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Abstract
Micro-gestures are increasingly recognized as a key indicator in the field of emotion analysis and have
garnered growing interest within the field. The majority of research efforts have been directed towards
the classification of micro-gestures, which entails predicting their categories. However, comparatively
fewer studies have been dedicated to the detection of micro-gestures. Micro-gesture online recognition
(spotting), which involves predicting both the temporal position and the category, is a preliminary
step for classification but has received limited attention. In this context, we construct a deep network
with dual-stream input for micro-gesture online recognition. Specifically, we utilize a sequential action
recognition model to extract motion features from RGB and skeleton sequences separately, which are
then processed by the multi-scale Transformer encoder as detection model. The proposed network are
trained in a two-stage strategy and combined to perform the temporal spotting. Our proposed method is
validated on the SMG dataset and has achieved the first ranking in the task of online recognition from
the MiGA2024 Challenge Track 2.
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1. Introduction

In everyday interactions, humans often rely on physical gestures to express and perceive
emotions, which plays a crucial role in facilitating communication and understanding among
individuals. With the growing demand for intelligent systems such as robots and other human-
computer interaction systems, the ability to recognize and respond to the user’s emotions
according to the user’s body gestures has become a key component [1]. Micro-gesture is a kind
of spontaneous, unconscious body gesture that is more subtle and involuntary than ordinary
body gestures such as waving hands [2], and when people attempt to conceal their real feelings,
micro-gestures can happen as biting finger and folding arms. As this kind of gestures is typically
performed unconsciously and unintentionally, they can reveal the hidden emotional status of
human beings, which is the emotional status that people express intentionally. Psychological
studies [3] also show that MiGs can be more reliable as emotion indicators. So micro-gestures
deserve further study in the field of emotion analysis.
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In recent years, the application of computer vision techniques to micro-gesture analysis has
motivated significant interest. The studies in this filed can be broadly categorized into two
primary classes [4]: the categorization of body gestures and the identification and localiza-
tion of temporal body gestures within long sequences, also known as online recognition or
spotting. Scholars have predominantly focused on the former, engaging in the classification of
pre-segmented clips, where state-of-the-art methodologies have achieved notably promising
performance [5, 6]. In contrast, the latter task, which entails the detection and recognition of
micro-gestures within a continuous sequence, is currently short of automated methods. This
gap underscores the imperative to develop an automated model for micro-gesture temporal
detection, which would facilitate more precise and efficient analysis of micro-gestures, and is
a critical component for the accurate interpretation and understanding of human emotions.
To bridge this gap, Chen et al. [1] adopt a Deep Belief Network (DBN) with a hidden Markov
model (HMM) to detect and recognize the micro-gestures in given sequences. Besides this work,
they also propose an attention-based Long Short-Term Memory (BiLSTM) network to model the
local temporal dynamics in micro-gesture frames and use an HMM model to enhance inference
reasoning [4]. Guo et al. [7] utilize a graph-convolution based Transformer module to extract
motion features of 2D skeleton sequences, and then feed them into a multi-scale Transformer
for detecting the micro-gestures.

In this paper, we propose a deep network for detecting micro-gestures to locate and recognize
micro-gestures from long video sequence with dual-stream input. We choose to utilize a
3D convolution network to extract multi-view motion features from RGB and 3D heatmaps
converted from 2D skeleton joints. Then the multi-scale Transformer encoders are used to
obtain regression and classification results of the dual input streams respectively which are
fused later to improve the spotting performance. Concretely, the multi-scale Transformer
encoder contains a feature pyramid module to get hierarchical multi-scale features and a local
Transformer module to model the similarity between micro-gesture frames. The proposed
baseline are trained in a two-stage strategy and combined to perform the temporal spotting.
The main contributions of this paper can be summarized as:

• We design a deep network for dual-stream MiG online recognition based on multi-scale
Transformer.

• We employ a 3D convolution network as a feature extractor and multi-scale Transfomer
encoder as the detection model, which combine the feature pyramid and local Transformer
to locate micro-gestures, which are trained separately in a two-stage way.

• We achieve the first ranking in the Track 2 of MiGA2024 challenge for the task of online
recognition.

2. Methodology

2.1. Overall Architecture

In order to spot the micro-gestures using RGB and skeleton data, our proposed network mainly
consists of two important components: 3D convolutional network (i.e., RGBPose-Conv3D [8])
and multi-scale Transformer encoder [9], the latter can be divided into three critical parts:



Figure 1: The framework of the proposed method, mainly consisting of RGBPose-Conv3D and Multi-
scale Transformer Encoder.

hierarchical feature extractor, local Transformer and micro-gesture estimator. The overall
architecture is shown in Fig. 1. Given a long sequence, the framework outputs the temporal
positions (the starting and ending indexes in a long video sequence) and categories of micro-
gestures. In the respective streams of RGB and heatmap, the motion features are firstly extracted
from the long sequence by the RGBPose-Conv3D network, Then the extracted features are
further processed into classification and regression branches by the multi-scale Transformer
encoder with sharing weights, finally the spotting results of both modalities are fused simply
by taking the average values to predict the interval and category of micro-gesture.

2.2. RGBPose-Conv3D

The effectiveness of micro-gesture online recognition hinges on the ability to detect subtle
motion information in both spatial and temporal domains. Consequently, the choice of the
backbone model is crucial in determining the detection performance. In the realm of image
processing, it is a well-established practice that pre-trained classification models can be employed
as the backbone for downstream tasks to extract features, such as object detection. Inspired by
this, we opt for a video recognition model RGBPose-Conv3D [8] to serve as a backbone of our
proposed methodology, which can process multi-modal data and represent the micro-gesture
clip effectively. The structure of RGBPose-Conv3D as a feature extractor is shown in Fig.1.

Unlike the graph convolutional network, RGBPose-Conv3D is suitable for fusing multi-modal
data such as RGB and Human skeletons. To feed 2D poses data into RGBPose-Conv3D, we
reformulate them into a 3D heatmap volume at first. Then we pre-process the RGB and heatmap
sequences and use a uniform sampling strategy [10] to ensure the consistency of the dual-stream
inputs in the time dimension between the two training stages, and the RGB pathway has a
smaller frame rate since RGB frames are low-level features. Then a two-stream 3D-CNN with
two pathways is utilized to respectively process RGB modality and pose modality. Concretely,
we first use a stem layer consisting of a 3D convolutional layer and a max-pooling layer, and



then we choose ResNet50 as the backbone to extract 3D features from dual modalities. The
two pathways are asymmetrical due to the different characteristics of the two modalities, the
pose pathway has a smaller channel width, a smaller depth, as well as a smaller input spatial
resolution compared to the RGB pathway. To avoid overfitting, RGBPose-Conv3D is trained on
the SMG dataset in the first stage, which uses the sequence clips of the recognition task (Track 1)
to learn the parameters, with two individual cross-entropy losses respectively for each pathway.
The trained model is then utilized as a one-stage feature extractor to extract the motion-aware
features, which can be matched with various micro-gesture spotting networks to achieve precise
micro-gesture location. Given a pre-segmented clip with 𝑇 frames, the feature extracted by the
trained RGBPose-Conv3D with the input 𝐼 ∈ R𝑇×𝐶×𝐻×𝑊 can be embedded as 𝐸 ∈ R𝑇×𝐷,
where 𝐻 , 𝑊 , and 𝐶 represent the resolution and number of channels of RGB or heatmap frames,
and 𝐷 represent the features’ dimensions of the two modalities, respectively. To address the
problem of sequences with varying lengths, we opt for a fixed-length sliding window approach.
By concatenating the features from various short segments along the temporal axis, we create a
composite representation of motion features within each sliding window which are then fed
into the subsequent processing modules. The concatenation process can be described as follows:

𝐸𝑠𝑢𝑚 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 (𝐸1, 𝐸2, ··, 𝐸𝑛) , (1)

where𝑛 is the number of clips in a sliding window,𝐸𝑠𝑢𝑚 can be embedded as𝐸𝑠𝑢𝑚 ∈ R(𝑛×𝑇 )×𝐷 ,
and 𝐸𝑅𝐺𝐵 and 𝐸𝑃𝑜𝑠𝑒 in the Fig. 1 respectively represent the features 𝐸𝑠𝑢𝑚 extracted from two
modalities.

2.3. Multi-scale Transformer Encoder

The extracted features of two modalities are further processed into classification and regression
branches by two multi-scale Transformer encoders with sharing weights, which can be divided
into three parts: hierarchical feature extractor, local Transformer and micro-gesture estimator.
More complete details can be found in [9].

In the context of a sequence of micro-gestures with different durations, a hierarchical feature
pyramid is advantageous for capturing temporal windows of varying lengths, thus obtaining
multi-scale information. Notably, we have adopted 1D convolution with a kernel size of 3 x 1
and a stride of 1, followed by layer normalization and the SiLU activation function. To ensure
the model’s capability to detect micro-gestures with brief durations, the stride of the first layer
in the feature pyramid is configured to 1, while subsequent layers are set to 2. Consequently,
we derive multi-scale features 𝐹 𝑖 through processes of linear upsampling and concatenation.
These operations facilitate the integration of rich contextual information and enhance the

representational power of the features. Given a feature 𝐸𝑠𝑢𝑚 ∈ R𝑇
′×𝐷 extracted from the

previous module, 𝐹 𝑖 can be embedded as {𝐹 𝑖 ∈ R(𝑇
′
/2𝑖−1)×𝐷, 𝑖 = 1, 2, 3, 4}.

Given that micro-gestures are frequently inseparable with their surrounding frames, we have
incorporated an attention mechanism to measure the similarity between frames and model the
inter-dependencies among them. Instead of using a traditional Transformer [11] with a global
attention mechanism, which may not be ideal for lengthy sequences, we have opted for a local
Transformer by limiting attention within a local window [9], as it is more apt for our needs. This



is because the temporal context beyond a specific range tends to be less informative for detecting
micro-gestures, and global attention can lead to the redundancy of information that can hinder
analysis. We generate a series of overlapping local windows along the time dimension of the
multi-scale features 𝐹 𝑖. Within each of these windows, we calculate self-attention which are
then concatenated along the time dimension, to obtain a comprehensive representation of the
micro-gesture sequence.

Given 𝐹 𝑖 ∈ R𝑇×𝐷 from the hierarchical feature extractor, we generate encoded rep-
resentations of Query(Q), Key(K), and Value(V) by projecting 𝐹 𝑖 through weight matrices
𝑊𝑄 ∈ R𝐷×𝐷𝑄 , 𝑊𝐾 ∈ R𝐷×𝐷𝐾 , 𝑊𝑉 ∈ R𝐷×𝐷𝑉 , with the calculations as follows:

𝑄 = 𝐹 𝑖 ×𝑊𝑄,𝐾 = 𝐹 𝑖 ×𝑊𝐾 , 𝑉 = 𝐹 𝑖 ×𝑊𝑉 . (2)

Then we apply Multi-head attention (MHA) within a local window through a defined series of
operations:

𝑀𝐻𝐴(𝑄𝑖,𝐾𝑖, 𝑉𝑖) = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛(ℎ𝑒𝑎𝑑0, . . . , ℎ𝑒𝑎𝑑𝑛)𝑊
𝑂,

ℎ𝑒𝑎𝑑𝑖 = 𝑠𝑜𝑓𝑡max

(︂
𝑄𝑖𝐾

𝑇
𝑖√

𝐷𝑞

)︂
𝑉𝑖

, (3)

where 𝑛 denotes the number of attention heads, 𝑊𝑂 is the parameter matrix for the output of
heads, 𝑄𝑖, 𝐾𝑖 and 𝑉𝑖 respectively represent 𝑄, 𝐾 and 𝑉 in the 𝑖-th local window. Finally the
results of each window MHA are concatenated along the time dimension to generate the final
encoded results, calculated by:

𝑌 =
∑︁
𝑖

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 (𝑀𝐻𝐴 (𝑄𝑖,𝐾𝑖, 𝑉𝑖)) , (4)

where 𝑌 ∈ R𝑇×𝐷 and 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛 (·) denotes the operation of concatenating the MHA
results along the time dimension.

The local Transformer’s encoded features are subsequently processed by the estimator module
to predict the precise location and category of micro-gestures. The estimator module is com-
prised of two distinct branches: a regression branch and a classification branch. The regression
branch is tasked with estimating the temporal distance to the beginning and end frames of
the micro-gesture at each point along the time dimension, while the classification branch is
responsible for determining the specific category of the gesture.

To extract features related to both classification and regression, we utilize a channel attention
mechanism, which is applied before sending the features to the head. To reduce overfitting, we
implement weight sharing among these attention layers. For the purpose of accurately locating
the interval of the gesture, which is crucial for micro-gesture detection, we adopt the strategy
proposed by [12]. This strategy treats the regression challenge as a distribution prediction task,
thereby accounting for the inherent uncertainty.

Given an encoded feature 𝑌 ∈ R𝑇×𝐷, where 𝑇 is the temporal dimension and 𝐷 is the
feature dimension, the output of the regression branch can be formulated as 𝑃reg ∈ R𝑇×2,
and the output of the classification branch as 𝑃cls ∈ R𝑇×𝐶 , with 𝐶 is the total number of
micro-gesture categories. In the subsequent phase of model training, both the local Transformer
and the estimator module are trained conjointly using the training data of online recognition.



3. Experiments

3.1. Dataset and Metric

Dataset. The Spontaneous Micro-Gesture (SMG) dataset [1] is employed to evaluate our
proposed method. The dataset consists of 3692 samples of 17 MGs, comprising of 40 sequences
from 40 participants with an average age of 25 years. Each sequence lasts for around 15 minutes
and the total dataset comprises 821,056 frames which exceeds 8 hours of recorded data. The
participants are recorded and collected by Kinect resulting in four modalities, RGB, 3D skeletal
joints, depth and silhouette. The dataset utilizes skeleton data from 25 human body joints, with
each keypoint represented by 11 numerical values. In the MiGA2024 challenge, only RGB data
which has a resolution of 1920×1080 and 2D skeletal points are allowed to be used as model
input.

Metric. The definition of a true positive (TP) for each interval within a sequence is grounded
in the overlap between the spotted interval and the ground-truth interval. The spotted interval
𝑊𝑠𝑝𝑜𝑡𝑡𝑒𝑑 is considered as TP if it satisfies the following condition:

𝑊𝑠𝑝𝑜𝑡𝑡𝑒𝑑
⋂︀
𝑊𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ

𝑊𝑠𝑝𝑜𝑡𝑡𝑒𝑑
⋃︀
𝑊𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ

≥ 𝑘, (5)

where 𝑘 is set to 0.3, and 𝑊𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ denotes the ground truth of the micro-gesture interval
(onset-offset). The performance of the model is then assessed using the F1-score, which is
calculated as:

𝐹1− 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
, (6)

where 𝐹𝑃 and 𝐹𝑁 represent the false positive and false negative, respectively.

3.2. Implementation Details

The RGBPose-Conv3D model is initially trained on micro-gesture data that has been pre-
segmented from the SMG dataset, undergoing a total of 100 training epochs. Then the fully
connected layer of the RGBPose-Conv3D model is removed, and the model is utilized as a
feature extractor for our detection network. The duration of each video clip processed by the
feature extractor is 8 frames, with an overlapping ratio 0.25 between clips. We configure the
sliding window’s length to be 512 frames.

In the local Transformer component of multi-scale Transformer encoder, the size of the local
window is set to 8, and the overlap between windows is 4. Following this, the multi-scale
Transformer encoder is secondly trained which lasts for 128 epochs. This training uses a cosine
learning rate schedule and includes 5 warmup epochs. The Adam optimizer is employed with
an initial learning rate set to 1× 10−4. The mini-batch size for training is 32, and the weight
decay rate is 5× 10−4. To eliminate duplicate detection boxes and refine the results, we apply
the Non-Maximum Suppression (NMS) [13] technique.



Table 1
The top-3 results of micro-gesture online recognition on the SMG dataset.

Rank Team F1-score

1 Ours 0.27571
2 HFUT-VUT 0.14346
3 JDY203 0.09289

Table 2
The results of various modality and different fusion strategies with different sliding window size and
clip length.

clip length sliding window size Modality Mode of fusion F1-score

8 256 RGB \ 0.1835
8 512 RGB \ 0.1777
8 256 skeleton \ 0.2269
8 512 skeleton \ 0.2166
16 512 skeleton \ 0.2001
32 512 skeleton \ 0.1473
8 256 RGB+skeleton Late 0.2490
8 512 RGB+skeleton Late 0.2757
8 256 RGB+skeleton Early 0.2644

3.3. Experimental Results

We firstly report the top-3 results of MIGA2024 Track2 to compare our best result with others’
and show the effectiveness of our proposed method, as shown in Table 1. From the results, it
can be observed that the designed network based on dual-stream input achieves promising
performace among all methods.

We then validate the effectiveness of the proposed late fusion method of multimodal data by
using data from only one modality RGB or skeleton for comparative experiments. Additionally,
inspired by SlowFast [14], we add bidirectional lateral connections between the two pathways
in RGBPose-Conv3D which is shown in Fig.1 to implement early-stage feature fusion between
two modalities, and the early fusion features with the best performance on classification are
sent into multi-scale Transformer for detection. In experiments, we find that early-stage feature
fusion can also achieve improvement compared to using single modality.

We also explore the influence on the micro-gesture spotting of length of sliding windows
and duration of video clips processed by the feature extractor. All the experiments results are
shown in Table 2, it can be seen that small length of sliding windows and clips results in better
performance under the condition of single modality, which maybe due to the larger number of
clips for training and the reduction of redundant information within each clip. However, in the
case of late fusion with multi-modal features, the smaller sliding window may be not conducive
to the full fusion of information in two modalities.



4. Conclusion

In this paper, we proposed a deep network for dual-stream micro-gesture online recognition
based on multi-scale Transformer. Our proposed method achieved excellent performance on
the SMG dataset, but it is crucial to recognize that the development of micro-gesture online
recognition is still in its early stages and there remains much room for improvement in terms
of detection accuracy.
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