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Abstract
Micro-gesture classification has become an important research topic in the field of emotion analysis
and human-computer interaction, and recently has received more and more attention. Although certain
models of action recognition for normal behaviors have demonstrated promising results in classifying
micro-gestures, these models still encounter significant challenges when processing micro-gestures that
occur within subtle temporal windows. To end this, we propose a multi-scale heterogeneous ensemble
network for micro-gesture classification with multi-modal data. This framework combines two models
with different architectures and employs multi-scale residual connections within these models to capture
fine-grained features and extend the range of receptive field. Simultaneously, we employ a novel data
group training strategy, which can more effectively address the class-imbalance problem for model
learning over the data. Finally, our model was evaluated on the iMiGUE dataset with Top-1 accuracy of
0.7019, placing second ranking in the MiGA2024 Challenge (Track 1: Micro-gesture Classification).
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1. Introduction

Micro-gesture (MiG) classification refers to the process of recognition and classifying sponta-
neously occurring minute movements on the human face and body. The significance of MiG
classification lies in its ability to capture and analyze the nuances of human behavior in detail,
which has important value in multiple fields. In emotion analysis, MiG classification can provide
more accurate detection of hidden emotional states, helping to better understand the user’s real
emotions. In human-computer interaction, MiG classification can improve the system’s response
accuracy and user experience, making the interaction process more natural and intelligent. In
addition, in areas such as safety monitoring, health care and sports analytics, MiG classification
can also provide critical insight and support. Therefore, MiG classification not only enriches the
fine-grained research of behavior analysis, but also promotes the development and innovation
of related applications.

Currently, the research about micro-gestures is relatively limited, which is different to the
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task of micro-expression recognition [1, 2] and the action recognition [3]. With the continuous
development of action recognition algorithms [4], many models using different modalities have
emerged. The MiG datasets such as SMG and iMiGUE [5, 6] encompasses a diverse array of
multi-modal data types, which are characterized by their ability to integrate and represent
different forms of information. However, in the initial phase of research conducted on the
MiG data, the studies predominantly focused on the utilization of either RGB (Red, Green,
Blue) imagery or skeleton modality data individually and often just transferring normal action
classification algorithms directly to the task of MiG classification. To cite a few, the temporal
segmentation network (TSN) [7], the temporal relation network (TRN) [8] and the temporal
shift module (TSM) [4] have been proposed based on the RGB data, while spatio-temporal graph
convolution network (ST-GCN) [9], multi-scale graph convolution (MS-G3D) [10] and enhanced
hypergraph-convolution transformer (EHCT) [11, 12] have been presented with the skeleton
data. While these methodologies are indeed valuable for conducting specific analyses, they may
not fully exploit the extensive potential inherent in the multi-modal characteristics.

As the RGB data usually contains the color and texture information, it can capture the subtle
changes of the human body under different lighting and background. However, this modality is
greatly affected by environmental factors, which may lead to the deterioration of image quality
and blur for fast-moving human bodies, affecting the recognition effect. Different from the RGB
modality, skeleton data usually records the position coordinates of human joints, which can
obtain the precise position of the human skeleton joint and is not affected by environmental
factors. However, for the human body with partial occlusion or complex posture, the recognition
accuracy may decline. Therefore, the proposed method can provide comprehensive information
about human appearance and movements by combining the dual-modal data of RGB and
skeleton [13]. Among them, the RGB modality can provide contextual information to help
skeleton-modal data more accurately identify human posture and movements. The stability of
skeleton-modal data can make up for the lack of RGB-modal data affected by environmental
factors.

To more effectively capture micro-reactions within MiGs, we construct a Res2Net3D structure
utilizing the multi-scale residual architecture from Res2Net [14]. The Res2Net framework
enhances feature extraction across different scales by incorporating multi-scale residual modules,
allowing the simultaneous processing of local and global information and thereby augmenting
the model’s feature representation capability. This multi-scale feature representation enables the
model to detect subtle changes and details across various scales, which is crucial for identifying
MiG categories. By extending the Res2Net architecture to a 3D version (Res2Net3D), the model
can process spatiotemporal information and capture dynamic gesture patterns. This extension is
vital for handling time-dependent information in MiG classification, facilitating the identification
of continuous micro-gesture variations. In addition, we find that a single network may overfit a
particular data distribution and not generalize well to other scenario (i.e., other subjects). By
fusing different network structures, this problem can be alleviated and the generalization ability
of the model can be improved, making its performance on different settings and tasks more
stable. Since different network architectures have their own advantages and advantages, these
advantages can be comprehensively utilized in one model to improve the overall performance
by combining multiple structures. Therefore, we ensemble heterogeneous sub-networks on the
basis of our previous model [11] for MiGA2023 challenge, and continue to achieve significant



performance improvement on the iMiGUE dataset [6]. The main contributions of this paper can
be summarized as:

• We propose a deep framework with multi-modal and multi-scale heterogeneous ensemble
network (M2HEN) for the task of MiG classification, capturing the diversity of data and
enhancing the representation of the model..

• We design a multi-scale residual module in 3D structure to improve the sensitivity of the
model for micro-gestures.

• We employ a novel data group training strategy, which can more effectively address the
class-imbalanced problem in the data.

• We perform extensive experiments and achieve the second ranking in the Track 1 of
MiGA2024 Challenge.

2. Methodology

The main framework of our proposed method (M2HEN) is shown in Fig. 1. In the framework, we
construct a heterogeneous ensemble network, using two deep models with completely different
structures (one is based on 3D convolution, and the other is based on Transformer) for ensemble
learning. By designing this heterogeneous ensemble model, we can increase the diversity of
features and improve the representation ability of the model. For the base model, we propose
MiG-enhanced Multi-modal and Multi-scale 3D Convolutional sub-Network (M3CN) as the 3D
convolution model and Ensemble Hypergraph-Convolution Transformer (EHCT) [11] as the
Transformer model.

2.1. Multi-modal and Multi-scale 3D Convolutional Network

The M3CN sub-network uses both skeleton-modal and RGB-modal data. Inspired by PoseC3D
[13], we transform the raw skeleton data 𝑆�⃗� =

{︁
𝑆𝑇
1
⃗ , 𝑆𝑇

2
⃗ , ..., 𝑆𝑇

𝑡
⃗
}︁

into a 3D heatmap volume

with the size of 𝑛× 𝑡×𝐻 ×𝑊 , where 𝑆𝑇
𝑖
⃗ = {𝑠1⃗, 𝑠2⃗, ..., 𝑠�⃗�}, 𝑛 is the number of key points, 𝑡

is the number of frames in a clip, 𝐻 and 𝑊 are the height and width of the heatmap. Through
the coordinates of skeleton joints 𝑠�⃗� = (𝑥, 𝑦, 𝑐), joint heatmap 𝐽 can be obtained by combining
𝑛 Gaussian mappings centered on each joint:

𝐽𝑛𝑖𝑗 = 𝑒−
(𝑖−𝑥)2+(𝑗−𝑦)2

2*𝜎2 * 𝑐, (1)

where the parameter 𝜎 represents the variance of the Gaussian graph, and (𝑥, 𝑦) and 𝑐 are the
position coordinates and confidence score of the 𝑛-th joint, respectively.

To be able to better capture the subtle and detailed gesture changes in one video, we extend
the Res2Net [14] into 3D version (Res2Net3D) as the backbone network for feature extraction,
which induces the multi-scale information compared to the ResNet3D. In the bottleneck module
of Res2Net3D, after the first 3D convolution with a kernel of 1× 1× 1, the obtained feature
map 𝑋 ∈ R𝐶,𝑇,𝐻,𝑊 is evenly divided into 4 feature maps 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ R𝐶/4,𝑇,𝐻,𝑊 in the
channel dimension, and each feature map is processed by convolution and residual fusion, so as
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Figure 1: The overall framework of the proposed method: the upper portion comprises of the MiG-
enhanced Multi-modal and Multi-scale 3D Convolutional sub-Network (M3CN), which utilizes RGB
and heatmap data as input, while the lower portion consists of the Ensemble Hypergraph-Convolution
Transformer (EHCT) model, which mainly leverages the skeleton data.

to obtain fusion features with different scale information 𝑦 ∈ R𝐶,𝑇,𝐻,𝑊 . The specific formula is
shown in Eq. 2:

𝑦 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑥1, 𝐶𝑜𝑛𝑣(𝑥2), 𝐶𝑜𝑛𝑣(𝑥3 + 𝐶𝑜𝑛𝑣(𝑥2)),

𝐶𝑜𝑛𝑣(𝑥4 + 𝐶𝑜𝑛𝑣(𝑥3 + 𝐶𝑜𝑛𝑣(𝑥2))), 𝑎𝑥𝑖𝑠 = 1),
(2)

where 𝐶𝑜𝑛𝑣 denotes the 3D convolution with a kernel of 1× 3× 3 and 𝑐𝑜𝑛𝑐𝑎𝑡 (. . . , 𝑎𝑥𝑖𝑠 = 1)
denotes the concatenation of the inner elements in the second dimension (the channel dimen-
sion).

In terms of multi-modal data feature fusion, M3CN uses a two-branch structure similar to
SlowFast[15], the RGB branch uses a smaller frame number and a larger channel number, and
the Skeleton branch uses a larger frame number and a smaller channel number. As shown
in Fig. 1, the outputs of Res2Net3D Layer2 and 3 in the RGB branch are cross-fused with the
outputs of Res2Net3D Layer1 and 2 in the Skeleton branch, and are equally fused in the final
fully connected layer of both.

2.2. Ensemble Hypergraph-Convolution Transformer

The Ensemble Hypergraph-Convolution Transformer (EHCT) model only uses raw skeleton
data as input. The input 𝑆𝑇

𝑖
⃗ = {𝑠1⃗, 𝑠2⃗, ..., 𝑠�⃗�} represents 𝑛 key points extracted from frame 𝑖,

including those pertaining to the body, face, left and right hands, are presented in 2D format
𝑠�⃗� = (𝑥, 𝑦, 𝑐) by using the protocol of OpenPose [16]. In the EHCT model, the hypergraph-
convolutional Transformer and the enhanced hypergraph self-attention mechanism are used



to process these key points, and then the main classifier and auxiliary classifier are used for
multi-branch ensemble learning. Finally, the output of the two classifiers is combined to obtain
the classification results of recognizing micro-gestures.

In the self-attention module of EHCT shown in Fig. 1, the feature 𝐸𝑓 with the hyperedges of
hypergraph is constructed by Eq. 3:

𝐸𝑓 = 𝐻𝐷−1
𝑒 𝐻𝑇𝑆𝑊𝑒, (3)

where 𝐻 represents the incidence matrix of key points and hyperedges. In the matrix 𝐻 , each
row represents a key point and each column represents a hyperedge. 𝐷𝑒 is the diagonal matrix
representing the degree matrix of hyperedges, and 𝑊𝑒 represents the projection matrix of
hyperedges. For more details on EHCT, please see the previous work [11].

2.3. Training Strategy

The MiG data used in our study usually exhibits a long-tail distribution, as illustrated in Fig. 2
(Taking iMiGUE for example). In our prior work of EHCT [11], we has proposed the utilization
of primary and auxiliary classifiers to mitigate imbalanced classes. Building upon this, we
partition the imbalanced dataset into four parts (𝑃𝑎𝑟𝑡 𝐴, 𝑃𝑎𝑟𝑡 𝐵, 𝑃𝑎𝑟𝑡 𝐶 , and 𝑃𝑎𝑟𝑡 𝐷)
and trained the model using various combinations of these subsets on each occasion. This
approach effectively enhances the accuracy of tail classes and consequently elevates the overall
classification performance.

Part A Part B Part C Part D4120

2332

1247

961
871

705 659

421
376

322 315 293
218

174 163
101 87 87 85 80 65 61 42 39 28 27 23 11 11 6 3 2

Figure 2: Sample distribution of iMiGUE dataset and 4 parts divided by the limit of 1/5 of the maximum
sample numbers of the current part.

The allocation of the dataset for training the model is as follows:

𝑇𝑟𝑎𝑖𝑛𝑠𝑒𝑡𝑖 =
∑︁

𝑃𝑎𝑟𝑡{𝐴,𝐵,𝐶,𝐷}⏟  ⏞  
𝑖

+𝑂𝑡ℎ𝑒𝑟𝑖, 1 ≤ 𝑖 ≤ 4, (4)

where 𝑇𝑟𝑎𝑖𝑛𝑠𝑒𝑡𝑖 means that the model is trained using 𝑖 parts of the data (eg. 𝑇𝑟𝑎𝑖𝑛𝑠𝑒𝑡3 =
𝑃𝑎𝑟𝑡 𝐵 + 𝑃𝑎𝑟𝑡 𝐶 + 𝑃𝑎𝑟𝑡 𝐷 + 𝑂𝑡ℎ𝑒𝑟3) and 𝑂𝑡ℎ𝑒𝑟𝑖 means an even selection of a certain



number of categories from the currently unused part (head categories) as a category called
"OTHERS", which can effectively prevent the accuracy of the head categories from decreasing.
In addition, the training set when 𝑖 = 4 is called the primary training set, and the training set
when 𝑖 < 4 is called the tail training set.

Since dividing the training set into different parts changes the label distribution, when the
model predicts a non-OTHERS category, the labels of the categories in the tail training set
are mapped one-to-one to the original labels in the primary training set. With the logits from
different classifiers which use different training data, the way of combining these outputs is
calculated as follows:

𝐿𝑜𝑔𝑖𝑡𝑠 =

4∑︁
𝑖=1

𝛼𝑖 ·𝑀𝑎𝑝{𝐿𝑜𝑔𝑖𝑡𝑠𝐻𝑒𝑎𝑡𝑅𝐺𝐵𝑖 + 𝐿𝑜𝑔𝑖𝑡𝑠𝐻𝑦𝑝𝑒𝑟𝑖}, (5)

where the hyperparameter 𝛼𝑖 denoted as the weight by which the logits of the 𝑖-th classifier,
and 𝑀𝑎𝑝 means when the model predicts a tail category, it is weighted into the primary logit
by using a mapping relationship between labels.

3. Experiments

In this section, we evaluate our model on the iMiGUE dataset [6] by following the protocol of
MiGA2024 Challenge (Track 1: Micro-gesture Classification). The dataset, metrics, ablation
study and comparison experiments are reported in the following subsections.

3.1. Dataset and Metrics

In this challenge, the iMiGUE [6] dataset with fixed training and test samples is used to evaluate
our proposed method. This dataset includes a total of 32 categories of MiGs, and covers two
emotions as well as 72 subjects with each gender accounting for half of the total number of
subjects. It consists of 18,499 samples taken from 359 videos with a resolution of 1280× 720.
Each video is about 0.5-25.8 minutes long. Since the iMiGUE dataset is collected in-the-wild
setting, the overall dataset presents a long-tailed (unbalanced) distribution.

To evaluate the classification performance of our model, we employ Top-1, Top-5 and Class
Average Accuracy as evaluation metrics, the equations of the metrics are as follows:

𝐴𝑐𝑐𝑇𝑜𝑝−1 =

∑︀𝑁
𝑖=1[𝑎𝑟𝑔𝑚𝑎𝑥(𝑃 (𝑦𝑖|𝑥𝑖)) = 𝑦𝑖]

𝑁
, (6)

𝐴𝑐𝑐𝑇𝑜𝑝−5 =

∑︀𝑁
𝑖=1[𝑦𝑖 ∈ 𝑡𝑜𝑝5(𝑃 (𝑦𝑖|𝑥𝑖))]

𝑁
, (7)

𝐴𝑐𝑐𝑐𝑙𝑠_𝑎𝑣𝑔 =
1

𝒩

𝒩∑︁
𝑖=1

𝐴𝑐𝑐𝑇𝑜𝑝−1𝑖 , (8)

where 𝑁 denotes the number of samples, 𝒩 denotes the number of categories, 𝑥𝑖 denotes the
feature of the 𝑖-th sample, 𝑦𝑖 denotes the true label of the 𝑖-th sample, 𝑃 (𝑦𝑖|𝑥𝑖) denotes the



probability distribution obtained from the model’s predictions for the 𝑖-th sample, 𝑡𝑜𝑝5 denotes
the top five categories with the highest probabilities, and 𝑐𝑙𝑠_𝑎𝑣𝑔 denotes the average accuracy
for each category.

3.2. Ablation Study

Table 1
Performance comparison on iMiGUE dataset, where 𝑁𝑜𝐶 , 𝐻𝑔𝐸 and 𝐺𝑝𝑇 denote the number of clips,
heterogeneous ensemble and group training, respectively.

Backbone Modality NoC HgE GpT
Accuracy(%)

Top-1 Top-5 Class Avg.

ResNet3D

RGB 1 ✘ ✘ 57.62 87.07 27.49
Skeleton 1 ✘ ✘ 61.73 89.19 34.64

RGB+Skeleton

1 ✘ ✘ 66.59 92.79 41.09
5 ✘ ✘ 67.27 93.07 41.59
10 ✘ ✘ 67.27 93.07 41.35
15 ✘ ✘ 67.16 93.16 41.13

Res2Net3D

RGB 1 ✘ ✘ 61.14 89.35 28.07
Skeleton 1 ✘ ✘ 61.11 87.72 35.95

RGB+Skeleton

1 ✘ ✘ 66.57 91.98 41.63
5 ✘ ✘ 67.69 92.53 42.12
10 ✘ ✘ 68.11 92.63 41.44
15 ✘ ✘ 68.17 92.66 41.66
10 ✔ ✘ 69.47 93.64 40.29
10 ✔ ✔ 70.19 93.69 47.36

Firstly, in order to verify the effectiveness of the proposed model, we conduct a series of
ablative experiments, and the specific results can be obtained from Table 1. We employ ResNet3D
as the baseline network and train it using both single-modal and multi-modal data. It is observed
that the dual-modality fusion approach indeed significantly enhances the performance of the
model. Based on this, in order to more accurately capture the subtle movements and changes in
MiGs, we adopt Res2Net3D as the backbone network. The experimental results show that this
multi-scale residual structure significantly improves the sensitivity and accuracy of the model
for MiG classification. Numerically, this improved method promotes the accuracy of the model
by 0.84%.

Since the frame length of the input data is different, the model needs to be down-sampled to
the required number of frames, which will produce a certain loss of information. Therefore,
different 𝑁𝑜𝐶 are experimented, in which the selected frame index for each clip is different from
each other, which can effectively alleviate this problem. In order to capture the diversity of data
and enhance the representation capability of the model, we further construct a heterogeneous
ensemble model using 3D CNN and Transformer. Compared with the single model, the accuracy
of the proposed method increases by 1.3% for Top-1 and 0.98% for Top-5.

In terms of dealing with class-imbalanced problem, we use the strategy of group training to
effectively alleviate the long-tail effect of the model, and the Top-1 accuracy of the model is



increased by 0.72%, and the average accuracy of the class is increased by 7.07%.

3.3. Comparison to State-of-the-art Methods

Table 2
The comparison results of various methods on iMiGUE dataset.

Methods Model+Modality
Accuracy(%)
Top-1 Top-5

ST-GCN [9]
GCN + Skeleton

46.97 84.09
MS-G3D [10] 54.91 89.98
TSN [7]

2DCNN + RGB
51.54 85.42

TRN [8] 55.24 89.17
TSM [4] 61.10 91.24
Hyperformer [17]

Transformer + Skeleton
57.01 87.86

EHCT [11] 63.02 91.36

PoseC3D [13]
3DCNN + RGB 57.62 87.07
3DCNN + Skeleton 61.73 89.19
3DCNN + (RGB + Skeleton) 67.27 93.16

M2HEN(Ours) (3DCNN + Transformer) + (RGB + Skeleton) 70.19 93.69

Our proposed method is also examined through a comparative analysis on iMiGUE dataset,
which is shown in Table 2. We compare our proposed method with state-of-the-art methods.
Compared with the single-modal EHCT [11], we introduce a multi-modal model of RGB image
and skeleton data, which significantly improves the accuracy by 7.17%. Furthermore, compared
to the RGBPoseC3D[13] model, which also uses multi-modal inputs, we used a heterogeneous
ensemble network, and this innovative architecture design enabled us to improve the accuracy
of our model again by 2.92%.

4. Conclusions

In conclusion, in the study of micro-gesture (MiGs) classification, we significantly improved the
accuracy of MiG classification through a series of innovative techniques. We designed a 3D
multi-scale residual module to improve the sensitivity of the model to small changes in MiGs.
A heterogeneous ensemble network was constructed to enhance the ability of data diversity
capture and model characterization. A novel data grouping training strategy was implemented
to effectively solve the class-imbalanced problem. The comprehensive application of these
strategies not only optimized the performance of the model, but also layed a foundation for
future research on MiG classification.
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