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Abstract  
In this paper, we investigate whether Software Development Effort Estimations (SDEEs) predictions can be 
improved using commonly used machine learning algorithms such as Linear Regression, Decision Tree 
Regression, Random Forest Regression, XGBoost Regression, CatBoost Regression, and LightGBM Regression. 
To prevent the data leakage and enhance the TAWOS agile open-source software project dataset using Tabular 
Variational Autoencoder (TVAE) and Truncation Normal Data distribution we also apply additional scaling. 
Hyperparameter optimization with Optuna was conducted on 21 model-data combinations based on 5-fold cross-
validated adjusted R², mean squared prediction error (MSPE), and Pearson’s correlation coefficient. The Random 
Forest Regressor trained on TVAE-augmented data achieved the best results, with an adjusted R² of 0.59, a 
Pearson’s correlation of 0.81, and an MSPE of 140011, indicating strong predictive accuracy. The CatBoost 
Regressor on regular data ranked second, with an adjusted R² of 0.39, a Pearson’s correlation of 0.74, and an 
MSPE of 200011. The Decision Tree Regressor, despite a high training correlation, performed the worst, with an 
adjusted R² of 0.35, a Pearson’s correlation of 0.76, and an MSPE of 234500, indicating weaker performance. 
Ultimately, we aimed to reduce the gap between expected and actual software development efforts, thereby 
minimizing associated risks. The results of this study can significantly enhance software development project 
planning and management. 
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1. Introduction 

Designing and developing software requires both high-quality data and high accuracy to ensure the 
overall success of the project. Consequently, Software Development Effort Estimation (SDEE) is vital 
in project management, determining project feasibility, and impacting the distribution of funds [1]. 
Errors and inaccuracies in SDEE oDen lead to misjudgments of investment, potentially causing 
underfunding in successful projects or overspending in unsuccessful endeavors [2]. Therefore, many 
technical leaders, soDware engineers, and soDware development teams beneEt from well-Etting 
SDEE, which improves overall project outcomes by providing more accurate estimations [3]. Our 
research addresses this challenge by combining state-of-the-art regression models with data 
augmentation techniques, distinguishing our approach from existing methodologies. Previous works, 
such as [4] on machine learning for eFort estimation and [5] on Random Forests with diFerent 
parametric models data, have laid important groundwork. However, our focus on data augmentation 
through TVAE and hyperparameter tuning provides a unique and potentially more reliable approach 
for generating precise results. The newest approach in estimating soDware project development is 
closely related to agile methodologies such as SCRUM, Kanban, Extreme Programming (XP), Crystal 
methods and similar. Previous research has shown initial evidence that Story Points (SPs) estimated 
by human experts may not accurately reHect the eFort needed to realize agile soDware projects, 
although it is still a widely accepted measurement [6]. In the context of Agile soDware development, 
practitioners have introduced and used Story Points (SP) as an Agile-speciEc soDware size 
measurement unit. Unlike Function Point Analysis (FPA) and Use Case Point Analysis (UCP), SP does 
not follow a formal method of measurement. Instead, developers use them as a relative measure to 
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maintain the relative diFerence of stories in size by assigning a point value to each user story. One 
common approach to determining the story point value of a user story is to select one of the smallest 
stories in the backlog and assign it one story point. More complex and larger user stories then receive 
more points considering their size. Thus, any user story assigned two SP is considered twice as large 
as a user story assigned one SP. SP estimations need to be consistent throughout the project to ensure 
reliability [6]. However, SP’s estimated value is oDen inaccurate, making it harder for the model to 
estimate the required eFort to complete a project. Hence, there have been many attempts to increase 
its accuracy, recently in the form of machine and deep learning models. Many models have already 
been experimented with, and this study seeks to elaborate on this subject, evaluating the performance 
of additional Eve machine learning models (MLMs) and comparing them to a baseline model. 

This paper aims to answer to what extent the models CatBoost, XGBoost, RandomForest, 
LightGBM, and Decision Trees can, in comparison to the Linear Regression baseline model, accurately 
estimate the story points required for SDEE within the TAWOS dataset. To further elaborate on 
speciEc aspects of model specialization, we will also seek to compare the machine learning models’ 
abilities to estimate story points using diFerent evaluation methods such as Pearson’s correlation, 
Mean Squared Prediction Error (MSPE), and adjusted R2. We will examine how hyperparameter 
tuning aFects these metrics and if data augmentation techniques such as min-max scaling, 
transformation to a truncated normal distribution, and the use of a Tabular Variational Autoencoder 
(TVAE) can optimize machine learning models and enhance their accuracy. Therefore, the research 
contributions (RCs), along with their underlying motivations, are as follows: 

 
Main RC: To what extent can additional regression models, in comparison to the baseline model, 

accurately estimate the story points required for SDEE within the TAWOS dataset? 
Sub-RC1: How do regression models compare in their ability to estimate the story points required 

for soDware development within the TAWOS dataset, considering evaluation metrics 
such as Pearson’s correlation, MSPE, and adjusted R2? 

Sub-RC2: How can multiple data augmentation techniques, including min- max scaling, 
transformation to a truncated normal distribution, and the use of a TVAE, be employed 
to optimize regression models for enhanced prediction accuracy of actual eFort in 
SDEE? 

Sub-RC3: How does hyperparameter tuning inHuence the performance of regression models in 
the context of SDEE within the TAWOS dataset? 

 
The rest of the paper is organized as follows: Section 1 provides an overview of the current state-

of-the-art literature in the Eeld of soDware project estimation, focusing on machine learning and deep 
learning methods, and the poor use of any data augmentation techniques. Section 2 presents the 
methodology pipeline. Section 3 discusses the research Endings. Section 4 delves into a detailed 
discussion of the obtained results. Concluding remarks, along with limitations and future directions, 
are provided in Section 5. 
 

2. Related work 

Historically, numerous software projects either failed or were left unfinished due to inadequate 
processes. Commonly employed methods included similarity-based estimation, the analysis and 
synthesis method, expert knowledge-based estimation, and various parametric techniques [7] 
Researchers and practitioners are increasingly aware of previous machine learning effort estimation 
techniques and are evaluating which methods yield more accurate results based on evaluation 
measures, datasets, and other attributes [8]. In [8] the authors investigated the performance of 
machine learning ensemble and solo techniques on various datasets. Analysis of 35 studies shows 
machine learning as the top choice for ensemble effort estimation due to promising error metrics. 
Additionally, machine learning-based software fault prediction (SFP) methods outperform traditional 
statistical approaches [9]. Empirical evidence suggests these techniques effectively identify fault 
proneness [10]. Techniques like Naïve Bayes, Random Forests, Logistic Regression, and decision trees 
are predominant for predictive estimations [11]. An automated text mining framework to investigate 
trends in 1015 papers on software development effort and cost estimation (SDECE) was proposed by 
study [12]. They found that artificial neural networks, fuzzy logic, regression, analogy-based 
approaches, and the COCOMO method are the most utilized for SDECE, with NASA and ISBSG 



datasets being the most employed. In [13] the authors assessed project duration estimation using 
Support Vector Regression and Multiple Linear Regression, finding Support Vector Regression 
significantly more precise. Predictive models using regression analysis, such as Decision Tree 
Regression, Extreme Gradient Boosting Regression, Bayesian Ridge Regression, and Support Vector 
Regression, were evaluated, with Bayesian Ridge Regression producing the best results. 

Recent advancements in machine learning, also increased the popularity of using deep learning in 
software estimation field [14], [15], [16]. Surveyed defect prediction using deep learning, highlighting 
techniques for automatic extraction of code information and trends in effort and cost estimation was 
presented in [14]. Program analysis methods often have high false positive or negative rates [17]. 
Despite DL's promising results in automated vulnerability identification with up to 95% accuracy, 
they often perform below expectations. The authors in [18] discuss current DL-based vulnerability 
prediction challenges and future research directions. Due to traditional features' limitations in 
capturing semantic information, recent studies incorporate semantic features in defect prediction 
models [19]. 

To summarize, reducing model complexity while maintaining accuracy is a desirable state of each 
software industry use case. State-of-the-art models can offer a more efficient and effective approach 
to modeling complex systems. Data augmentation techniques help us continue performing analysis 
and understanding outcomes by providing more accurate and straightforward models. 

 

3. Methodology & Experimental Setup 

In this section, we will describe the steps for conducting the experimental part of our research. An 
illustration of the methodology pipeline is given in Figure 1. The TAWOS dataset comprises 31960 
issues from 26 projects from repositories such as Atlassian, Apache, Appcelerator, Hyperledger, 
MongoDB, Sonatype, Moodle, Talendforge, and similar sources, where diFerent programming 
languages such as Java, Python, C#, Go and others were used for diFerent projects. It oFers detailed 
information on versioning, issue tracking, developer assignments, and resolution times. This data is 
invaluable for research in soDware testing, maintenance, and task optimization. It includes version 
details like name, description, release date, and status (archived or released) and tracks issues through 
aFected and Ex versions. Developer assignment data helps in recommending the best developer for 
new issues and optimizing task assignments based on work-load. The dataset also provides issue 
status transitions, enabling the analysis of bug Ex times and triage, thereby supporting advanced 
research using machine learning models.  

 

 
Figure 1. Methodology pipeline. 



 
While #Components and #Developers are useful for detecting the anomalies in speciEc 

components produced for each user story from diFerent developer, #Change Log is likely to be more 
directly correlated with the eFort involved in the project (as reHected in story points) because it 
captures the actual work being done in terms of changes and updates to the project. This creates a 
fuller picture when combined with #Issues and #Bugs. Finally, the distribution of the target variable 
Story Points can be seen in Figure 2, along with descriptive statistics of the input features in Table 1. 
The smooth line shows the probability density, indicating how story points are distributed in the 
dataset. This helps to see the trend and pattern of the target variable distribution. "Target Value" on 
the x-axis represents the values of story points. "Frequency" on the y-axis shows how many times a 
particular target value appears in the dataset. The quantiEcation step represents the width of the 
interval for grouping story points. Story points are grouped into bins (intervals) to better display the 
data distribution. This visualization helps to see how the values are distributed in speciEc ranges. The 
graph shows that there were about 40 projects in the Erst bin interval, but this does not mean that 
there were projects with exactly 0 story points. The interval from 0 to 500 can include projects with 
story points between 0 and 500. The minimum mark on the x-axis is 0 for histogram visualization, 
which oDen starts at 0 for clearer representation and interpretation of the distribution. Therefore, the 
x-axis mark does not mean that there were projects with exactly 0 story points. 
 

 
Figure 2. Story Points distribution in TAWOS dataset. 

 

The Table 1. presents the descriptive statistics for the chosen TAWOS dataset [6], following 
thorough data cleaning, which involved the removal of missing values and the detection and removal 

of outliers at both upper and lower bounds. The average values for the metrics are: 11567 issues, 5399 

bugs, 227815 change log entries, and 1584 story points per project. The standard deviations indicate 

considerable variability, particularly in the #Change Log (358604.554) and Story Points (3226.417), 
suggesting diverse project activities. Minimum and maximum values further illustrate the range of 

data, with issues ranging from 313 to 66.741 and story points from 209 to 20.664. Outliers were 

identiEed, where for example an entry with 1608.633 change log entries was identiEed and removed 

as an upper outlier. Additional techniques, such as data normalization and feature scaling, can be 

applied at this stage to ensure all features contribute equally to the analysis.  
 

Table 1 TAWOS dataset descriptive statistics. 

Term #Issues #Bugs #Change Log Story Points 

Mean 11567.3409 5399.8636 227815.2500 1584.6364 

Std. Deviation 14593.71297 8146.67080 358604.55400 3226.41663 

Min. 313.00 123.00 4062.00 209.00 

Max. 66741.00 41355.00 1608633.00 20664.00 

 



Table 2 gives an overview of the terms and deEnitions for each of the chosen features and target 

variable. The correlation heatmap highlights several key relationships in the dataset, as shown in 

Figure 3. Notably, there is a strong positive correlation (0.60) between the scaling factor #Issues and 
the #Bugs, indicating that these variables tend to increase together. Additionally, both #Bugs and 

#Change Log show moderate positive correlations with actual eFort of Story Points with coeUcients 

of 0.39 and 0.47. This suggests that both #Bugs and #Change Log are factors inHuencing the actual 

eFort required, which in the case of Story Points is usually expressed on W1 to W10 weighting scale 
where W1 reHects the weight of 1 and W10 the weight of 10 points. The histogram of the target 

variable, reveals a highly skewed distribution.  

 
Table 2. Description of the features and target variable. 

Valid projects 

without missing 

values 

Definition 

#Issues 
Work items or tasks to be completed, including user stories and 

bugs. 

#Bugs Defects or problems in the software that need fixing. 

#Change Log Record of all notable changes made to the project. 

Story Points 
Measure of effort required to complete a user story or task, aiding in 

estimation and planning. 

 

 

 
Figure 3. Correlation between the input features of the revised TAWOS dataset and Story Points. 

 

Most projects require relatively low effort. However, there are a few projects that demand 

significantly higher effort, resulting in a long tail to the right. The data was split using an 80/20 Pareto 

Split, out of which 80% of the data was used for training and the remaining 20% of the data for the 

final testing of the models on unseen data. Additionally, it was experimented with 60/20/20 ratio, but 
better results were observed with 80/20 after numerous trial-error attempts. Moreover, the models 

were evaluated using 10-fold cross-validation, where the dataset is split into 10 parts, each serving as 

a test set while the rest are used for training, repeated 10 times. This mitigates the risk of relying on 

a single split and provides a reliable performance estimate. Additionally, statistical significance tests 
confirmed that performance differences were not due to random chance, ensuring robust evaluation. 

The whole data set was scaled using the Min-Max algorithm in order to have a uniform scale for all 

features and create more homogenous nature of the dataset. Data augmentation techniques such as 

Tabular Variational AutoEncoder (TVAE) and Truncated Normal Distribution were implemented. 

Truncated Normal Distribution is a statistical technique used to enlarge the dataset by creating new 
data points within a specific range derived from the normal distribution, again tailoring the statistical 



characteristics of the data from the original dataset. TVAE is a type of generative model tailored 

specifically for creating synthetic data. By these adjustments three different datasets were created, 

namely, scaled, TVAE and Truncated, to see which performed the best. In this research, we used six 
different machine learning models and trained them on each dataset variant. These models were 

XGBoost Regression, Random Forest Regression, CatBoost Regression, Decision Trees Regression, 

and LightGBM Regression. Linear Regression was also included as a baseline model to compare with 

the other models, totaling six models. To further increase the accuracy of the model's predictions we 
conducted hyperparameter optimization using Optuna [20]. Evaluation metrics such as Mean Squared 

Prediction Error (MSPE), adjusted R2, and Pearson's correlation coefficient were implemented with 5-

fold cross-validation, resulting in three model/dataset combinations with the most optimal 

performance.  
 

4. Results 

In this section, we will delve into the details of the results obtained by each model and compare the 
overall results. We recorded the training time for each model and calculated the average. The average 

training times are presented in Table 3. Three models were identiEed as the best performers, each 

excelling in a diFerent metric. The performance of these models on the test set is presented in Table 

4 and Figure 7. The hyperparameters for the Enal models are detailed in Table 5. As indicated in the 
tables and Egure, these models are labeled 1 through 3 and are further described below. The residuals 

for all three models in Figure 5, while showing some increase, suggest that each model captures the 

underlying trend reasonably well, with Model 3 being the most accurate. Model 3's smaller residuals 

indicate it predicts Story Points with greater precision, making it the best performing model among 

the three. Despite some areas for improvement, all models demonstrate their ability to follow the 
data's trend and provide useful predictions. 

 

Table 3. Average running times per each model. 

Model #Average running time(s) 

Linear Regression (Baseline) 0.021 

Decision Tree Regressor 0.026 

Random Forest Regressor 3.524 

XGBoost Regressor 0.925 

CatBoost Regressor 1.599 

LightGBM Regressor 0.417 

 
 

Table 4. Best-performing models and Enal results on test data measured by chosen evaluation 
metrics. 
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1 Average Adj. R2 (0.55) 
Random Forest 

Regressor 
TVAE 0.59 140011 0.81 

2 Average MSPE (328288) CatBoost Regressor Scaled 0.39 200011 0.74 

3 
Average Pearson’s Corr. 

(0.77) 

Decision Tree 

Regressor 
Scaled 0.350 234500 0.66 

 



4.1. Model 1 (Random Forest Regressor, TVAE) 

Model 1 was trained on TVAE-augmented data and achieved the best performance among all models. 
It was evaluated based on the 5-fold cross-validated average adjusted R2 (0.55) on its training data. On 
the final 20% test set, it maintained strong performance, achieving an adjusted R2 of 0.59, a Pearson’s 
correlation coefficient of 0.81, and an MSPE of 140001. These results indicate a good fit, strong 
alignment with observed data, and enhanced prediction accuracy. 
 

4.2. Model 2 (CatBoost Regressor, unaugmented) 

Model 2 was trained on unaugmented data and achieved the second-highest performance across the 
three test metrics on the final 20% split. Based on the 5-fold cross-validated average MSPE (328288) 
on its training data, it obtained an adjusted R2 of 0.39 and a Pearson’s correlation coefficient of 0.74 
on the final test data. These metrics indicate a weak goodness-of-fit and moderate alignment with the 
observed data. Additionally, its lower average MSPE of 200011 suggests moderate prediction 
accuracy. 
 

 
Figure 4. Model performance comparisons including logarithmic Et on actual Vs. predicted values. 

 

 
Figure 5. Model performance comparisons including logarithmic Et on actual Vs. predicted values. 



 

4.3. Model 3 (Decision Tree Regressor, unaugmented) 

Model 3 was trained on the original data and exhibited the weakest performance among the three 
models on the final 20% test split, despite achieving a high 5-fold cross-validated average Pearson’s 
correlation coefficient during training (0.77). On the test set, the model resulted in a poor adjusted R2 
of 0.35 and a Pearson’s correlation coefficient of 0.66, indicating weak goodness-of-fit and poor 
alignment with the observed data. Furthermore, its average MSPE of 234500 suggests moderate 
prediction accuracy. Consistent with our hypothesis, the baseline linear regression model is 
consistently outperformed by all other models across all evaluation metrics (adjusted R2, MSPE, and 
Pearson’s correlation coefficient). This is evidenced by the top-performing models being the Random 
Forest Regressor (Model 1), CatBoost Regressor (Model 2), and Decision Tree Regressor (Model 3). 
These models co-incidentally follow a clear order of efficacy as shown in Figure 6 and Figure 7. Our 
findings also suggest that data augmentation can be beneficial for the TAWOS dataset. Model 1, 
trained on the TVAE-augmented data, achieved the best performance on the final test set for all three 
metrics, indicating the potential effectiveness of TVAE in improving performance on the TAWOS 
dataset. Examining the predicted data, as well as the residuals, revealed a trend where the models 
exhibit greater accuracy in predicting software projects with lower actual effort values. Conversely, 
projects with higher actual effort proved more challenging to predict. This phenomenon can be also 
seen in Figure 5. 

 

Table 5. The hyperparameters combination settings for three best-performing models. 

Model Hyperparameters 

1 

’bootstrap’: True, ’ccp_alpha’: 0.0, ’criterion’: ’squared_error’, ’max_depth’: 21, 
’max_features’: ’sqrt’, ’max_leaf_nodes’: None, ’max_samples’: None, 

’min_impurity_decrease’: 0.0, ’min_samples_leaf’: 1, ’min_samples_split’: 5, 

’min_weight_fraction_leaf’: 0.0, ’monotonic_cst’: None, ’n_estimators’: 435, 

’n_jobs’: None, ’oob_score’: False, ’random_state’: None, ’verbose’: 0, 
’warm_start’: False 

2 

’learning_rate’: 0.091, ’depth’: 3, ’l2_leaf_reg’: 0.734, 

’loss_function’: ’RMSE’, ’border_count’: 446, ’verbose’: False, ’random_strength’: 

0.976, ’bagging_temperature’: 0.479, ’num_trees’: 896 

3 

’ccp_alpha’: 0.0, ’criterion’: ’poisson’, ’max_depth’: 21, ’max_features’: 0.920, 

’max_leaf_nodes’: None, ’min_impurity_decrease’: 0.0, ’min_samples_leaf’: 2, 

’min_samples_split’: 4, ’min_weight_fraction_leaf’: 0.0, ’monotonic_cst’: None, 

’random_state’: None, ’splitter’: ’best’ 

 
 

 
Figure 6. Correlation between the input features of the revised TAWOS dataset and Story Points. 



 

 
Figure 7. Model 1 Vs. Model 2 Vs. Model 3 model preformance. 

 

5. Discussion 

The results highlight that advanced machine learning models outperform the baseline linear 
regression model across the performance metrics. Specifically, the Random Forest Regression (Model 
1), CatBoost Regressor (Model 2), and Decision Tree Regressor (Model 3) emerged as the best-
performing models, each having its unique strengths and weaknesses, provoking further discussion. 
An important aspect of our study was analyzing the correlation between input features and the target 
variable, Story Point. The correlation heatmap indicated strong positive correlations between several 
key variables (scaling factor #Issues and #Bugs at 0.60, #Bugs and #Change Log with Story Points at 
0.39 and 0.47). The Random Forest Regression model (Model 1), based on a 5-fold cross-validated 
average, achieved the highest adjusted R2 score of 0.55 when trained on the TVAE-augmented dataset. 
This result underscores the model’s ability to handle complex data environments by effectively 
capturing underlying data patterns. The data augmentation through TVAE appears to have provided 
a more detailed dataset that allowed the Random Forest model to make more accurate predictions. 
However, this also raises questions about the computational complexity and the potential for 
overfitting, based on the high-dimensional nature of the augmented data itself. The final evaluation 
on the 20% data split showed an adjusted R2 of 0.59, a Pearson’s correlation coefficient of 0.81, and an 
MSPE of 140011, indicating strong performance The CatBoost Regression model (Model 2) performed 
well in minimizing the Mean Squared Prediction Error (MSPE) with a value of 328288 on the scaled 
dataset. This highlights its potential for practical applications in software project management and 
suggests that it can effectively handle imbalanced data distributions and various feature scales, 
making it a versatile model. However, its relatively lower adjusted R2 score may indicate that it may 
not fully capture the variability in the data, pointing to potential areas for improvement in feature 
selection and model tuning. The final evaluation revealed an adjusted R2 of 0.39, a Pearson’s 
correlation coefficient of 0.74, and an MSPE of 200011, reflecting moderate predictive accuracy but 
highlighting areas for improvement. Decision Tree Regressor (Model 3) demonstrated a strong linear 



relationship between predicted and actual values with a correlation coefficient of 0.66. However, its 
lower adjusted R2 score of 0.35 and MSPE of 234500 suggest potential overfitting scenarios, where the 
model fits the training data but fails to generalize to new data. The aforementioned final evaluation 
on the 20% data split indicates that it might benefit from more sophisticated ensemble methods to 
potentially improve the algorithm’s generalization capabilities. Despite lower adjusted R2 
performance, the Decision Tree’s high correlation coefficient proves its potential in mapping 
relationships within the dataset. Data augmentation, particularly using TVAE, was found to enhance 
the performance of the Random Forest model. The synthetic data generated by TVAE improved the 
original dataset, suggesting that data preprocessing and augmentation could be beneficial for 
improving model accuracy. The comprehensive search for hyperparameter tuning using Optuna, 
involving 300 trials for each model-data pair and each metric, ensured that our models were fine-
tuned to their optimal configurations. This process showcased that it can influence model 
performance, as shown by the improved metrics across the models. For instance, the Random Forest 
model’s hyperparameters were tuned to balance depth and feature selection, which enhanced its 
performance on the augmented dataset. The results suggest that their effectiveness varied based on 
the differences in handling feature interactions, which indicates the potential need for a more refined 
feature engineering for hyperparameter tuning. 
 

6. Conclusion 

In Software Development Effort Estimation (SDEE), our approach significantly enhances predictive 
accuracy and addresses data variability challenges. We leverage advanced machine learning models 
like Random Forest Regressor, CatBoost Regressor, and Decision Tree Regressor, combined with data 
augmentation techniques such as Tabular Variational AutoEncoder (TVAE) and hyperparameter 
optimization using Optuna, to achieve notable improvements. Our methodology demonstrated 
superior reliability in effort predictions on the open-source agile TAWOS dataset, outperforming the 
Linear Regression baseline. The utilization of these sophisticated models ensures a robust handling 
of complex data patterns, leading to more accurate and reliable effort estimations. Furthermore, the 
integration of TVAE helps in overcoming data sparsity issues, providing a richer and more 
comprehensive dataset for training. Overall, our enhanced approach sets a new benchmark in SDEE, 
promoting efficiency and precision in project management and planning. The results of this study 
can significantly enhance software development project planning and management. Improved effort 
predictions allow for more accurate resource and deadline estimations, reducing delays and budget 
overruns. Using a Random Forest regressor on TVAE-augmented data provides high predictive 
accuracy, increases estimate reliability, and reduces the risk of resource assessment errors. These 
models help organizations better manage risks, optimize costs, and improve project efficiency. 

 
6.1. Limitations 

Despite these promising results, several limitations warrant attention. The computational complexity 
associated with TVAE augmentation and hyperparameter optimization is considerable, potentially 
restricting the scalability of our approach for larger datasets or real-time applications. Additionally, 
the skewed distribution of effort in the dataset, with most projects requiring relatively low effort and 
a few demanding significantly higher effort, poses challenges in achieving consistent predictive 
accuracy across all project types. 
 

6.2.  Future directions 

Future research should focus on further enhancing SDEE models. This includes expanding the dataset 
through advanced feature engineering techniques to improve predictive power. Incorporating 
datasets from diverse sources and adopting different approaches such as Functional Point Analysis 
and Use Case Point Analysis can increase the models’ applicability across various project types. 
Moreover, adapting the models for real-time effort estimation is crucial to ensure accurate predictions 
in dynamic project environments. Addressing these limitations will enable future work to build on 
our findings and develop more effective and scalable SDEE solutions. For instance, exploring the use 
of different representations of graph neural networks or subsets of recurrent neural networks such 



as Fuzzy Cognitive Maps to perform WHAT-IF simulations for various scenarios could significantly 
enhance the robustness and applicability of SDEE models [21]. Ultimately, this would contribute to 
more successful software project management and resource allocation. 
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