
A Look at First-Year Students’ Pre-Knowledge on

Computer Programming Over Time

Tomi Perša1, ⋆, †, Lili Nemec Zlatolas1, †

1 University of Maribor, Faculty of Electrical Engineering and Computer Science, Koroska ulica 46, 2000 Maribor, Slovenia

Abstract
This study investigates the pre-existing knowledge of first-year students in Computer Programming courses,
analysing the impact of secondary education backgrounds on their learning experiences. Over the course of five
academic years, students at the University of Maribor were assessed through surveys and practical tests to
determine their pre-knowledge of algorithmic thinking and problem-solving skills. The research highlights the
influence of learning opportunities and the subsequent rise in students with prior programming experience. The
findings present differences in self-reported programming knowledge across generations, emphasising the need
for adaptive teaching strategies to bridge the knowledge gap. The results show the importance of early
programming education and suggest a trend towards digital literacy in secondary education.

Keywords
Programming, teaching, JavaScript, learning, pre-knowledge 1

1. Introduction

An essential skill for an IT professional is learning the principles and logical thinking behind

Computer Programming. Teaching it is a challenge for all kinds of students, as the algorithmic, literal,

and logical way of thinking is not something we would use in everyday life. Conquering these hurdles

is a challenge for novice and beginner students, as the explanations and live examples may not be

enough for them to fully understand the concepts and procedures regarding Computer Programming.

 University programs usually expect next to little knowledge in ICT-related subjects since these

programs are meant to be for students from gymnasiums who have acquired learning potential but

have not yet acquired their career path skills beforehand. Such courses aim to teach algorithmic and

logical thinking while also providing declarative knowledge (basic understanding of programming

constructs and language syntax) and procedural skills (appliance of declarative skills for problem-

solving) [2]. Such skills are mostly achieved through practical examples and problem-solving, which

in turn reinforces further knowledge, thus creating a cyclic process of learning. While introductory,

such examples are aimed at learning the fundamentals, yet are sometimes circumvented by the use

of generative AI or copying code without a proper understanding of its functionality [5]. These

present a challenge, as such solutions show the ability of problem-solving but do not prove

independence or proof of logical and algorithmic thinking ability. Much of the pre-knowledge and

further programming learning is connected with a mathematical background, especially in the fields

of logic and task-solving assignments [6]. Only through proper testing and grading can we see if the

subject has acquired proper skills to work independently on their programming projects [5].

SQAMIA 2024: Workshop on Software Quality, Analysis, Monitoring, Improvement, and Applications, September 9--11, 2024,
Novi Sad, Serbia
∗ Corresponding author.
† These authors contributed equally.

 tomi.persa@um.si (T. Perša); lili.nemeczlatolas@um.si (L. Nemec Zlatolas)

 0000-0002-2086-9825 (L. Nemec Zlatolas)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

Students who have previous experience in programming are usually more self-assured in their

knowledge, which often misleads their actual capabilities and thus sometimes perform worse than

students who take their time to properly study the required constructs and concepts [7]. They have

the capabilities required to conduct proper declarative knowledge and procedural skills but are more

prone to mistakes. Subjects also don’t approach better, potentially superior concepts, thus staying at

the skill level which they are most comfortable with, often leading to false understandings of more

advanced concepts and solutions [2]. There is also a matter of transitioning between different

scripting languages, which results in basic syntax errors and incorrect answers due to the differences

in syntax and structure between the languages they’ve learned previously and the ones they are

currently using.

During the COVID pandemic, much of the educational process has moved online. Theoretical and

practical classes in Computer Programming became more focused on providing solutions that would

assist students in their learning process while also incorporating different online tools for providing

feedback [8]. This meant an increased source of learning materials that would direct a beginner

programmer to proper problem-solving and critical thinking [6]. Solution-seeking is time-consuming,

but it can cater to subjects' learning capabilities and willingness to put time and effort into the

acquirement of new skills [8]. Due to the abundance of accessible online materials, students who seek

solutions for their assignments offline often find results that are out of their skill range, further

distancing themselves from easier solutions and the course curriculum [6]. Certain students also

prefer live or in-person examples of programming, giving them a more direct approach and quicker

access to feedback should they hit an error during their assignments [9].

In this work, we present a study where we analysed answers from students with different

secondary education level backgrounds through the years on their different levels of pre-knowledge

of Computer Programming, algorithmic thinking, problem-solving, and their self-perceived

knowledge of the subject. The analysis was performed with active students at the start of the course

and after they had attended the course's theoretical lessons and solved practical laboratory

assignments. The experiment was conducted with students who took the course Fundamentals of

Web Programming, which was later renamed to Programming for Media.

The structure of the paper is as follows. The description of the research methods is provided in

Section 2 and the main contribution of the paper is in Section 3, where the results are presented.

Finally, the discussion is in Section 4, and the conclusion of the paper is in Section 5.

2. Research methods

The study evaluated the pre-knowledge of the students in the Fundamentals of Web Programming

course using a test. Further details are presented in the following sub-sections.

2.1. Data collection and participants

At the start of the semester, the students attending the course Fundamentals of Web Programming

were allowed to fill out a survey that would assess their skills and knowledge of Computer

Programming in any programming language. This study was done in 5 consecutive years (from

2019/2020 to 2023/2024), and we will compare the results of generations. The study was done among

students of Media Communications (MC) at the Faculty of Electrical Engineering and Computer

Science, University of Maribor. In the first three years of research, the course was also an elective

course in the study program Information and Communication Technologies (IaCT). As presented in

Table 1, there were a total of 425 participants over five consecutive years.

2.2. Measures

Measurement items were tested with a 7-point Likert scale and some yes/no questions. The

measurement items and criteria are presented in Table 2. The survey consists of 25 questions, where

13 of which are used to acquire demographic information, information on previous education, and

self-evaluation of the programming knowledge, which were only asked during the pre-test of the

survey. The following 12 questions consist of theoretical and practical examples that test the pre-

knowledge of programming in JavaScript.

Table 1

Number of participants

3. Data Analysis and Results

We have conducted a Data Analysis with SPSS 29 and MS Excel.

In Figure 1, the 100% loaded bar chart presents what students have reported on the topic if they

have ever attended any programming course before entering the University by year of enrollment.

As can be seen in the figure, the COVID-19 generation had a bit of a setback, whereas the number of

students who received some prior programming knowledge before entering University has been

rising again for the last two years. As programming is an important skill in today’s digital world, we

can presume that this number will be even higher in the next years.

Figure 1: Students who attended the programming course before entering the University by year of

enrollment.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2019/2020 2020/2021 2021/2022 2022/2023 2023/2024

yes no

Study year MC students IaCT students Total

2019/2020 57 25 82

2020/2021 63 45 108

2021/2022 70 48 118

2022/2023 60 0 60

2023/2024 57 0 57

Total 307 118 425

Table 2

Questions used for the study.

In Table 3, the amount of time of prior programming learning is presented by enrollment year per

student. This table is presented for the Media Communications study program to avoid the influence

of the other study program on the statistics.

QUESTIONS
POSSIBLE ANSWERS

1 Did you already attend a programming subject

(before enrolling on the faculty)?

Y / N

2 Which programming language did you use?

Answer only if you ticked the answer in the

previous question “YES”. (Multiple choice)

• C

• C++

• C#

• Java

• JavaScript

• Pascal

• Python

• PHP

• Other

3 How long have you been learning programming?

Answer only if you answered “YES” to question 1
• six months or less

• 6-12 months

• 1-2 years

• 2-3 years

• 3-4 years

• More than four years

4 Where did you learn programming? Answer

only if you answered “YES” to question 1 (multiple

choice)

• Independently

• In a course in primary school

• In a course in secondary school

• At extracurricular activities in

school

• Online

5 I have a lot of knowledge in programming.

6 I know how to use the programming language

JavaScript.

7 I know how to use one of the available

programming languages.

8 I know how to use variables.

9 I know how to use arrays.

10 I know how to use conditional statements.

11 I know how to use loops.

12 I know how to use functions.

12 I know how to use objects.

13 I know how to use DOM.

• 1 – strongly disagree

• 2 – disagree

• 3 – more or less disagree

• 4 – undecided

• 5- more or less agree

• 6 – agree

• 7 – strongly agree

Table 3

The number of participants of the Media Communications study program who had none or some

knowledge of programming before entering University.

In Figure 2, the programming languages that the students used when taking programming courses

are presented. As can be seen from the figure, the most commonly learned programming languages

are C++ and JavaScript. However, we can also notice increasing interest in C# whereas the interest

in C++ and Java interests are decreasing in the last years.

Figure 2: The programming language that the students used before previous programming courses.

In Figure 3, the information on where the students learned computer programming before coming

to the University is presented. As presented on the graph, most commonly students learned

programming in a course in secondary school. Not many students learned programming in primary

school or at extracurricular activities in schools.

Finally, we conducted an ANOVA test to compare five different generations in their self-reported

knowledge of programming. We have calculated a mean for each student for questions 5-13 (7-point

Likert scale). In Table 4, we have presented the mean and standard deviation by study year for these

questions together. The Levene statistics significance is greater than .05 (.065), therefore we can

assume equal variances across all groups. The ANOVA test showed that the knowledge of

programming is significantly different among different generations (p-value <.001, F-score 4.723, df

= (4, 418)).

0

10

20

30

40

50

60

70

80

90

C C++ C# Java JavaScript Pascal Python PHP

2019/2020 2020/2021 2021/2022 2022/2023 2023/2024

Study year Did not

learn

before

Six months

or less

6-12

months

1-2

years

2-3

years

3-4

years

more than

four years

2019/2020 40 3 1 7 3 3 0

2020/2021 42 5 4 2 4 5 1

2021/2022 50 3 3 6 5 3 0

2022/2023 37 5 8 5 2 3 0

2023/2024 25 12 6 6 2 5 1

Total 194 38 33 40 22 26 3

Figure 3: Where did the students learn computer programming before enrolling in University?

Table 4

Mean and standard deviation of self-reported knowledge on programming.

We also conducted a Bonferroni posthoc test where we saw significant differences between the

2020/2021 and 2022/2023 groups (mean .95, p-value .01) as well as 2020/2021 and 2023/2024 groups

(mean 1.07, p-value 0.00).

4. Discussion

The findings indicate significant differences in the pre-knowledge of students enrolled in the

Fundamentals of Web Programming course over five academic years. The data suggests that the

COVID-19 pandemic may have impacted students’ opportunities to gain programming knowledge

before enrollment in the university, as can be seen in Figure 1, where between COVID-19 in

2021/2022, there was a big step down of students who ever attended programming courses before

entering University. However, the rise in students with prior programming experience is encouraging

and aligns with the increasing importance of digital literacy in the modern world.

The diversity in programming languages learned before university, with C++ and JavaScript being

the most prevalent, reflects the broad spectrum of educational backgrounds among the students. The

shift in interest from C++ to C# could be indicative of industry trends influencing educational choices.

As also presented in Figure 2, we can observe a lower interest in C++ and Java technologies, whereas

C, C#, and JavaScript technologies are rising among the interests of students. Moreover, the fact that

most students learned programming in secondary school courses, as presented in Figure 3, suggests

that early exposure to programming could be crucial in shaping future university curricula to better

0

20

40

60

80

100

120

140

160

Independently In a course in

primary school

In a course in

secondary school

At extracurricular

activities in school

Online

2019/2020 2020/2021 2021/2022 2022/2023 2023/2024

Study year N Mean Std. Dev.

2019/2020 81 3,20 1,73

2020/2021 108 3,59 1,98

2021/2022 118 2,97 1,67

2022/2023 60 2,60 1,71

2023/2024 56 2,52 1,76

Total 423 3,07 1,81

prepare students for advanced courses. All results of the study were gained by students who self-

reported their knowledge, so this might be a misleading aspect in terms of the validity of the study.

5. Conclusion

The study demonstrates that there is a significant difference in the self-reported programming

knowledge among five consecutive generations of students. There could be a number of reasons for

this; some factors could include changes in secondary education curricula, the impact of the COVID-

19 pandemic, evolving industry demands and, thus, higher interest in programming among younger

generations. The results underscore the need for universities to continually adapt their introductory

programming courses to accommodate the varying levels of pre-knowledge students bring to the

classroom. Future research could focus on the effectiveness of these adaptations and their impact on

student’s academic performance and career readiness in the field of computer science.

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research and Innovation

Agency (Research Core Funding No. P2-0057).

References

[1] S. Hopcan, E. Polat, and E. Albayrak, ‘Whether to flip Extreme Apprenticeship: which is more
effective in programming instruction?’, Educ. Inf. Technol., vol. 27, no. 8, pp. 10731–10756, Sep.
2022, doi: 10.1007/s10639-022-11055-y.

[2] Y. Zhang, L. Paquette, J. D. Pinto, and A. X. Fan, ‘Utilizing programming traces to explore and
model the dimensions of novices’ code-writing skill’, Comput. Appl. Eng. Educ., vol. 31, no. 4, pp.
1041–1058, 2023, doi: 10.1002/cae.22622.

[3] X. Wang, Y. Wang, F. Yang, W. Le, and S. Wang, ‘Measuring Programming Ability for Novice
Programmers’, J. Internet Technol., vol. 23, no. 3, Art. no. 3, May 2022.

[4] M. Salinas, P. Leger, H. Fukuda, N. Cardozo, V. Duarte, and I. Figueroa, ‘Evaluations of Integrated
Programming Environment for First-Year Students in Computer Engineering’, JUCS - J. Univers.
Comput. Sci., vol. 29, no. 1, Art. no. 1, Jan. 2023, doi: 10.3897/jucs.81329.

[5] R. Mason, Simon, B. A. Becker, T. Crick, and J. H. Davenport, ‘A Global Survey of Introductory
Programming Courses’, in Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1, Portland OR USA: ACM, Mar. 2024, pp. 799–805. doi: 10.1145/3626252.3630761.

[6] K. Bubnó and V. L. Takács, ‘Mathematical and computational awareness before and after the
pandemic’, Front. Educ., vol. 7, Sep. 2022, doi: 10.3389/feduc.2022.933339.

[7] P. Denny, B. A. Becker, N. Bosch, J. Prather, B. Reeves, and J. Whalley, ‘Novice Reflections During
the Transition to a New Programming Language’, in Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education, Providence RI USA: ACM, Feb. 2022, pp. 948–954. doi:
10.1145/3478431.3499314.

[8] N. Peimani and H. Kamalipour, ‘Online Education in the Post COVID-19 Era: Students’ Perception
and Learning Experience’, Educ. Sci., vol. 11, no. 10, Art. no. 10, Oct. 2021, doi:
10.3390/educsci11100633.

[9] T. Srivatanakul, ‘Emerging from the pandemic: instructor reflections and students’ perceptions
on an introductory programming course in blended learning’, Educ. Inf. Technol., vol. 28, no. 5,
pp. 5673–5695, May 2023, doi: 10.1007/s10639-022-11328-6.

