [6] as a baseline. We take this baseline

for our experiments, as this constitutes the state-of-the-art analysis for node-based similarity, which is

closest to our approach. Here we focus on the comparison of functionally equivalent programs that

satisfy problems’ conditions (OK), which we use to identify different implementation techniques for a

specific problem.

Note that all programs in the corpus have a common behavior (e.g., I/O instructions), and therefore

have a positive similarity score. Furthermore, as all the submissions that solve a problem (i.e., the

OK category) have the same black-box behavior, we expect all solutions to a problem to be clustered.

However, while the solutions to a problem behave the same, the algorithms used can have different

implementations; therefore, we also expect to find sub-clusters for each problem.

3.4. Results

Our evaluation computes the similarity of the different problems from three perspectives. First, we

generate the similarity matrix using the LAV method (labeled ORIGINAL in the figures). Second, we

use our node similarity method to compare the submissions (labeled ORIGINAL-NODE-SYM). Third,

we normalize the node similarity as described in Section 2.2 (labeled NORMALIZED-NODE-SYM).

When analyzing correct solutions (OK) to the problems, Figure 4a shows some clustering for each

problem (identified by shape and marker’s color in the figure). The silhouette score is 0.234, but still

presents overlapping and scattering between problems 1579A, 922E, and 1553G. Using our algorithm,

Figure 4b shows a better clustering, with a silhouette score of 0.204, and a 3.57× improvement over

the evaluation of all problems. This suggests that, as problems have behavior equivalence, our approach

significantly improves the similarity metric of the evaluated programs.

Note program scattering can be attributed to specific algorithms. There might be different solutions

for a given problem, therefore these solutions should not be as similar to each other, as other solutions

with the same algorithmic principle.

Figure 5a shows the OK submissions for problem 558B using the ORIGINAL method, with two

clusters, showing two distinctive solutions to this problem. From the figure we see a tight cluster

represented by the solutions using a circle, and a more scattered clustered represented by the solutions

using a ×. This explains the low silhouette score of 0.276. Figure 5b shows our NORMALIZED method

evaluating the same problem. Here we too obtain two distinctive clusters. In this figure we observe

that the clusters are less scattered, explained by a silhouette score of 0.483. As there are two common

solution patterns for the problem, we confirm our algorithm is effective in finding similar and dissimilar

programs for particular problems with common black-box behavior.

We use our approach to evaluate submission types for all the problems in the corpus. Table 2 presents

the silhouette scores for all the programs in our corpus, with the best scores in bold. It is important to

note, that the silhouette score for a specific problem, represents the ability of the algorithm to detect

different implementations for the same problem. Not all problems contain different implementations

within the same type of submission. Identifying such property is valuable for applications domains like

diversity or N-version programming.

3.5. Discussion

From the results we conclude our approach is appropriate to: (1) Identify features common to different

problems, for example, in the case of SimCorp, in which we identify similarities across all analyzed

submissions in the way the input and output of the problem are processed (independent of the specific

instructions used). (2) Detect differences in the algorithms behind different programs, even when they

are functionally equivalent. This is shown in the clusters for the correct (OK) solutions to a problem in

our corpus.



(a) ORIGINAL algorithm for OK submissions

(b) NORMALIZED-NODE-SYM algorithm for OK submissions

Figure 4: PCA-x and PCA-y components for all problems

The performance of our algorithm, measured using the silhouette score, is similar to the performance

of the baseline, i.e., the LAV algorithm. Our evaluation shows that the use of our node similarity

definition has a slight improvement over the baseline in most cases. Moreover, when analyzing specific

algorithm pairs identified as similar/disimilar, we respectively note a great resemblance/disparity in the

specific implementations. This is beneficial as a notion of diversity between algorithms. However, the

validation shows that in some cases using node normalization is detrimental to the performance. We

note that, as programs differ but have an important feature in common (e.g., input/output processing),

the algorithm will detect these as similar, decreasing the silhouette score.

4. Related Work

Existing approaches for the semantic program analysis often focus on behavior equivalence between

programs (i.e., programs’ outputs are equivalent for the same inputs). Other approaches strive to detect

semantic similarities for programs that differentiate on small deltas. We put our proposed algorithm to

analyze similarity in perspective of these existing approaches, divided in two categories: analysis for

semantic equivalence, and semantic code clone detection.



(a) ORIGINAL algorithm for problem 558B OK

(b) NORMALIZED-NODE-SYM algorithm for problem 558B OK

Figure 5: PCA-x and PCA-y component evaluation

4.1. Semantic Equivalence of Programs

Control Flow Graph CFGs are among the most used structures to analyze the structure and behavior

of programs, as they allow developers to explore all the execution paths of a program. CFGs are normally

analyzed using subgraph isomorphisms to detect similar code fragments as related graph sections. Such

techniques are problematic for similarity comparison, for two main reasons [4, 5]. First, subgraph

isomorphism algorithms are time- and resource-heavy, restricting the complexity of the problems that

can be analyzed. Second, this technique is computable only for specific cases, restricting the types

of programs to analyze. We use a different method, where nodes’ local information determines their

similarity, this enables us to assess similarity between any type of programs.

LAV [6] uses CFG neighbor and node similarity to assess student assignments for introductory

programming courses, when compared with the solutions provided by the course’s instructors. The

neighbor matching method used in LAV is the base for the implementation of our approach. This

method calculates the similarity between two nodes taking into account their in and out nodes, fol-

lowing Equations 1-4 in Section 2.2. While LAV enhances code similarity using nodes’ content, which

corresponds to a linear code sequence to calculate graph nodes similarity, we use the LRE index and

normalize node similarity between programs to weight the relevance of each neighbor for the nodes



Table 2
Silhouette score for Codeforces programs

Problem Submission ORIGINAL ORIGINAL-NODE-SYM NORMALIZED-NODE-SYM

All All 0.149 0.157 0.057
All OK 0.234 0.240 0.204
All WRONG ANSWER 0.207 0.210 0.101
All RUNTIME ERROR 0.050 0.067 0.002

558B OK 0.276 0.298 0.483
558B WRONG ANSWER 0.403 0.446 0.407
558B RUNTIME ERROR 0.350 0.373 0.342

922E OK 0.320 0.304 0.419
922E WRONG ANSWER 0.525 0.522 0.683
922E RUNTIME ERROR 0.555 0.418 0.622

1142C OK 0.331 0.541 0.694
1142C WRONG ANSWER 0.561 0.555 0.620
1142C RUNTIME ERROR 0.382 0.371 0.426

1579A OK 0.480 0.529 0.442
1579A WRONG ANSWER 0.508 0.530 0.482
1579A RUNTIME ERROR 0.322 0.337 0.351

1553G OK 0.284 0.307 0.640
1553G WRONG ANSWER 0.579 0.644 0.594
1553G RUNTIME ERROR 0.506 0.519 0.620

under comparison, with better results in many cases, and a defined metric to differentiate algorithms.

Symbolic execution Symbolic execution methods can be used to focus the similarity analysis be-

tween programs on their behavior, rather than their structure [11]. This method performs analysis on

programs’ structure, represented as a CFG. The result of the symbolic step is a set of variable stores

and path conditions. While using symbolic execution methods can detect similarity between programs

with similar behavior, in generally they are unable to prove equivalence [12]. Moreover, if the programs

obtain the same behavior using different techniques, the symbolic method will not reach close similarity.

Our approach addresses this shortcoming.

Abstract interpretation In response to the problems presented in symbolic execution methods,

abstract interpretations methods aim to increase the precision of existing proposals that suffer of

under-approximation. Partush and Yahav [12] present speculative correlating semantics to allow the

bounded representation of program difference. The technique uses SCORE, that given an abstracted

pair of programs, finds the state of minimal difference between them. Similar to our approach, the use of

program abstractions in SCORE allows the comparison of programs with more significant differences.

Differential symbolic execution (DSE) Finally, DSE methods encompass the analysis of programs

based on a preliminary differential program analysis [13], exploring only the parts of the programs that

have changed. DSE performs a method level comparison of programs, taking the symbolic summaries of

each method to check functional or path equivalence [14]. DSE presents an improvement over symbolic

execution methods using the path equivalence, which takes into account both the final behavior of

programs, and the way programs are structured for a more faithful comparison between programs.

ARDiff [2] improves the assessment of program equivalence to improve results using refinement

abstractions to optimize the symbolic summaries needed to prove equivalence. As with SCORE, this

approach is effective in evaluating small differences between two programs.



Trostanetski et al. [15] extend DSE with a modular execution improving the search of procedures

that have already been explored (an alternative method to refinement abstraction). The contribution

of this approach is the possibility to both prove and disprove equivalences between programs. This

characteristic is similar to our proposed metric, we can state that programs with a lower PSA metric

are different.

4.2. Semantic Code Clone Detection

A vast body of work exists on the topic of code clone detection [16, 17]. However, of the 54 tools in the

most recent survey [16], only 9 tools report the detection of Type-4 or semantic clones. As the datasets

to evaluate these tools are not available, we discuss the algorithm and results of the main existing tools

in perspective of our approach.

CCSharp [5] specializes in detecting Type-4 clones using Program Dependence Graphs (PDGs). CC-

Sharp is based on subgraph isomorphism of synthesized PDGs to improve the algorithm’s performance.

Program similarity in CCSharp is based on string and numerical similarity. String similarity evaluates

the distance between input and output parameters, then evaluates the similarity of function names.

Numerical similarity takes the characteristic vectors extracted from the PDG (i.e., the meaning of nodes)

and calculates their euclidean distance. Based on graph isomorphism, CCSharp may not be able to cope

with programs with strong syntactic differences, as the ones we are targeting. Similar to our approach,

Nasirloo and Azimzadeh [18] use normalization to refine the clone analysis over PDGs.

Sheneamer et al. [19] present a machine learning based method to detect Type-4 clones on obfuscated

code. This approach is based on the features extracted from a Bytecode Dependency Graph (BDG),

and features extracted from an AST or PDG. This method is similar to other CFG methods discussed

before, in that CFGs are the base structure to extract information about the programs. In this case we

also require example programs to use as the training set of the machine learning algorithm, to further

related observed features as semantic clones during testing. The amount of data required to use machine

learning techniques makes such approaches inappropriate for the comparison of diverse programs.

5. Conclusion and Future Work

This paper presents a new approach to measure similitude between different programs. Unlike existing

approaches that focus on the equivalence of programs based on their behavior, our approach analyzes

similitude from the perspective of programs’ structure and complexity. A particular contribution of our

approach is that it is agnostic to the specific program under analysis. That is, we do not require the

programs to be similar beforehand (i.e., are delta variations of each other). In fact, we strive to analyze

programs that are different in kind, which is of use to evaluate how diverse a code base is, or how

diverse are different implementations of a system functionality.

Together with our approach, we posit a new corpus for evaluating similitude between different

programs. Our corpus contains 566 different C++ programs extracted from submitted solutions to

competitive programming problems from the Codeforces online judge. In the evaluation, we validate

that our approach is effective in detecting similarity between programs at par with existing approaches.

Additionally, our approach is effective in identifying diverse families of programs for a same problem

with different algorithmic solutions, outperforming the precision of existing solutions by up to 77%.

We identify two avenues of future work. First, we will continue to improve the precision. One

possible improvement would be to provide the CFG nodes with more information from the LLVM

instructions. Second, we want to apply our approach as a new metric for technical debt for development

companies, and as a recommender for existing functionality to implement in new products.
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