
Analysing the Energy Usage of the Erlang BEAM
Gharbi Youssef, Melinda Tóth and István Bozó

ELTE, Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary

Abstract
The evolution of programming languages and their runtime systems has been a continuous journey toward
efficiency and performance. One such significant milestone in this journey is the introduction of Just-In-Time
(JIT) compilation in the Erlang/Open-Telecom-Platform (OTP). This paper presents an in-depth investigation
into the impact of JIT compilation in Erlang/OTP applications. We demonstrate our cross-platform measurement
framework and evaluate a few problems on Windows and Linux with different BEAM versions. The findings
emphasise the critical role of both proficient algorithm design and runtime optimisations in minimizing energy
consumption and enhancing performance.

Keywords
Green computing, efficiency, Green software, Erlang, Optimisation, Compiler, JIT

1. Introduction

Erlang is a general-purpose, concurrent, functional high-level programming language that Ericsson
developed in the late 1980s [1]. It can be used for a wide range of applications, some of its uses are in
telecoms, banking, e-commerce, computer telephony and instant messaging. The runtime system of
Erlang (the BEAM) inherently supports concurrency, distribution, and fault tolerance. Erlang/Open-
Telecom-Platform (OTP) [1] provides a set of libraries and design principles providing middle-ware to
develop massively scalable soft real-time systems with requirements on high availability.

The introduction of the Just-In-Time (JIT) compiler in Erlang OTP 24 has been one of the most
exciting additions to the BEAM, aiming for simplicity and trading slight inefficiencies in the generated
code for ease of implementation [2, 3].

JIT compilation plays a crucial role in modern programming languages. It aims to minimise or
maximise some attributes of an executable computer program, such as execution time, memory footprint,
storage size, and power consumption. The importance of JIT lies in its ability to improve the performance
of a program by making it consume fewer resources.

The evolution of Erlang OTP has been marked by continuous improvements in its runtime system,
libraries, and tools. These improvements have not only enhanced the performance of applications
built on OTP but also contributed to reducing energy consumption. However, the specific details of
how Erlang OTP has helped reduce energy consumption require further investigation, as the available
literature does not provide explicit information on this aspect. This paper aims to analyse the effect of
the new Erlang JIT on the runtime and energy usage of the Erlang programs. The study focuses on
the performance of various algorithms, with a particular emphasis on the fannkuch-redux, mandelbrot,
n-body problems, and a server problem. The paper also explores the inherent efficiency of certain
implementations of the N queens problem.

Specifically, we aim to address the following research questions:
(1) What is the impact of the Erlang JIT on the energy consumption of Erlang programs

compared to previous versions without the JIT compiler? This question seeks to evaluate how
the new JIT affects the energy efficiency of Erlang programs. Energy consumption is a crucial factor in
performance analysis, and understanding how JIT compilation influences it compared to traditional
methods will provide insights into the practical benefits of this new technology.

SQAMIA 2024: Workshop on Software Quality, Analysis, Monitoring, Improvement, and Applications, September 9–11, 2024, Novi
Sad, Serbia
 ikycue@inf.elte.hu (G. Youssef); tothmelinda@elte.hu (M. Tóth); bozoistvan@elte.hu (I. Bozó)
� 0009-0005-3183-0343 (G. Youssef); 0000-0001-6300-7945 (M. Tóth); 0000-0001-5145-9688 (I. Bozó)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ikycue@inf.elte.hu
mailto:tothmelinda@elte.hu
mailto:bozoistvan@elte.hu
https://orcid.org/0009-0005-3183-0343
https://orcid.org/0000-0001-6300-7945
https://orcid.org/0000-0001-5145-9688
https://creativecommons.org/licenses/by/4.0/deed.en


(2) How does the input size and implementation behave when used with and without JIT
compilation? This question focuses on the performance implications of varying input sizes and
implementations under both JIT and non-JIT compilation conditions. By analyzing how different factors
influence performance, we aim to identify any significant variations and understand the conditions
under which JIT provides the most benefit.

Besides the analysis of the BEAM JIT, we are presenting a cross-platform measurement framework for
Erlang built as an extension of our Scaphandre-based [4] framework for Windows [5]. Scaphandre is a
monitoring solution designed to track and analyze energy consumption metrics. We use this framework
for analysing different OTP versions on Windows and Linux.

The rest of the paper is structured as follows. We start with context and related work presented in 2.
In Section 3 we summarise our previous results on Erlang green coding measurements. In Section 4
we show the extension of our measurement framework originally developed for Windows. Section 5
details the performed measurement on Windows and Linux and discusses our main findings. Finally,
Section 6 concludes the paper.

2. Related work

The concept of JIT compilation is not exclusive to Erlang/OTP but is also prevalent in other programming
languages, notably Java. The Java Virtual Machine (JVM) has been a subject of extensive research and
development with regards to JIT compilation and its impact on energy consumption [6, 7].

In the context of JVM, JIT compilation has been found to significantly reduce energy consumption
by reducing instruction counts. However, it is worth noting that certain components such as garbage
collection, which is an integral part of JVM, can incur runtime overhead that consumes more energy.
Despite this, both JIT optimisation and garbage collection have been found to decrease the average
power dissipated by a program[6].

A study evaluating the impact of different JVM distributions and parameters on energy consumption
found that some JVM platforms can exhibit up to 100% more energy consumption [7]. Interestingly,
the default configuration of the garbage collector was found to be energy efficient in only 50% of the
experiments. This highlights the importance of carefully selecting and configuring the JVM distribution
for energy efficiency.

In another study, the energy consumption of different Java I/O libraries and methods was compared,
to reduce the overall energy consumption by substituting default I/O methods with ones that reported
better energy efficiency [8].

These studies demonstrate that similar to Erlang/OTP, JIT compilation and careful configuration of
the runtime environment play a crucial role in the energy efficiency of Java applications. This underlines
the importance of continued research and development in this area to further optimise the energy
consumption of software systems.

Compiler optimisation is another critical area that significantly impacts the performance of a pro-
gram [9, 10, 11]. Optimizing compilers apply a series of transformations to the intermediate code to
produce a semantically equivalent output program that uses fewer resources or executes faster. The
latest OTP has seen enhancements in type-based optimisations and other performance improvements
in the compiler and JIT [3].

In their comparative analysis, Sayed Najmuddin et al [12] investigated power and battery consumption
in Windows operating systems and modern Linux distributions (such as Ubuntu, Fedora, Debian, Red
Hat, and others). They highlighted the critical role of driver quality in Linux power management. Often,
poorly written or incompatible drivers hinder efficiency. The researchers also pointed out that some
Linux kernel versions are suboptimal for mobile systems, as they primarily target desktop platforms.
They recommended that users should carefully choose an efficient kernel to enhance power and battery
performance on Linux. These insights underscore the significant differences between Windows and
Linux in terms of power management.



3. Background

Several Erlang applications are based on continuously running servers that consume lots of energy.
Therefore, analysing the energy behaviour of Erlang applications has a significant impact on sustain-
ability. Providing tools to measure the energy usage and introducing patterns to follow when creating
energy aware applications are needed by the community. In our previous research [13, 5], we analysed
the energy usage of different language constructs and libraries. At first, we performed measurements on
Linux based on Running-Average-Power-Limit (RAPL) [14], which is a feature of Intel processors that
measures and reports the CPU’s energy consumption. We later adapted the framework for Windows,
using the Scaphandre tool and a RAPL-driver [15] for Windows. Based on these experiments and the
framework we created for Windows, we reevaluated part of the programming language comparisons
presented in [16]. We showed that Erlang behaves better for concurrency related problems than it was
concluded earlier in [16]. These measurements were carried out on a Windows environment.

3.1. Scaphandre based measurement framework for Windows

In our previous research, we aimed to extend the GreenErl [13] framework by integrating the Scaphan-
dre [4] tool to enable accurate energy consumption measurements for Erlang functions on Windows.
The original GreenErl tool was designed to measure the energy consumption of Erlang programs on
Linux. The new GreenErl for Windows was built on top of a former GreenErl framework developed at
the Eötvös Loránd University, Faculty of Informatics with the limitation of working only on Linux since
it relies on the native RAPL tool [14] for energy profiling. We conducted a comprehensive measurement
of energy consumption and runtime on data structures (lists, maps, dictionaries) and higher-order
functions [5].

The integration of the Scaphandre tool into the GreenErl framework represents a significant milestone
in enabling precise energy measurements for Erlang functions on Windows. This advancement bridges
the gap left by the absence of traditional energy measurement tools like RAPL on Windows. By providing
consistent and reliable data collection, the Scaphandre-based GreenErl framework serves as a vital entry
point for our broader research into energy efficiency. It facilitates detailed energy profiling of various
Erlang constructs. This work not only enhances our understanding of energy dynamics in software but
also lays the groundwork for future research aimed at developing a cross-platform framework.

3.2. Comparing the energy usage of programming languages

Understanding the energy efficiency of different programming languages, especially in the context of JIT
compilation in Erlang, is critical for developing sustainable software. Our previous work [17] utilised a
subset of the Computer Language Benchmarks Game (CLBG)1 and introduced a server implementation
specifically for Erlang. These studies provide a foundation for our current research and underscore the
importance of energy-efficient programming.

Building on the work from our study [17], our current research aims to delve deeper into the impact of
JIT compilation in Erlang on energy efficiency and performance. By comparing results across different
operating systems, we seek to provide a comprehensive understanding of how JIT optimizations can
enhance energy efficiency in Erlang applications.

4. Cross platform framework

The integration of the Scaphandre tool into the GreenErl framework marked a significant advancement
in our ability to measure energy consumption and runtime of Erlang functions not only on Windows but
for enabling a cross-platform GreenErl framework. This new framework provides a robust solution for
overcoming the limitations of traditional energy measurement tools on Windows, such as the absence of

1https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html



RAPL support. It enables precise and reliable energy consumption data collection for Erlang functions,
allowing for a comprehensive analysis of their performance across multiple operating systems.

For this benchmark evaluation, we utilized a Lenovo ThinkPad X13 Gen 1 laptop, which is equipped
with an Intel® Core™ i7-10610U processor featuring 8 cores and 16 threads. The system is configured
with 32 GB of memory. The tests were conducted on two operating systems: Windows 11 Pro and
Debian GNU/Linux 12 (Bookworm), both running in their 64-bit versions.

Scaphandre’s integration ensures that energy measurements can be consistently collected on both
Linux and Windows. This compatibility is crucial for conducting comparative studies and for developing
energy-efficient software that performs optimally across various environments.

Additionally, the new framework allows for in-depth energy profiling of different Erlang constructs,
we can obtain granular insights into the energy usage of Erlang programs, which is essential for
optimising performance and reducing energy consumption.

The new GreenErl framework consists of several integral components, working in harmony to
measure and analyze energy consumption in Erlang functions. At its core is a Python script that
orchestrates the entire process. This script handles critical tasks. At first, function spawning creates
instances of Erlang functions for measurement. Then the script initiates the Scaphandre process, which
collects energy data as functions are executing, and aggregates the collected data into a structured JSON
file. Once an Erlang function completes execution, the same Python script takes charge of measurement
termination that stops the energy measurement process. The last step is data analysis, where the script
calculates the energy consumption metrics from the JSON files and stores the results in CSV files. This
streamlined approach ensures precise energy profiling and optimization across platforms.

5. Analysing the energy usage of Erlang programs

In our previous investigation [17], we conducted an in-depth analysis of Erlang’s energy usage, focusing
on its performance in scenarios that align with its design principles and compared it with other
programming languages. We also created a framework for the energy measurements.

In this new investigation, we delve into the impact of the JIT compiler in the latest OTP 26 on Erlang’s
energy efficiency. We compare the performance of OTP 26 with that of OTP 23, using a few samples
from our previous work such as a subset of the Benchmark Game and the server implementation. We
also measured the n-queens problem implemented in two different ways [18]. These problems all
together serve as our evaluation metrics23. To ensure a comprehensive comparison, we measured the
same functions on identical hardware setups, with the only difference being the operating systems,
Linux and Windows. This approach provides a clearer view of how the operating system influences the
performance and energy efficiency of Erlang programs. However, we must state that some results show
zeros, which could be attributed to the nature of the problem or the sampling tool. Futhermore, when
the input size is small, the resulting energy may be so minimal that Scaphandre registers it as zero.

5.1. Selected problems

The Benchmark game and Server These implementations provide a comprehensive comparison of
the performance and energy consumption of several compute-intensive programs from the Benchmark
Game across different OTP versions.

The benchmark games present a set of problems that test the performance of the OTP versions
under different computational tasks. In our new research, we used the fannkuch-redux, mandelbrot, and
n-body problems. These problems provide a comprehensive evaluation of a language’s computational
efficiency and performance.

The server implementation simulates a typical use case for Erlang, allowing us to measure its energy
efficiency in a practical context. It provides a real-world scenario where Erlang’s strengths in handling

2https://github.com/joegharbi/SQAMIA_GREEN_JIT/tree/Linux
3https://github.com/joegharbi/SQAMIA_GREEN_JIT/tree/Windows



concurrency and distribution can be effectively measured.

N-Queens The queens_list and n_queens modules both solve the N-Queens problem, which involves
placing N number of queens on an NxN chessboard such that no two queens threaten each other. The
queens_list module, uses a list comprehension to generate the configurations to check if a queen can be
placed in a certain position. The n_queens module uses a different approach. It uses backtracking to
find a solution to the N-Queens problem.

5.2. Analysing the energy usage of Erlang programs on Windows

We will start by sharing the measurement results and findings from our Windows analysis.

5.2.1. Echo Server and Benchmark Game use-cases

The Just-In-Time compiler in OTP 26 significantly optimises runtime and energy consumption in
all problems measured. This is evident from the data shown in Table 1, which shows lower values
for these parameters in OTP 26 compared to OTP 23. As an illustration, let us consider the n-body
problem. In OTP 23, the energy consumption was 692.41J and the runtime was 193.98s. However,
with the introduction of JIT in OTP 26, there was a significant improvement. The energy consumption
was reduced to 312.29J and the runtime decreased to 84.03s. This represents a reduction in energy
consumption by approximately 55% and a reduction in runtime by approximately 57%. This example
demonstrates the efficiency improvements brought by the introduction of JIT in OTP 26.

Table 1
Windows: Benchmarks OTP 23 vs 26

OTP 23 OTP 26

Module Arg Energy
[J]

Runtime
[s]

Power
[W]

Energy
[J]

Runtime
[s]

Power
[W]

fannkuch-redux 12 1681.7 83.62 20.11 1369.93 53.43 25.64
mandelbrot 16K 2556.72 150.98 16.93 1182.25 57.0 20.74

n-body 50M 692.41 193.98 3.57 312.29 84.03 3.72

server 10K 0.06 13.94 0.0 0.04 14.0 0.0
4K 0.02 5.87 0.0 0.01 5.52 0.0

5.2.2. Experiments with the N-Queens Problem

Table 2 summarises our measurement results for the different implementations for the N-Queens
problem.

Energy Consumption The energy consumption for both implementations seems to increase with
the problem size on both OTP versions. However, the queens_list implementation appears to be more
energy-efficient than the n_queens implementation, especially for larger problem sizes (i.e., when the
number of queens is greater than 13). This could be due to the different algorithms used in the two
implementations, with the queens_list implementation having a more efficient algorithm for handling
larger problem sizes.

Runtime Performance The runtime also increases with the problem size for both implementations
on both OTP versions. However, the n_queens implementation seems to have a slightly worse runtime
performance for smaller problem sizes. During our experimental process, we encountered an issue
where the execution of the function extended to a duration of 12 hours for an input size of N=14.
This necessitated a manual intervention to halt the measurement, as further waiting was considered



Table 2
Windows: N Queens OTP 23 vs 26

OTP 23 OTP 26

Module Arg Energy
[J]

Runtime
[s]

Power
[W]

Energy
[J]

Runtime
[s]

Power
[W]

n_queens

10 59.16 16.21 0.11 47.01 13.66 0.12
11 7.95 4.24 0.13 0.0 3.36 na
12 1033.08 292.0 0.14 723.11 204.71 0.14
13 287.51 80.5 0.13 210.94 57.12 0.13

queens_list

10 0.0 1.34 na 0.0 1.23 na
11 0.0 1.4 na 0.0 1.26 na
12 0.0 1.73 na 0.0 1.51 na
13 3.18 3.77 0.31 0.0 3.3 na
14 57.06 17.93 0.14 47.16 14.44 0.13
15 455.89 133.73 0.14 372.55 112.46 0.15
16 5872.31 2025.7 0.17 5270.34 1864.22 0.17

unproductive. The observation suggests that for input sizes of 14 and beyond, the function n_queens
exhibits an exponential increase in execution time. This highlights the non-linear complexity of the
implementation under investigation due to the backtracking nature of the implementation.

Power Usage The power usage seems to be fairly consistent across different problem sizes for both
implementations on both OTP versions. This suggests that the energy efficiency of the implementations
does not significantly change with the problem size.

OTP 23 vs OTP 26 For both implementations, the energy consumption and runtime seem slightly
lower on OTP 26 compared to OTP 23. This could be due to the JIT compiler’s optimisations in OTP 26,
which can lead to more efficient code execution and thus lower energy consumption and runtime.

In conclusion, while the queens_list implementation appears to be more energy-efficient, the n_queens
implementation may offer reasonable runtime performance for smaller problem sizes. However, for
larger problem sizes, the n_queens implementation results in significantly longer runtime, as observed
with N larger than 14. These findings highlight the trade-offs between energy efficiency and runtime
performance in the context of the N-Queens problem implemented in two distinct ways. It also shows
the improvements in the OTP 26 using the JIT compiler compared to the older OTP 23 without the JIT
compiler.

5.3. Analysing the energy usage of Erlang programs on Linux

The investigation into the energy usage of Erlang programs on Linux follows a similar methodology as
the analysis on Windows. This involves comparing different versions of OTP (Open Telecom Platform)
to evaluate improvements brought by the Just-In-Time (JIT) compiler introduced in OTP 24 and the
further enhancements in OTP 26 and 27.

5.3.1. Echo Server and Benchmark Game use-cases

The Echo Server and Benchmark Game use cases provide practical scenarios for evaluating the energy
efficiency and performance of Erlang. The focus is on typical computational tasks and server operations
to understand the impact of the JIT compiler on energy consumption and runtime.

Benchmarks OTP 23 vs 26 on Linux The data presented in Table 3 indicates that OTP 26 offers
significant improvements in both energy consumption and runtime for most benchmarks. The fannkuch-
redux and mandelbrot modules show notable reductions in runtime and energy usage, illustrating the



efficiency gains from the JIT compiler in OTP 26. The power usage shows a notable decrease, especially
for mandelbrot, suggesting that the energy efficiency per unit of time has improved with OTP 26.

Table 3
Linux: Benchmarks OTP 23 vs 26

OTP 23 OTP 26

Module Arg Energy
[J]

Runtime
[s]

Power
[W]

Energy
[J]

Runtime
[s]

Power
[W]

fannkuch-redux 12 821.42 54.09 15.18 913.43 52.92 17.25
mandelbrot 16K 1554.38 112.28 13.84 854.62 48.02 17.79

n-body 50M 1913.58 136.62 14.00 1155.28 69.51 16.61

server 10K 4.34 9.70 0.44 4.21 9.31 0.45
4K 1.75 3.86 0.45 1.75 3.81 0.46

BenchmarksOTP 26 vs 27 on Linux The differences between OTP 26 and OTP 27 are more nuanced
(Table 4). While OTP 27 shows marginal improvements in some areas, such as the fannkuch-redux and
server benchmarks, it does not consistently outperform OTP 26 across all metrics. OTP 27 generally
shows slight improvements in runtime compared to OTP 26, though not uniformly across all benchmarks.
The ratios indicate minor improvements or slight declines, suggesting that while there are optimisations
in OTP 27, the benefits are not as pronounced as the jump from OTP 23 to OTP 26. This suggests
that while further optimisations are present in OTP 27, the benefits may be more specific to certain
workloads.

Table 4
Linux: Benchmarks OTP 26 vs 27

OTP 26 OTP 27

Module Arg Energy
[J]

Runtime
[s]

Power
[W]

Energy
[J]

Runtime
[s]

Power
[W]

fannkuch-redux 12 913.43 52.92 17.25 891.13 51.47 17.31
mandelbrot 16K 854.62 48.02 17.79 919.25 53.08 17.31

n-body 50M 1155.28 69.51 16.61 1166.53 72.62 16.06

server 10K 4.21 9.31 0.45 3.53 9.56 0.36
4K 1.75 3.81 0.46 0.937 3.74 0.25

5.3.2. Experiments with the N-Queens Problem

The N-Queens problem provides another critical evaluation metric, examining both the n_queens and
queens_list implementations for their energy usage and runtime performance across different OTP
versions.

N Queens OTP 23 vs 26 on Linux The data presented in Table 5 shows that OTP 26 offers better
performance and energy efficiency than OTP 23 across both implementations. For the n_queens imple-
mentation, the reductions in energy usage and runtime are particularly significant for larger problem
sizes. The queens_list implementation also benefits from these improvements, though the differences
are more pronounced in the larger problem sizes. The power usage generally improves, indicating
better energy efficiency per unit of time with OTP 26.

N Queens OTP 26 vs 27 on Linux The transition from OTP 26 to OTP 27 showed better overall
results (Table 6). However, while most scenarios demonstrate energy savings and reduced runtimes,
some do not show a consistent improvement such as the n_queens with input 10 and 12, reflecting the



Table 5
Linux: N Queens OTP 23 vs 26

OTP 23 OTP 26

Module Arg Energy
[J]

Runtime
[s]

Power
[W]

Energy
[J]

Runtime
[s]

Power
[W]

n_queens

10 154.48 9.74 15.85 99.24 7.25 13.69
11 44.34 3.6 12.33 0.0 2.91 0.0
12 3792.48 266.35 14.24 2760.55 190.57 14.49
13 1018.69 75.42 13.51 809.13 50.84 15.92

queens_list

10 0.0 1.2 0.0 0.0 1.23 0.0
11 0.0 1.26 0.0 0.0 1.27 0.0
12 0.0 1.53 0.0 0.0 1.48 0.0
13 32.81 3.32 9.88 0.0 2.94 0.0
14 223.21 15.21 14.67 164.26 12.2 13.46
15 1526.1 114.43 13.34 1151.18 90.69 12.69
16 10863.3 953.34 11.39 8214.54 774.58 10.61

Table 6
Linux: N Queens OTP 26 vs 27

OTP 26 OTP 27

Module Arg Energy
[J]

Runtime
[s]

Power
[W]

Energy
[J]

Runtime
[s]

Power
[W]

n_queens

10 99.24 7.25 13.69 110.13 7.08 15.56
11 0.0 2.91 0.0 0.0 2.88 0.0
12 2760.55 190.57 14.49 2707.43 178.56 15.16
13 809.13 50.84 15.92 779.5 50.48 15.44

queens_list

10 0.0 1.23 0.0 0.0 0.36 0.0
11 0.0 1.27 0.0 0.0 1.28 0.0
12 0.0 1.48 0.0 0.0 1.47 0.0
13 0.0 2.94 0.0 0.0 2.87 0.0
14 164.26 12.2 13.46 150.91 11.81 12.77
15 1151.18 90.69 12.69 1090.02 90.0 12.11
16 8214.54 774.58 10.61 8850.71 842.9 10.5

nuanced impact of optimisations specific to different types of workloads. The ratios are also variable,
reflecting mixed improvements in energy efficiency.

5.4. Findings

The analysis of energy usage and runtime performance of Erlang programs on Linux mirrors the patterns
observed on Windows. The JIT compiler introduced in OTP 24 as well as the test versions 26 and 27
offers substantial improvements over OTP 23. Further enhancements in OTP 27 provide additional
benefits. These findings underscore the importance of considering specific workload characteristics
when evaluating the impact of compiler and runtime optimisations.

The detailed benchmarks across different Erlang modules and problem sizes illustrate the potential
for significant energy savings and performance gains with newer OTP versions. However, the degree of
improvement varies, indicating the complex interplay between program characteristics and runtime
optimisations.

In conclusion, the move to OTP 26 and 27 on Linux demonstrates clear advantages in energy efficiency
and runtime performance for many Erlang programs, aligning with the trends observed on Windows.
This is not the first time we discover that Windows is generally more optimised as Sayed Najmuddin
et al [12] found that Windows generally exhibits more efficient power and battery management than



Linux, largely due to better driver support and optimisation. In addition, we conclude that choice of
OTP version should consider the specific workload to maximise the benefits of these advancements.

6. Conclusion and future work

In our previous research, we developed a framework for measuring the energy consumption of Erlang
applications and investigated the energy behaviour of different Erlang implementations. In this paper, we
demonstrated a cross-platform solution to carry out energy-related measurements of Erlang application.
Our solution is based on Scaphandre and RAPL.

Using this framework we have investigated the energy behaviour of the Erlang BEAM virtual machine
and compared OTP 23 (non-JIT) implementations with OTP 26 implementations (JIT). In addition, we
have analysed the recent improvement to the BEAM JIT by comparing OTP 26 and OTP 27. we have
addressed our first research question.

Furthermore, our analysis has demonstrated that irrespective of whether a JIT or non-JIT compiler is
used, the implementation approach of the software profoundly influences its energy consumption. This
finding addresses our second research question and underscores the critical role of software design in
energy efficiency.

This research has made significant progress in understanding the performance of various algorithms
in the Erlang runtime system. The introduction of JIT compilation in OTP 26 has shown to significantly
improve the runtime and energy efficiency of these algorithms.

The research also highlighted the implicit efficiency of certain implementations, such as the queens_list
module. These findings underscore the importance of both efficient algorithm design and runtime
optimisations in reducing energy consumption and improving performance.

Looking ahead, there are several promising directions for future research. One potential path is to
extend this analysis to other algorithms in Erlang, to gain a more comprehensive understanding of the
performance characteristics of the Erlang runtime system. The findings of this research provide a solid
foundation for future investigations in this dynamic and rapidly progressing field.

Acknowledgments

Project no. TKP2021-NVA-29 has been implemented with the support provided by the Ministry of
Culture and Innovation of Hungary from the National Research, Development and Innovation Fund,
financed under the TKP2021-NVA funding scheme.

References

[1] F. Cesarini, S. Thompson, Erlang Programming: A Concurrent Approach to Soft-
ware Development, O’Reilly Media, Inc., 2009. Https://www.oreilly.com/library/view/erlang-
programming/9780596803940/.

[2] J. Högberg, A first look at the JIT - Erlang/OTP, 2020. URL: https://www.erlang.org/blog/
a-first-look-at-the-jit/.

[3] B. Gustavsson, More Optimizations in the Compiler and JIT - Erlang/OTP, 2023. URL: https:
//www.erlang.org/blog/more-optimizations/.

[4] Hubblo, Scaphandre documentation, 2023. URL: https://hubblo-org.github.io/
scaphandre-documentation/index.html.

[5] Y. Gharbi, I. Bozó, M. Tóth, Green computing for Erlang, in: To appear in the Proceedings of the
3rd Workshop on Resource AWareness of Systems and Society (RAW 2024), CEUR, 2024.

[6] S. Hu, L. K. John, Impact of virtual execution environments on processor energy consumption and
hardware adaptation, in: Proceedings of the 2nd International Conference on Virtual Execution
Environments, VEE ’06, Association for Computing Machinery, New York, NY, USA, 2006, p.
100–110. doi:10.1145/1134760.1134775.

https://www.erlang.org/blog/a-first-look-at-the-jit/
https://www.erlang.org/blog/a-first-look-at-the-jit/
https://www.erlang.org/blog/more-optimizations/
https://www.erlang.org/blog/more-optimizations/
https://hubblo-org.github.io/scaphandre-documentation/index.html
https://hubblo-org.github.io/scaphandre-documentation/index.html
http://dx.doi.org/10.1145/1134760.1134775


[7] Z. Ournani, M. C. Belgaid, R. Rouvoy, P. Rust, J. Penhoat, Evaluating the Impact of Java Virtual
Machines on Energy Consumption, in: Proceedings of the 15th ACM / IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM), ESEM ’21, Association for
Computing Machinery, New York, NY, USA, 2021. doi:10.1145/3475716.3475774.

[8] Z. Ournani, R. Rouvoy, P. Rust, J. Penhoat, Comparing the Energy Consumption of Java I/O
Libraries and Methods, in: ICSME 2021 - 37th International Conference on Software Maintenance
and Evolution, Proceedings of the 37th International Conference on Software Maintenance and
Evolution (ICSME), Luxembourg / Virtual, Luxembourg, 2021. URL: https://inria.hal.science/
hal-03269129.

[9] S. Muchnick, Advanced compiler design and implementation, Morgan Kaufmann, 1997.
[10] S. Wong, Super optimization, 2020. URL: https://www.cs.cornell.edu/courses/cs6120/2020fa/blog/

super-optimization/.
[11] GCC, Optimize options (using the gnu compiler collection (gcc)), 2014. URL: https://gcc.gnu.org/

onlinedocs/gcc/Optimize-Options.html.
[12] S. Najmuddin, Z. Atal, R. A. Ziar, Comparative analysis of power consumption of the linux and

its distribution operating systems vs windows and mac operating systems., Kardan journal of
engineering and technology (2021). doi:10.31841/KJET.2021.21.

[13] G. Nagy, A. A. Mészáros, I. Bozó, M. Tóth, Tools supporting green computing in Erlang, in: Pro-
ceedings of the 18th ACM SIGPLAN International Workshop on Erlang, Erlang 2019, Association
for Computing Machinery, New York, NY, USA, 2019, p. 30–35. doi:10.1145/3331542.3342570.

[14] V. M. Weaver, Reading RAPL energy measurements from Linux,
http://web.eece.maine.edu/~vweaver/projects/rapl/, 2015.

[15] Hubblo, Windows driver to get RAPL metrics, 2023. URL: https://github.com/hubblo-org/
windows-rapl-driver.

[16] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, J. Saraiva, Energy efficiency
across programming languages: how do energy, time, and memory relate?, Proceedings of the 10th
ACM SIGPLAN International Conference on Software Language Engineering - SLE 2017 (2017).
doi:10.1145/3136014.3136031.

[17] Y. Gharbi, M. Tóth, I. Bozó, Measuring and Analysing Erlang’s Energy Usage, in: 2024 47th MIPRO
ICT and Electronics Convention (MIPRO), 2024, pp. 1993–1998. doi:10.1109/MIPRO60963.2024.
10569977.

[18] N-queens problem - rosetta code, 2024. URL: https://rosettacode.org/wiki/N-queens_problem#
Erlang.

http://dx.doi.org/10.1145/3475716.3475774
https://inria.hal.science/hal-03269129
https://inria.hal.science/hal-03269129
https://www.cs.cornell.edu/courses/cs6120/2020fa/blog/super-optimization/
https://www.cs.cornell.edu/courses/cs6120/2020fa/blog/super-optimization/
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://dx.doi.org/10.31841/KJET.2021.21
http://dx.doi.org/10.1145/3331542.3342570
https://github.com/hubblo-org/windows-rapl-driver
https://github.com/hubblo-org/windows-rapl-driver
http://dx.doi.org/10.1145/3136014.3136031
http://dx.doi.org/10.1109/MIPRO60963.2024.10569977
http://dx.doi.org/10.1109/MIPRO60963.2024.10569977
https://rosettacode.org/wiki/N-queens_problem#Erlang
https://rosettacode.org/wiki/N-queens_problem#Erlang

	1 Introduction
	2 Related work
	3 Background
	3.1 Scaphandre based measurement framework for Windows
	3.2 Comparing the energy usage of programming languages

	4 Cross platform framework
	5 Analysing the energy usage of Erlang programs
	5.1 Selected problems
	5.2 Analysing the energy usage of Erlang programs on Windows
	5.2.1 Echo Server and Benchmark Game use-cases
	5.2.2 Experiments with the N-Queens Problem

	5.3 Analysing the energy usage of Erlang programs on Linux
	5.3.1 Echo Server and Benchmark Game use-cases
	5.3.2 Experiments with the N-Queens Problem

	5.4 Findings

	6 Conclusion and future work

