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Abstract
Most programming languages have a rather long history, they evolve time by time. However, code written
in older version of a programming language is not updated automatically when a new standard is released.
Moreover, the existing code may have different meaning according to the new standard in extraordinary cases.
A rather hard and important task in software engineering is writing code that is maintable, comprehensible
and prepared for long term. Continuous integration methods are quite popular because they increase the code
quality, and maintainability as they execute many steps in a pipeline when someone makes a change in the code
base. These pipelines typically execute the necessary build steps, evaluate the unit, component, integration and
end-to-end test cases. Pipelines may use static analyzers to check conventions and subtle language-oriented
problems. In this paper, we propose a new step in continuous integration pipelines which aims at the long-term
code maintainability based on source code rejuvenation methods that ensure the utilization of more modern
standards of the programming language. We take advantage of the Clang compiler infrastructure for our use
cases, however, the approach is not specific to a language or another tool. We design a system of standalone
plugins in which every plugin is responsible for a separate rejuvenation method. We analyze what are useful
options to execute the transformations. We develop a criteria system, and evaluate these options.
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1. Introduction

One of the most fundamental questions in software engineering is how to write efficient, bug-free,
maintainable, convenient source code that can be considered for long term. In modern software
engineering, continuous integration (CI) pipelines are utilized often to increase the code quality with
the execution of the test cases, and the source code is evaluated with analyzers regularly [1]. Typically,
many steps of a comprehensive pipeline are executed when a developer makes a change in the codebase.
CI servers provide rapid feedback if the codebase in the repository does not meet the expectations [2].

Programming languages are also in the focus of improvements. Newer and newer standards are
available, more and more features the programming languages have and the developers are eager to use
these new features [3]. In static analysis, new kind of methods have been proposed for modernize the
source code called source code rejuvenation [4]. However, migrating the code base between different
standards of a programming language is not that easy because the semantics of the code may change [5].
Special tools are required for the source code rejuvenation [6]. For instance, C++’s exception handling
constructs changed significantly, a standalone tool is proposed [7]. The development of user-defined
iterators is changed drastically in the recent standards of C++, and a tool for rejuvenation is presented
[8].

However, source code rejuvenation methods are not well-known and only stand-alone solutions
are available. CI servers are utilized, but typically not support rejuvenation, and thus codebases can
become obsolete in the long term. In this paper, we propose an approach which defines a workflow of
rejuvenation in CI pipelines.
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The rest of this paper is organized as follows. Section 2 presents the basic components that are
involved in the this research. Related work is discussed in Section 3. The proposed method is presented
in Section 4. Finally, this paper is concluded in Section 5.

2. Basic components

2.1. Programming Languages

Many recently used programming languages have a rather long history and during the past years,
many standards are released [9]. Programming languages extend their set of constructs when a new
standard becomes available [10]. The new constructs make the development easier, make the code more
comprehensible or elegant, or increase the safety [11]. However, some constructs can be specified as
deprecated or not supported anymore [8]. Moreover, the backward compatibility may have a ungracious
impact on the code quality [12]. The relevance of the history overview is important to understand how
old code snippets can be survived with memory and safety issues. An important aspect of the history is
to check how many subtle standards can be used and how complex the compatibility is.

The Fortran programming language was developed in 1957, therefore it has a long history that can be
seen on Table 1. Many standards have been released during this long history, however, in a few cases,
there was more than years between two consecutive releases [13].

Table 1
History of the Fortran programming language

FORTRAN 1957
FORTRAN II 1958
FORTRAN III 1958
FORTRAN IV 1961

FORTRAN 66 (ANSI standard) 1966
FORTRAN 77 1978

Fortran 90 (ANSI and ISO standards) 1991
Fortran 95 (ISO standard) 1997

Fortran 2003 2004
Fortran 2008 2010
Fortran 2018 2018
Fortran 2023 2023

The C programming language is older than 50 years, its history can be seen on Table 2. C has less
releases compared to Fortran.

Table 2
History of the C programming language

Initial release of C 1972
K&R C 1978

ANSI C, C89 1989
(ANSI & ISO standards)

C99 1999
(ISO standard)

C11 2011
C17 2018
C23 2024



The C++ programming language is based on the C programming language and has a rich history
[14]. The language becomes even bigger regularly, it went through a quite radical modernization since
2011, however, many C code is still valid C++. History of C++ can be seen on Table 3.

Table 3
History of the C++ programming language

1st Edt. 1985
C++98 1998
(ISO)
C++03 2003
C++11 2011
C++14 2014
C++17 2017
C++20 2020
C++23 2023

Java has a rather compact history with many standards that can be seen on Table 4. After a rather
big intervals, recently two standards are appeared in a year, so the release of the new standards has
been sped up.

Table 4
History of the Java programming language

JDK 1.0 23rd January 1996 Java SE 13 17th September 2019
JDK 1.1 18th February 1997 Java SE 14 17th March 2020
J2SE 1.2 4th December 1998 Java SE 15 16th September 2020
J2SE 1.3 8th May 2000 Java SE 16 16th March 2021
J2SE 1.4 13th February 2002 Java SE 17 (LTS) 14th September 2021
J2SE 5.0 30th September 2004 Java SE 18 22nd March 2022
Java SE 6 11th December 2006 Java SE 19 20th September 2022
Java SE 7 28th July 2011 Java SE 20 21st March 2023

Java SE 8 (LTS) 18th March 2014 Java SE 21 (LTS) 19th September 2023
Java SE 9 21st September 2017 Java SE 22 (latest) 19th March 2024
Java SE 10 20th March 2018 Java SE 23 September 2024

Java SE 11 (LTS) 25th September 2018 Java SE 24 March 2025
Java SE 12 19th March 2019 Java SE 25 (LTS) September 2025

Backward and forward compatibility is an important aspect in the evolution of standards which mean
the code written according to an older standard should work in the very same way according to the
new standard. Threrefore semantics of existing codebase should not be changed. However, there are
well-known examples in which the compatibility is broken.

The code snippet on Figure 1 has different outcome according to C++03 and C++11 [5].
According to classical C++, the outcome is: 0 0 0 0 0, however, according to modern C++, the

outcome is: 0 1 2 3 4.

2.2. Static Analysis and Souce Code Rejuvenation

Static analysis is an approach in which one reasons about a program based on the source without
execution of the analyzed code [15]. It can be used for many purposes, for instance, finding or predicting
bugs, refactoring or visualizing the code, or measuring code complexity [16].



1 class Foo
2 {
3 static int cnt;
4 public:
5

6 int x;
7

8 Foo(): x( cnt++ ) { }
9 };

10

11 int Foo::cnt = 0;
12

13 int main()
14 {
15 std::vector<Foo> v( 5 );
16 for( int i = 0; i < v.size(); ++i )
17 {
18 std::cout << v[ i ].x << ’ ’;
19 }
20 }

Figure 1: C++ code snippet with altering semantics

Nowadays, source code rejuvenation tools started to appear since they are enablers to modernize
existing codebases in an automatic or a semi-automatic way. This is a source-to-source transformation
that replaces obsolete languages constructs and approaches with modern code [4]. These rejuvenation
tools can modify the existing code, so in this sense, they are similar to refactoring tools, however, they
differ in many ways too. For instance, rejuvenation is directed transformation that increases the level
of abstraction, however, refactoring is not directed, and they have different indicators as well [4]. Static
analyzers are used in CI servers to find bugs, but source code rejuvenation tools are typically applied
occasionally. Our aim is the application of code rejuvenation regularly in CI environment.

2.3. Clang

Clang is a comprehensive compiler infrastructure based on LLVM [17]. It contains many useful analyzers
and tools, a C/C++ parser, an API for the further development of new static analyzers tools. The parser
constructs the abstract syntax tree (AST) from the source and this built AST can be processed in a
user-defined way. Clang is a popular solution in research, but many big companies take advantage of
it. In this paper, we analyze how it can be applied for rejuvenation as a plugin system, and how the
validation of the rejuvenation can be executed.

2.4. Continuous Integration

Continuous Integration is a software development methodology that emphasizes the regular merging
of the developers’ work. The source code is maintained in a version control repository and different
steps in CI pipeline are executed when a new version becomes available. This approach provides fast
feedback to the developers.

CI methodology is typically supported with CI servers, like Jenkins or GitLab to name a few [18].
These tools are highly configurable, supported with many plugins for the comprehensive evaluation of
the source code, the system under development, and the test cases [19].

A typical CI pipeline starts with the compilation and other build processes. After this successful step,
different testing methods are launched. Unit testing, component testing, integration testing, end-to-end
testing, UI test also can be executed. Static analyzers try to find different kind of bugs, code smells,



checking coding conventions. In case of any problem, developers are notified, and a global dashboard
presents the result.

Continuous Delivery (CD) extends CI pipelines with deployment features, and DevOps pipelines can
extend the pipeline with operational (e.g. monitoring) features.

3. Related Work

In this section, the related work is discussed. It is divided into two groups, the first one belongs to
source code rejuvenation as stand-alone solutions. The second part belongs to the CI’s utilization and
configuration.

The topic of source code rejuvenation methods is recently researched intensively. For instance,
modern way of C++ functors is proposed [20]. Modernization of C++ iterator development is shown
[8]. Rejuvenation of C++’s exception specification is also implemented [7]. During the introduction of
source code rejuvenation, the authors present a method for utilizing initializer lists [4]. However, these
tools are standalone solution, not designed for execution in CI pipelines.

A/B Testing is a method which aims at increased user experience based on the evaluation of two
similar versions of the same software [21]. This solution affects the deployed software at runtime, and
can be executed via CI/CD pipelines [22].

Refactoring in CI is not a straightforward approach, however, a survey has been evaluated to check
whether some developers are eager for it [23]. An automatic bot-like solution has been proposed for
regular refactoring without introduction of CI [24]. However, refactoring and code rejuvenation differ
in many ways [4].

4. The Proposed Method

In this section, we present our method. This approach has three major parts, the first one belongs to the
execution of source code rejuvenation, the second one belongs to the validation whether the meaning
of code is unchanged during the rejuvenation, and the third part is pipeline in the CI environment.

4.1. Source Code Rejuvenation

Clang Tooling API provides a powerful framework for building custom static analysis tools. Still, it
has a limitation: the Clang driver can only load a single shared object simultaneously. This section
describes alternative approaches to running multiple source-code analysis plugins on the analysed
project. These approaches are then evaluated for using these analysis tools in a CI/CD pipeline, detailing
the advantages and disadvantages.

The workflow involves using the implementations of multiple Clang Tooling plugins sequentially
for a single source file. It assumes that there is no interference in the plugins, i.e., they do not modify
the same files on disk, and there is the assumption that all of these plugins treat the source AST in
a read-only fashion. Consequently, there is also the assumption that the order of execution does not
matter (both in the plugins ran and the source files analyzed). The trivial use-case is that given the
project description, i.e., the list of all compiler invocations that produce the end libraries and binaries,
each tool should be run on each translation unit once.

The naive approach is the default supported workflow, which means running a Clang invocation for
each plugin and each translation unit (see Figure 2). This is the most documented usage of the tool, and
it requires no modification in the source or binary formats of the plugin or Clang. The downside is that
it requires 𝑁 times 𝑀 clang invocations, where 𝑁 is the number of plugins, and 𝑀 is the number of
translation units.

The next option is the implementations of multiple Clang Tooling plugins are merged into a single
shared object, as seen in Figure 3. This shared object is then passed to the Clang driver, which loads it and
executes all the contained plugins in a single run. This approach avoids the overhead of parsing the same



plugin_1.so plugin_2.so ... plugin_n.so

clang ... -load plugin_1.so ... -plugin plugin1

clang ... -load plugin_2.so ... -plugin plugin2

Clang Driver

Figure 2: Workflow of Running Plugins Separately

plugin_1.o plugin_2.o ... plugin_n.o

Merged Shared Object (merged.so)

clang ... -load merged.so ... -plugin plugin1 ... -add-plugin plugin2 ...

Figure 3: Workflow of Merging Multiple Plugins into a Single Shared Object

file multiple times, which would be necessary if the plugins were run separately. The disadvantage is
that merging the plugin source code requires merging, which may lead to code maintenance challenges.

In the next option, a custom MultiplexConsumer combines multiple ASTConsumers from different
plugins into a single consumer. This allows multiple plugins to be executed in a single Clang run without
merging their implementations, thus simplifying the loading process compared to Approach #1. The
downside is that this requires modifying the plugin source, as the ASTConsumer subclass types must
be extracted and exposed to the proxy plugin implementation.

In the next option, we modify the plugins to support an extern C API for creating and destroying
instances of the ASTConsumer subclass. The proxy plugin can dynamically load these shared objects
and instantiate the ASTConsumers. This approach requires modifying the plugin source but allows
dynamic plugin loading. The disadvantage is that this requires modifying the source of the plugins to
support instantiating the ASTConsumer subclasses via C-language-linkage functions.

In next option, we patch Clang to support loading multiple shared object files. This is the most
intrusive change, as it requires deploying a custom Clang binary. However, it allows the most flexibility
in loading plugins, and it does not require modifying the plugins’ source code.

The comparion and evaluation of the analyzed approaches can be found in Table 5.

4.2. Validation

Upgrading C++ code from an older standard to a newer one carries the risk of semantic differences,
which means that compiling and running the upgraded code may yield different results. Investigating
these differences is both necessary and important.



Table 5
Comparison of approaches to execute multiple plugins

Criteria Naive #1 #2 #3 #4
Requires multiple Clang invocations to use Yes No No No No
Requires recompilation of Clang No No No No Yes
Requires refactoring of the plugin No No Yes Yes No
Requires recompilation of the plugin No No Yes Yes No
Requires relinking of the plugin No Yes Yes No No

During the compilation of C++ code, the compiler constructs an Abstract Syntax Tree (AST), which
stores pointers to the parsed statements and expressions. Tools such as clang-tidy allow us to check,
filter, and even modify the AST. By comparing the ASTs of code compiled with the older and newer
standards, we can identify the main differences.

Using clang++, we can generate an AST dump which is the representation of the AST in raw text.
However, comparing these dumps directly can be challenging due to the memory addresses of the
pointers shown in the AST which most of the time are different.

To efficiently work with ASTs, we can use Clang LibTooling, a well-known C++ library that allows
developers to utilize the Clang AST for software development. The LibTooling library provides the
RecursiveASTVisitor class, which facilitates the comparison of two ASTs by allowing us to easily
iterate over the AST nodes using a Depth-First Search (DFS) algorithm.

Although comparing ASTs using DFS sounds straightforward, there may be differences that do not
affect the results because they do not involve semantic changes. Over the years, the C++ standard
library has undergone many changes, making it safer and more optimized. While these improvements
should not impact the program’s output, they can alter the AST. Therefore, it is crucial to distinguish
differences that affect semantics from those that do not.

To ignore differences that do not affect the result, we can use other methods besides AST comparison.
Symbolic execution, for instance, allows us to determine the program’s output without running it
by replacing variables with symbolic values. This technique is powerful for program analysis and
verification.

Another approach is to check for differences between standards and determine whether a given
statement has changed. The cppreference.com site documents changes between standards, but having a
database with these changes would be more efficient for searching than using the cppreference site
directly.

There are also tools such as Creduce and Delta Debugging, which run the code with different standards
and investigate the differences.

4.3. Workflow in Continuous Integration Pipelines

In the workflow, we evolve how to use the proposed methods to ensure continuous rejuvenation in a CI
pipeline.

The proposed workflow consists of the following steps:

1. Evaluation of code as it is currently available in the repository
2. Execute the source code rejuvenation processes
3. Validate whether the rejuvenation does not break the backward compatibility
4. Request for approvement
5. Evaluation of rejuvenated code
6. The rejuvenated code is commited back to repository

The pipeline starts with the ordinary validation of the committed code. If no problem is found
the rejuvenation process is executed and checks if there is no compatibility issue. In the pipeline, an
approvement should be required for the responsibility. After the approvement, the rejuvenated code is



evaluated as a usual CI solution. If any step of the pipeline fails, the entire process is stopped and the
problem is reported that can be evaluated. If anything is fine, than the code is committed back which
means the pipeline transaction is committed as well.

The implementation of this pipeline is ongoing. We started to use Jenkins as a CI server because it is
widely-used and comprehensively configurable [2].

5. Conclusion and Future Work

In this paper, a rather important question is discussed: how we can write source code that is bug-free,
modern, maintainable. Programming languages have a quite long history, and because of the backward
compatibility, codebases may become old in a bad way. Source code rejuvenation solutions are recently
researched, but the proposed tools are standalone ones. Continuous Integration methods are popular
because of the rapid feedback to developers if something goes wrong in the repository. We propose an
approach in which rejuvenation methods become the part of the CI pipeline. We analyze how to deal
this issue in different aspects. We analyze how to integrate the rejuvenation methods, how to validate
them and how CI pipeline can introduce this solution.

Currently, our approach belongs to the C/C++ realm, we use the Clang compiler infrastructure.
However, the ideas are not specific to a language or a CI tool, but general ones. As a future work, we
should create a generic solution that can be specified for a programming language. Moreover, a general
CI plugin can be implemented for a seamless work.
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