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Abstract
This paper represents a cross-language and cross-tool investigation of tools and techniques for static code analy-
sis focused on basic software complexity metrics such as: McCabe Cyclomatic Complexity, Halstead, and Main-
tainability Index. The main goal of the research is to determine whether metric differences between multilingual
implementation codes exist and how disparate the outcomes of used static tools are. Furthermore aim to learn
about the reasons for the discovered differences. To perform this experiment, we use similar multilingual code
samples of the RossetaCode project and identical multilingual code samples (SumProd) developed as cloning
scenarios for the evaluation of cross-language clone detection. Because of the limited language support by tools
and metrics, our experiment uses widespread C and Java programming languages. Our study will benefit from
the selection of these two input languages as they have very similar syntax which enables us to write and pick
equivalent code snippets in the two languages and their easier comparison. Our research is based on commer-
cial and open-source static analysis tools. The final results provide divided opinions in cross-language analysis
and agreement about the existence of absolute inconsistency in cross-tool metric values. More precisely, on the
observed heterogeneous multilingual RossetaCode samples C code appears to be more complex, while observed
homogeneous multilingual SumProd samples suggest that implementations in Java are more complex. The cross-
tool review releases absolute inconsistency of metric values over all covered open-source and commercial static
tools. Finally, a manual check of in-tool outcomes signalizes that the roots of inconsistencies are in the tool
implementations that do not appropriately follow metric calculation formulas and algorithms.
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1. Introduction

The design of a software system represents the most challenging and important phase in a software
life-cycle. It influences other aspects like the complexity of development organization and necessary
maintainability factors. Software metrics provide a countable and comparable way of measuring the
quality of software systems. There are two main approaches to calculating metric values, static analysis
of written code without its execution and dynamic analysis during program execution [1]. In this paper,
we consider the static method with a focus on multilingual codes and cross-tool comparison. Code
datasets include chosen and prepared samples from RossetaCode [2] and SumProd snippets used to test
cross-language clone detection for LICCA project [3, 4]. We have analyzed three common complexity
metrics: McCabe [5], Halstead [6], and Maintainability Index [7]. Our experiment considers many
available commercial and open-source tools and also advocates manual checks of their results.

The goals of our research can be formulated in three questions:

• RQ1. How two programming language implementations are disparate in terms of metric values?
• RQ2. How metric outcomes of different static analysis tools are disparate?
• RQ3. Are answers on RQ1 and RQ2 still valid when observing identical code snippets implemented

in different languages?
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The paper is organized into the following sections: The second section briefly introduces a reader to
the history of this research field and its influence on our motivation in the form of a short related work.
The section on the research design introduces the selection of code samples, tools, and metrics, as
well as a description of the applied method. The fourth section presents the experimental results and
noticed metric relationships. The last two sections state the experimental limitations, conclusions and
suggestions for future work.

2. Motivation and related work

One of the open research questions in the software engineering field is related to applicability of
software metrics in practise and weaknesses of software metrics techniques and tools for their wider
usage [8, 1]. Some of the reasons highlighted in the literature are weak coverage of metrics sets and
input computer language by available tools [9].

While source code metrics are well defined, their thresholds among languages are compared and
derived [10], and are often used for evaluation and comparison of various aspects of different program-
ming languages (where support for these languages is available) [11, 12, 13, 14, 15, 16], reliability of
these measurements and their consistency among languages and tools remains as an unsolved concern.

Early negotiation of differences in interpretation and implementation of software metrics calcula-
tion algorithms starts with [17]. Here, the authors showed that different authors implement metrics
differently. This results in variation in metric results across tools even within a single language. A
similar investigation towards an evaluation of metric tools supporting .NET languages [18] confirmed
the variation in results for supported languages.

The problem grows with multilingual and cross-lingual software projects. Our early investigation of
code analysis in such projects starts with the identification of problems in the systematic application
of static metrics in practice [8] which has been concluded with a need for better tools that would
consistently support metric calculation within the same language, as well as across different languages.
We have tried to find a solution to the opened problem in [1]. Now we try to systematically investigate
(in-)consistency of software metric results across languages and tools.

Identified inconsistencies have opened a completely new space for research and innovation, with
numerous reviews, surveys and investigations in the same or a similar direction. One of the most
detailed field overview studies is described in [19], while there are also available studies on tools
comparison and their precision [20] still without deeper analysis and understanding of reasons for
imprecision and discrepancies.

In this study we are interested in observing differences in calculated metric values. Starting from two
syntactically similar languages (Java and C) that are, at the same time widely supported by available
metric tools, and from small datasets to enable also manual inspection of differences roots we aim for
learning about the reasons for inconsistencies between metric values between tools and input languages.

3. Study Description

This section describes the research design by introducing the datasets and methods used. It defines
criteria for static tools and code sample selection, as well as a description of the well-known software
complexity metrics and experimental setup.

3.1. Multilingual Code Samples

The research includes equivalent implementations of the selected standard problems and toy examples
implemented in Java and C programming languages [21]. This enables a mutual comparison of the code
implementation languages themselves. The selected codebases provide multilingual implementations of
defined problems, which enables, among other things, a mutual comparison of the code implementation
languages themselves.



An overview of alternative datasets of multilingual implementations can be found on the RossetaCode
webpage [22]. Many available online codebases don’t provide enough examples or consistency in solving
the same problem in multiple programming languages. Considering the previously mentioned, the
RossetaCode database was singled out as the only adequate bigger source for this research. Multilingual
examples in RossetaCode semantically solve the same problems, but their syntax doesn’t have to be
identical. The mentioned code bases are a good starting point for this study.

• RosettaCode is a collection of solutions for standard problems usually implemented by contribu-
tors who are developers in the language in which they contribute to the collection. An overview
of alternative datasets of multilingual implementations can be found on the RossetaCode web-
page [22]. Many available online code bases do not provide enough examples or consistency
in solving the same problem in multiple programming languages. Considering the previously
mentioned, the RossetaCode database was singled out as the only adequate bigger source for this
research. Examples in RossetaCode solve the same problems in a semantically equivalent way,
but their syntax is different.

• SumProd is a collection of cloning scenarios, for all four types of clones, going from renaming
a variable, across a reordering statement, to replacing while loop with a do one or with an if
branching. It is used with small modifications, on the original code version, to achieve maximum
uniformity of codes between languages. It should provide a small set of identical codes to be used
as a control point to conclusions of bigger and divergent codes of the RossetaCode sample.

It should also be noted that the datasets don’t provide specific information about the program code.
This means that we cannot gain insight into whether the code was written by the same developer,
a different one, or the level of their knowledge of the implementation language. The initial step of
the research included selecting adequate examples from the mentioned datasets, which implies their
availability in both included programming languages and their implementation in one file (to avoid
complicated compensation of program code modularity and implementation versions).

3.2. Choosing Software Metrics

The covered metrics in this research are fundamental metrics of software code design complexity and
quality such as McCabe, Halstead, and Maintainability Index. They include other basic metrics such as
lines of code, and the number of operators and operands. The primary criteria for selecting metrics are
their availability in considered tools (Section 3.3).

A short explanation of caught metrics [1]:

• LOC: Lines of code that measures the size of source code is available in different variants. E.g.
Physical lines of code: count every single line of code
Logical lines of code: consider different aspects of the code which overcome coding style depen-
dency

• McCabe: Cyclomatic Complexity (CC) of control-flow structures as number of linearly in-
dependent paths (V) through a control-flow graph (CFG) representation of a method/function1

source code.

𝑉 (𝐶𝐹𝐺) = (𝑁𝑜.𝑜𝑓𝐸𝑑𝑔𝑒𝑠)˘(𝑁𝑜.𝑜𝑓𝑁𝑜𝑑𝑒𝑠) + 2

• Halstead: Product size and complexity metrics set based on the number of operators and
operands.

𝑛1 : 𝑁𝑜.𝑜𝑓𝑈𝑛𝑖𝑞𝑢𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

𝑛2 : 𝑁𝑜.𝑜𝑓𝑈𝑛𝑖𝑞𝑢𝑒𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠

1The limitation to method/function represented by a CFG is based on the limitation the the graph should be strongly con-
nected and have one entry and exit point (see [1] for the formal definitions.



𝑁1 : 𝑁𝑜.𝑜𝑓𝑇𝑜𝑡𝑎𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

𝑁2 : 𝑁𝑜.𝑜𝑓𝑇𝑜𝑡𝑎𝑙𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠

𝐿𝑒𝑛𝑔𝑡ℎ : 𝑁 = 𝑁1 +𝑁2

𝑉 𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 : 𝑛 = 𝑛1 + 𝑛2

𝑉 𝑜𝑙𝑢𝑚𝑒 : 𝑉 = 𝑁 * 𝑙𝑜𝑔2𝑛

𝐿𝑒𝑣𝑒𝑙 : 𝐿 =
𝑛1

𝑛2

𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 : 𝐷 =
𝑛1

2
* 𝑁2

𝑛2

𝐸𝑓𝑓𝑜𝑟𝑡 : 𝐸 = 𝐷 * 𝑉

• Maintainability Index: Relative ease of maintaining the code.
Original formula (0-100+):

𝑀𝐼 = 171−5.2*ln𝐻𝑎𝑙𝑠𝑡𝑒𝑎𝑑𝑉 𝑜𝑙𝑢𝑚𝑒−0.23*𝐶𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦−16.2*ln𝐿𝑖𝑛𝑒𝑠𝑜𝑓𝐶𝑜𝑑𝑒

Microsoft version (0-100):

𝑀𝐼𝑚𝑖𝑐𝑟𝑜𝑠𝑜𝑓𝑡 = 𝑀𝐴𝑋(0,𝑀𝐼 * 100

171
)

3.3. Static Analyzer Tools selection

A further step requires the selection of tools known as static analyzers which will automatically analyze
the code examples. We initiated a search for existing tools used and recommended by real-life developers.
Among numerous lists, we identified the most complete source[23].

Only open-source tools and commercial tools that provide a "free" or "trial edition" license are
included in this survey. Popular commercial tools like SonarQube [24], Embold [25], PVS-Studio [26],
DeepSource [27], and some others were excluded from the research because they did not provide
adequate language or metrics coverage in the mentioned releases.

The review of the static analyzers market concludes that tools mainly focus on spotting and reporting
code errors, security flaws, and code design irregularities rather than providing quantifiable metric
values. For example, the SonarQube tool in the "free plan" does not support the C programming
language, while Embold and DeepSource in the mentioned edition provide only descriptive metrics of
their arrangement. Among the commercial tools, the research has included FrontEndART SourceMeter
in the form of the SonarQube plug-in [28], CoderGears CppDepend/Jarchitect [29], and M Squared
Technologies’s Resource Standard Metrics [30].

Some of the commercial tools are available in the form of SonarQube plugins like SourceMeter,
CppDepend, and JArchitect. We used SourceMeter in the mentioned plugin form because it provides
easier access to output results.

Extensive research into the open-source static analysis tools, via the GitHub portal, has been done
in multiple revisions to achieve consistent and comparable metric values as mentioned between the
languages and the tools. Certain tools could not successfully report metrics on the source code and
therefore were not included in this research. On the other hand, some tools required minor corrections
to display the appropriate parameters of the results or considerable upgrades of the logic due to its
incompleteness.

The previously mentioned is shown in Table 1. The original names of the tools have been changed in
the research (clearly indicated by their links) for easier distinction due to existing overlaps. Adoption of
open-source tools has been involved following changes:

• C-Cyclomatic-Halstead - working with a whole directory of source files instead of file-by-file
• C-Static-Analyzer - display total no. of operators/operands for provided source file



• Java-4-Metrics - debug of runtime-errors during the execution of RossetaCode examples The
survey did not include popular languages like JavaScript and Python, due to the small number of
static analyzer tools dedicated to them that could provide consistent and comparable results.

Table 1
Open-source tools available on the GitHub portal, and commercial tools with corresponding website,
all supporting the requested metrics and programming languages

Open-Source Tool GitHub Links
Java

Java_complexity
_and_organization

https://github.com/Taha248/Java-Code-Analyzer/tree/b30e240

Java_halstead
_cyclomatic

https://github.com/MohamedSaidSallam/halstead_cyclomatic

Java_4_metrics
(logic adopted [31] )

https://github.com/AccuType-911/Java-code-analyzer/tree/fc82210

C
C-Static-Analyzer
(output adopted [32])

https://github.com/sajedjalil/C-Static-Analyzer/tree/cbc5e5b

C_cyclomatic
_halstead
(output adopted [33] )

https://github.com/AhmedEssam17/
CyclomaticComplexity-and-HalsteadMetrics/tree/1c2b9de

Commercial Tool Website
CppDepend (2023.1) https://www.cppdepend.com
JArchitect (2023.1) https://www.jarchitect.com
SourceMeter (10.0.0) https://sourcemeter.com
ResourceStandard Metrics (7.70) https://msquaredtechnologies.com

3.4. Experimental setup

The research provides a comparison of static analysis tools over multilingual datasets in terms of
software metric values. To make this experiment more replicable, we provide all used code samples
online available in the repository at [21]. Some tools (like SourceMeter, CppDepend, and JArchitect)
have been required to create whole project structures of given source code. The necessary steps for
running the specific tool on a particular dataset have also been issued in detail in the GitHub repository.
As earlier mentioned, our research includes a manual check (based on previously listed metric formulas)
of each tool’s output results. Manual checking of the results proved especially necessary with open-
source tools, but also missing metrics on some tools are manually calculated to make their outcomes
mutually more comparable.

4. Results

This section presents the metric results of static analysis on the selected codebase. Metric results
are available on our GitHub repository [21]. It should be noted again that the given RossetaCode
examples do not represent identical codes for different languages but rather they represent similar
implementations of the same problems in different languages. For the analysis of identical multilingual
samples, we used the SumProd dataset. The whole experiment is based on Java and C programming
languages.

4.1. Cross-language comparison on RossetaCode samples

The results of the Resource Standard Metrics tool, shown in Table 2 and Table 3, indicate that the
examples written in the C programming language contain more extensive implementation in terms of the



lines of code and program control flow, as expected based on nature of the language [34]. Considering
previous facts, they express greater code complexity as measured by Cyclomatic Complexity (Cyclo
Vg). They also encourage the appearance of more "defects in the code which are not covered by the
compiler" (Notice).

Table 2
Summary of basic metrics in Resource Standard Metrics tool
Colors: red - less favorable value, blue - uniform values

RossetaCode SumProdMetrics
C Java C Java

Quality
Funcs 55 58.5 36 36
Notice 825 642.5 388 558

QN/Func 15 11.4 10.8 15.5
QN/KeLoc 1346.5 1146.5 2380 3382

Complexity
Param 75 76 54 54
Return 62.5 70.5 36 36

CycloVg 192.5 171.5 56 56
Total 330 318 146 146

Lines Of Code
LOC 785 735 219 221
eLoc 630.5 586 163 165
ILoc 450.5 408.5 124 108

Comment 46.5 20.5 20 19
Lines 965.5 861 220 257

Function Points
FP(LOC) 6.1 13.85 1.7 4.2
FP(eLOC) 4.95 11.1 1.3 3.1
FP(ILOC) 3.5 7.7 1 2

Despiting a larger number of methods, parameters, and return values, the examples written in the
Java language reflect lower complexity but higher values of Functional Points (derived from the number
of lines of code).

The same static tool in Table 3 reveals that C language dominates in several used program constructs
(keywords). Also, it demonstrates inequality between two language implementations of RossetaCode
samples.

The values in Table 4 of the SourceMeter tool demonstrate a similar trend in terms of number of Lines
of Code and Cyclomatic Complexity. The remaining two Halstead Length & Vocabulary parameters
(based on the total and unique number of operators and operands) are, as expected, higher for Java
language examples.

Contrary to the above observations, the CppDepend and JArchitect cross-tool report on RossetaCode
(Table 5) indicates that C examples express higher values of Halstead metrics. Other metric values like
LOC, McCabe, and Maintainability Index are compatible with the previously mentioned tools.

Averages of multiple open-source tools in the same languages are concordant with previous CppDe-
pend and JArchitect conclusions except for Halstead Vocabulary Size and Maintainability Index. It must
be noticed that outcome values are dependable on the selection of the covered open-source tools.

Despite well-known metric formulas, static code analyzers provide uneven results. Because of that,
this experiment doesn’t provide judgment about the amount of cross-language differences. This is the
reason that induces us to perform further cross-tool analysis.



Table 3
Construct differences in C and Java of RossetaCode examples (Resource Standard Metrics tool)
Colors: red - less favorable value, blue - uniform values

Programming Language
Code Construct C Java

Lines
Blank Lines 160 118
Comment Lines 46.5 20.5
Total Log | Phy Lines 991.5 965.5 873.5 861

Key Words
Literal Strings 112.5 120.5
Preprocessor Lines 45 0
#include / import 30 22.5
const, enum 8 0.5 0 0.5
do, while 1 11 0.5 9
switch, default 1 0.5 0.5 0
for 47 40.5
case, break 3 4 2 2
if, else 45 9 47 10.5
Funcs 55 59
goto, return 0.5 50 0 41
exit, _exit, abort 0.5 0 0 0
macros, struct 17.5 0 9 0
class, interface 5.5 0 17 0

Analysis
Paren Count (,) 475.5 518
Brace Count {,} 137 175
Bracket Count [,] 127.5 134.5
Char/NBLine, Notices 17 825 21 642.5
Code, eCode Lines 78.90% 63.40% 84.10% 66.90%
Comment, Blank Lines 4.80% 16.25% 2.35% 13.60%
Characters, Spaces 72.65% 27.35% 65.55% 34.45%

Table 4
Results of Available Parameters in SourceMeter Tool.
* - manually calculated; ** - Microsoft version (manually calculated)
Colors: red - less favorable value, blue - uniform values

RossetaCode SumProdMetrics
C Java C Java

Halstead Length 68.34 78.33 25.67 25.78
Halstead Vocabulary 25.54 30.10 12.72 13.75

Halstead Volume* 325.00 382.26 94.22 97.52
McCabe’s CC 3.25 2.75 1.56 1.56

Maintainability Index** 47.42 49.67 69.65 69.59
Number of Invocation 2.74 2.23 0.50 0.50

Logical LOC 44.29 40.90 5.58 5.58
Physical LOC 52.61 37.13 5.61 5.58

Total Logical LOC 44.29 40.90 5.58 5.58
Total Physical LOC 52.61 37.13 5.61 5.38

Answer to RQ1: Based on agreement between covered static tools outcomes, we can evidence
that C language RossetaCode samples are larger in terms of LOC and more complex according
to McCabe values. The majority of tools also agree that Halstead metrics and Maintainability
Index are worse for C examples as covered in Figure 1.



Table 5
Results of CppDepend and JArchitect tools on RossetaCode examples Written in C and Java
* - Logical lines of code; ** - Microsoft version; [] - manually recalculated
Colors: red - less favorable value

Metrics
C (119 Methods) Java(116 Methods)
Avg StDev.P Avg StDev.P

Construct Details
Unique Operands 12.02 7.15 19.39 19.82
Total Operands 32.13 30.54 8.37 5.10
Unique Operators 9.60 4.84 12.47 10.72
Total Operators 32.22 33.83 5.61 3.86
LOC* 8.49 8.97 7.38 6.86
Paramters 1.29 1.09 1.28 0.94
Variables 1.81 1.97 2.09 2.14
Methods Called 1.72 2.00 2.90 3.08
Methods Calling Me 0.90 0.78 0.72 0.61
Basic Complexity
McCabe Complexity 3.12 2.62 2.92 2.21
Maintainability Index** 68.76 14.06 72.58 11.61
Halstead Complexity
Program Length 64.34 63.90 13.98 7.49
Vocabulary Size 21.61 10.86 31.86 29.35
Program Volume 309.11 360.97 71.12 52.37
Difficulty Level [13.04] 9.29 [3.03] 1.53
Program Level [0.87] 0.17 [0.74] 0.20

Figure 1: Cross-Language comparison of RossetaCode samples.
HLEN: Halstead Length, HVOC: Halstead Vocabulary, HVOL: Halstead Volume, MCC: McCabe Cyclomatic
Complexity, MI: Maintainability Index

4.2. Cross-tool comparison on RossetaCode samples

The standard deviation among the results of the open-source tools (Table 6) directly demonstrates the
mentioned deviations in the “cross-tool” values of the same parameter. Comparing outcomes in Tables
2, 4, 5, 6, and 9, it becomes obvious that all tools provide disparate values. Among all parameters, the
McCabe seems to be the most uniform metric, but also it doesn’t manifest identical values across all
considered static tools.

Observing the above defect and considering earlier mentioned changes in open-source tools, it
suggests that the way of interpretation and parsing program constructs should have the biggest impact



Table 6
Averages of open-source tools.
* - Java_complexity_and_organization (total not available);

** - Microsoft version (manually calculated);
*** - Java projects are manually calculated;
[] - standard deviation between tools results on a population level.
Colors: red – less favorable value.

RossetaCode SumProdMetrics
C Java C Java

Construct Details
Unique Operands 57.08[4.66] 72.57[53.91] 6.78[4.77] 11.00[3.32]
Total Operands * 170.99[7.59] 117.74[21.65] 15.58[5.11] 21.94[2.22]
Unique Operators 40.03[15.77] 84.61[84.30] 10.11[13.58] 15.15[2.19]
Total Operators * 196.36[39.10] 207.55[46.36] 23.47[17.47] 48.39[8.28]

McCabe’s Complexity

Cyclomatic Complexity 6.10[1.80]
4.46

[2.06]
1.56[0.56] 2.74[0.45]

Maintainability Index ** 43.39[4.99]
39.65
[0.91]

63.32[4.17] 57.94[0.66]

Halstead Complexity
Program Length 449.27[43.95] 334.17[56.92] 41.86[29.25] 63.52[9.68]
Vocabulary Size 97.11[20.43] 64.61[12.87] 16.89[9.89] 25.94[4.83]

Program Volume *** 2185.61[481.80] 2069.89[405.64] 250.28[227.82] 355.55[119.57]
Difficulty Level *** 55.05[16.92] 39.24[6.24] 10.90[8.40] 16.74[2.61]

on the final outcomes of tools. There is no consensus among tools about the uniform way of treatment
program code constructs. Comparison in Table 7 showed that open-source tools are proven as very
divergent in the possibility of distinguishing between program constructs. Further, previous observations
and comparisons with commercial tools in Tables 5 and 9 bring the same conclusion.

Table 7
Dinstinction of Detected Program Constructs over Open-Source Tools

Tools RossetaCode SumProd
uniqopnd uniqoptr uniqopnd uniqoptr

Java
Java_complexity_and_organization 148.29 203.65 15.33 16.17
Java_halstead_cyclomatic 42.39 30.81 10.39 17.17
Java_4_metrics 27.03 19.39 7.28 12.11

C
C-Static-Analyzer 61.73 55.80 2.00 5.00
C_cyclomatic_halstead 52.42 24.26 11.56 15.22

Interestingly, manual checking of the results of the open-source tools (Table 8) and commercial tools
(Table 5) also demonstrates “in-tool” inconsistencies between Halstead values provided by the tool and
those manually recalculated with well-known metric formulas. Considered recalculations are based on
the information available in the results of the tool about the total and unique number of operators and
operands (Table 7 and 5).

Parallel examination of Table 4, 5, and 6, release that open-source tools output higher values than
commercial tools. Again, open-source tools utilize less restrictive approaches to program constructs
assessment which is clearly shown in Table 5, 7, and 9.



Table 8
Inconsistency in Final Results of Open-Source Tools
[] - manually recalculated

Tools RossetaCode SumProd
hvol hdiff hvol hdiff

Java
Java_complexity
_and_organization

same same

Java_halstead_cyclomatic 2448[2535] 47.84[48.39] 506[339] same
Java_4_metrics not provided not provided

C
C-Static-Analyzer 1704[2408] 71.97[71.05] same same
C_cyclomatic_halstead 2667[2629] same 478[333] same

Table 9
Results of CppDepend and JArchitect tools on SumProd examples Written in C and Java
* - Logical lines of code
** - Microsoft version
[] - manually recalculated
Colors: red - less favorable value, blue - uniform values

C (34 Methods) Java(34 Methods)Metrics
Avg StDev.P Avg StDev.P

Construct Details
Unique Operands 9.00 3.07 9.97 7.02
Total Operands 16.56 9.64 5.59 2.65
Unique Operators 5.59 4.65 4.59 4.68
Total Operators 9.62 8.77 3.62 3.69
LOC * 4.44 4.47 3.56 3.57
Paramters 1.50 0.56 1.50 0.56
Variables 1.50 1.50 1.50 1.50
Methods Called 0.50 0.50 0.50 0.50
Methods Calling Me 0.50 0.50 0.50 0.50

Basic Complexity
McCabe Complexity 1.56 0.60 1.56 0.6
Maintainability Index ** 81.50 18.52 83.97 16.04

Halstead Complexity
Program Length 26.18 18.38 9.21 6.33
Vocabulary Size 14.59 7.68 14.56 11.68
Program Volume 110.47 89.07 38.69 34.61
Difficulty Level [5.85] 4.97 / /
Program Level [0.51] 0.06 / /

Answer to RQ2: “Cross-tool” analysis exhibits disparity in the majority of output values.
Moreover, there is no one metric value that is consistent between all static tools. Also, “in-
tool” analysis reveals that some tools don’t correctly follow well-known metric formulas. This
distinction characterizes both open-source and commercial tools as demonstrated in Figure 2.

4.3. Consistency comparison on SumProd identical code samples

This section focuses on strictly comparing the results of identical program codes, to the mentioned
shortcomings of the RossetaCode example. For this purpose, the SumProd examples were used.

The file changes themselves and the intermediate results of the static tool showed the expected
absence of the impact of gaps and comments in the code on outcome metrics value. The confirmation of



Figure 2: Cross-Tool comparison of RossetaCode samples.

the identity of the constructs of the program codes discussed in this section is clearly shown in Tables
2, 9, and 10.

Table 10
Construct difference in C and Java codes of SumProd examples (Resource Standard Metrics tool)
Colors: red - less favorable value, blue - uniform values

Programming Language
Code Construct C Java

Lines
Blank Lines 0 36
Comment Lines 20 19
Total Log | Phy Lines 239 220 276 257

Key Words
do, while 1 1
for 16 16
if, else 3 3
Funcs 36 36
class, interface 0 18

Analysis
Paren Count (,) 76 76
Brace Count {,} 55 73
Bracket Count [,] 0 0
Char/NBLine, Notices 9 388 10 558
Code, eCode Lines 91.60% 68.20% 80.10% 59.80%
Comment, Blank Lines 8.40% 0.00% 6.90% 13.00%
Characters, Spaces 68.80% 31.20% 63.50% 36.50%

On the other hand in Table 2, the Resource Standard Metrics tool indicates higher function point values,
line of code metrics, and notices (errors not covered by the compiler) in Java examples. Considering
that the tool doesn’t include the Halstead metrics of code complexity, identical program codes can’t
show differences in terms of the cyclomatic complexity itself. Higher values of function points for Java
examples are only concordant observations between SumProd and RossetaCode datasets.

The results of the SourceMeter tool on the SumProd dataset in Table 4 indicate that the implementa-
tion of Java examples is more complex in terms of Halstead and Maintainability Index. Examples of
both languages are identical concerning McCabe and Physical LOC metrics, but C language is slightly
complicated regarding only Logical LOC. Again, we can see that Halstead complexity measures (opera-



Figure 3: Cross-Language comparison of SumProd samples (taken from LICCA cloning scenarios).

Figure 4: Cross-Tool comparison of SumProd samples (taken from LICCA cloning scenarios).

tors/operands quantity) prove more sensitive against McCabe metric (control-flow paths). Comparing
with RossetaCode results of the SourceMeter tool, we can generally conclude that Java language is more
complex regarding Halstead values while C language tends to be robust in terms of Logical LOC. In the
context of average open-source tool results (Table 6), complexity metrics except the Maintainability
Index are higher for Java examples. The outcomes of SumProd and RossetaCode code samples are
exactly the opposite for open-source tools. Although the code samples are almost identical, outcomes in
Table 9 suggest that the CppDepend tool has higher values of operators and operands followed by LOC,
Halstead, and Maintainability Index. Higher values of LOC, Maintainability Index, and Halstead metrics
match between SumProd and RossetaCode datasets. Its results on the SumProd case are opposite to
SourceMeter and open-source outcomes.

Answer to RQ3: Contrasting to RQ1, the majority of static tools on the SumProd code suggest
that Java examples manifest more complexity compared to C code samples as shown in Figure 3.
Cross-tool observations on the SumProd case in Figure 4 reveal the same conclusions as RQ2.



5. Limitations

Our research exposes some restrictions of its scope. The analysis doesn’t provide cross-platform testing
between tools on different operating systems. Also, our experiment only covers two programming
languages because of the availability of static analysis tools which are included only in its “free-form”.
As discussed earlier, the size and diverseability of used code datasets and software metrics are also
bounded. Because of subjectivity and the unavailability of used metric definitions by tool designers,
research doesn’t deeply consider approaches to their calculating.

As another limitation one may consider selection of small datasets based on classical algorithms and
toy examples of cloning scenarios. However, this selection enables us to manually investigate calculated
and expected values and learn about the reasons for imprecision and discrepancies.

6. Conclusion and Future Work

The paper investigates the inconsistency between different static analysis tools for calculation of
traditional and widely used LOC, Halsetad and McCabe CC metric, on similar and identical code
samples implemented in Java and C programming languages.

Opinions are divided over the cross-language static analysis. The results on heterogeneous mul-
tilingual RossetaCode samples reveal that C codes are more complex implementations as expected.
On the other hand, metric observations on homogeneous multilingual SumProd samples suggest that
implementations of Java codes are more demanding. The reason for this inconsistency is hidden in the
fact that SumProd implementation does not involve object-oriented design and avoiding complexity
on code level based on design complexity. Based on these conclusions we can discuss a need for a
complexity metric to consider complexity of an implementation taking into account both: source code
and the implementation design inbuilt in it (as statically as possible having in mind dynamic nature of
the design).

The cross-tool review releases absolute inconsistency of metric values over all covered open-source
and commercial static tools. Moreover, a manual check of in-tool outcomes reveals that some static
analyzers do not coherently follow well-known metric formulas. The primary reason for the result dis-
tinction may be the well-known subjectivity in metric definition and program constructs interpretation
involved by the tool author. This is an obvious open space for future work - filling the gap between
metric algorithm implementations to consistently support different input languages as proposed by [1].
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