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Abstract
This paper primarily introduces our approach in the 2nd MiGA-IJCAI Challenge Track 1, which focuses
on micro-gesture recognition. The micro-gesture dataset has the characteristics of small action ampli-
tude, short duration, and concentrated actions in specific parts. Regarding these issues, We propose a
multimodal micro-gesture recognition network based on CLIP. In the video modality, we use a frozen
CLIP model as the teacher network and train the student model via distillation. For the skeleton modality,
we convert the data into 3D heatmaps, reducing the inherent sparsity of skeleton data. Additionally, we
apply text features learned from CLIP to the skeleton modality, enabling interaction between the two
models. Our approach achieved an accuracy of 68.9% in micro-gesture recognition.
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1. Introduction

Pose recognition refers to the automatic recognition and analysis of human posture and move-
ments through computer technology. It can involve identifying information such as human
posture, actions, and posture angles to infer the state and intention of the human body. Micro-
gesture classification is a critical research direction in the field of computer vision. In this domain,
most efforts are dedicated to recognizing descriptive gestures. “Descriptive gestures” refer
to purposeful and more prominent body movements, such as drinking water or running, through
which people can clearly express their emotions. However, in certain contexts like interviews
and competitions, individuals may deliberately hide their true feelings, making it difficult for
computers to further analyze their emotions. In contrast, “Micro-gestures” are spontaneous,
unconscious subtle movements that can provide valuable insights into an individual’s internal
state, revealing hidden emotional conditions. This makes micro-gesture detection significant in
psychology, behavior analysis, and communication studies.
Gesture recognition typically relies on video or skeleton data. Video data usually contains

richer information but requires more computational resources and time to process. Skeleton
data can provide abstract gesture information, reducing the impact of background noise, but its
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sparsity may lead to the loss of some detailed information. Therefore, there are currently many
works for multi-modal recognition. DCSNet[1]utilizes the complementary information between
RGB and skeleton modes, and uses the human skeleton as guidance information to crop out key
activity areas of the human body in RGB frames for recognition, greatly eliminating background
interference. VPN [2] generates feature maps that are more discriminative for subtle actions
through spatial embedding and attention networks. S Kim [3] proposed a Transformer model
based on 3D deformable attention, which can better learn spatiotemporal attention for cross
membrane action recognition. However, these methods are all models trained from scratch and
have high computational complexity.
In the video modality, Transformer-based methods [4, 5] dominate due to their ability to

capture long-range temporal dependencies, which better understand temporal action sequences
in videos. However, Transformer models usually require large datasets to fully utilize their
powerful parameterization capabilities. With the advent of CLIP [6] in recent years, the large-
scale pre-training on image-text pairs has addressed some limitations of Transformers, allowing
for more effective use of large-scale data and enabling transfer learning across various tasks.
This has also led to improved performance in gesture recognition tasks [7, 8]. In this paper, we
consider two aspects:

1. Micro-gesture recognition needs more attention to detail, and background information
should not be overly emphasized;

2. Training video and skeleton multimodal models is computationally expensive.

Therefore, In order to reduce the high computational complexity caused by using multimodal
data, based on Froster CLIP [9], we propose a token attenuation strategy in the video encoding
module, we delete a portion of tokens based on attention weights every time we pass through
the Transformer, gradually filtering out unimportant tokens layer by layer. Experimental results
demonstrate the effectiveness of this method.

For the skeleton modality, to align with the video modality’s CLIP model, we apply the text
embeddings learned from the video modality to the skeleton network. The PoseConv-3D model
is specifically augmented with CLIP text embeddings [10], facilitating collaboration with the
CLIP text encoder. With the integration of CLIP text embeddings, the model is enabled to work
collaboratively. Through the comprehensive utilization of feature extraction methods from
both skeleton and video modalities, the performance of micro-gesture recognition tasks can be
enhanced by leveraging both skeleton sequences and video images.
Our method’s main contributions are as follows:

• In the video modality, we propose a video action recognition network based on CLIP.
Specifically, we enhance the focus on details by implementing a token weight attenuation
strategy.

• In the skeleton modality, we apply the CLIP text embeddings trained in the video model
to a 3D-CNN network, improving the correlation between the models.

• In the micro-gesture classification competition, our method achieved an accuracy of 68.9%
on the IMIGUE dataset. Experimental results demonstrate that this approach effectively
recognizes micro-gestures.



Figure 1: Illustration of proposed training method. Our practices follow the pipeline: (left) using the
frozen CLIP to distill knowledge at a student VCLIP model and (right) training ResNet3D to extract the
features of heatmaps with the help of distilled text encoder.

2. Methodology

2.1. Data Preprocessing

For video data, the first step is to segment the entire video into smaller clips containing actions.
Each video clip can be represented as 𝑥𝑣 ∈ ℝ𝑇×𝐻×𝑊×3, where H,W indi cate resolution, T
represents the number of frames.
For skeleton data, the input is represented as 𝑋 ∈ ℝ𝐶×𝑁×𝑇, where 𝐶 = 3 represents the

coordinate dimensions, 𝑁 = 22 represents the number of keypoints, and T represents the
number of frames. Then, the skeleton data is represented as a heatmap of size 𝑁 × 𝑇 × 𝐻 × 𝑊,
where H and W represent the height and width of the image, respectively. Each heatmap,
centered around a keypoint, is composed of K Gaussian heatmaps to obtain the heatmap J,
where K represents the number of joint points.

2.2. Video-specific Fine-tuning with Distillation

As shown in Figure 1 is our model structure. To apply CLIP for video action recognition task,
FROSTER[9] introduces distillation into their full fine-tuning method, demonstrating superior
performance. Given a video clip x and textual prompts of all categories, they are processed
by frozen CLIP’s vision encoder and text encoder respectively to obtain frame-specific visual
features 𝑧𝑣𝑓 and textual features 𝑧𝑡𝑓, denoted as 𝑧𝑣𝑓 ∈ ℝ𝑇×𝐶 and 𝑧𝑡𝑓 ∈ ℝ𝐿×𝐶. Here, 𝐶 means the
dimension of extracted features, 𝐿 denotes the number of classes and 𝑇 denotes the number of
frames. Similarity, an improved VCLIP student model (see Section 3.3) converts the visual and
textual data to corresponding embeddings 𝑧𝑣𝑔 and 𝑧𝑡𝑔, whose shape is the same as the frozen
branch counterpart’s. In most cases, fully fine-tuning method on CLIP directly calculate the
similarity between the 𝑧𝑣𝑔 and 𝑧𝑡𝑔 and use a cross-entropy loss function to optimize the tuned
model, which is defined as:

ℓ𝑐𝑙𝑠 = − 1
𝑁
[
𝑁
∑
𝑖=1

ℓ𝑐𝑒{𝑠𝑖𝑚[𝑝(𝑧
𝑣 ,𝑖
𝑔 ), 𝑧𝑡𝑔]/𝜏 , 𝑦𝑖}] , (1)



where 𝑦𝑖 ∈ ℝ𝐿 represents the ground truth, 𝑝(·) denotes temporal average pooling strategy,
𝑠𝑖𝑚(·, ·) denotes cosine similarity calculation and 𝜏 is a temperature parameter. However, Froster
attempts to enhance model’s generalization ability by additionally introducing a residual MLP
structure and distillation method. Specifically, the tuned features are transformed as follow:

̂𝑧𝑔 = 𝑧𝑔 + 𝛼 ×MLP(𝑧𝑔), (2)

where 𝛼 is a balancing coefficient. For simplicity, 𝑧𝑣𝑔 and 𝑧𝑡𝑔 are uniformly represented as 𝑧𝑔, and
similar simplifications have been made in next formula. Then the distillation process can be
written as:

ℓ𝑓 𝑑 =
𝑁
∑
𝑖
‖(𝑧𝑓 − ̂𝑧𝑔)‖2. (3)

The overall loss function is defined as:

ℒ = ℓ𝑐𝑙𝑠 + 𝛽(ℓ𝑣𝑓 𝑑 + ℓ𝑡𝑓 𝑑), (4)

where 𝛽 is a balancing coefficient.

2.3. Improved VCLIP

When tuning a pretrained CLIP into video downstream task, one question is how to capture
temporal relationships in videos.[11] solve this problem by expanding the temporal attention
view. Specifically, normal self-attention mechanism proposed in [12]operates as follows:

𝑆(𝑄, 𝐾) = softmax(
𝑄𝐾𝑇

√𝑑
),

𝑌 = 𝑆(𝑄, 𝐾)𝑉 ,
(5)

where 𝑆(𝑄, 𝐾) ∈ ℝ𝑁×𝑁 means the similarity matrix, 𝑄 ∈ ℝ𝑁×𝑑, 𝐾 ∈ ℝ𝑁×𝑑 and 𝑉 ∈ ℝ𝑁×𝑑 means
query, key and value features, 𝑇 means transpose operation, 𝑑 refers to the dimension of 𝑄
and 𝑁 is the number of tokens. It is clear that self-attention fails to boost the interaction
within inter-frame information in this case. So VCLIP aggregates the temporal information by
concatenating 𝐾𝑝, 𝐾𝑐 and 𝐾𝑓 along token dimension, while 𝐾𝑝, 𝐾𝑐 and 𝐾𝑓 represent original key
features of the previous, current and following frames respectively. Similarly, 𝑉 is converted to
its temporal version as well. In this way, VCLIP can model spatial-temporal correlation jointly
without extra parameters. However, we notice that the growing number of tokens greatly
increases unnecessary compute costs, since redundant information in consecutive frames is
also aggregated. To overcome this issue, we design a tokens-decay strategy based on vector
similarity. Given the query features of [cls] token denoted as 𝑞𝑐𝑙𝑠, we remain k tokens in 𝑌 and
drop the others according to the top-k scores in similarity vector 𝑆(𝑞𝑐𝑙𝑠, 𝐾𝑐) ∈ ℝ𝑇. Note [cls]
token is a fixed reserved token and will not be involved in the filtering process.

2.4. Action Modeling and Classification with Heatmaps

Assuming we have obtained the heatmaps of any modal(joint/limb). Then, following the
practices in [10], we extract clip-level features via 3D ResNet-50 network and map these



features into the same dimension as 𝑧𝑡𝑔 (see Section 3.3). For simplicity, we use �̂� represent the
mapped embedding. We employ the text encoder trained in Section 3.2 to generate well aligned
embedding as an auxiliary supervision. Similar to common classification tasks, �̂� is fed into
a linear layer to classify. Finally, the overall loss function used to optimize the 3D temporal
network is defined as:

ℓ𝑐𝑙𝑠 = − 1
𝑁

𝑁
∑
𝑖

𝐾
∑
𝑗
𝑦𝑖,𝑗 log ̂𝑦𝑖,𝑗,

ℓ𝑒𝑚𝑏 = − 1
𝑁

𝑁
∑
𝑖

𝐾
∑
𝑗
𝑦𝑖,𝑗‖�̂�𝑖 − 𝑧𝑡 ,𝑖𝑔 ‖2,

ℒ = ℓ𝑐𝑙𝑠 + 𝛾 ⋅ ℓ𝑒𝑚𝑏,

(6)

where 𝛾 is a balancing coefficient. We separately train two models for each modality and fuse
their classification results in Section 3.5.

2.5. Ensemble

Along with the similarity-based logits from Froster, we have two sets of head-based logits
derived from Resnet3D, each set corresponding to a unique modality(joint/limb). We used a
fixed-step weight search strategy to find an optimal fusion weight. The result can be formulated
as follows:

𝑌 = 𝑤1 ∗ 𝑦1 + 𝑤2 ∗ 𝑦2 + 𝑤3 ∗ 𝑦3. (7)

3. Experiments

3.1. Datasets

iMiGUE[13] dataset. The iMiGUE dataset is derived from post-match interview videos
with athletes. After an intense competition, a professional athlete needs to be interviewed by
reporters. In these videos, a total of 18,499 micro-gesture samples were annotated, divided
into 32 category labels. On average, each video contains about 51 micro-gesture samples. The
duration of these micro-gesture samples varies from 0.18 seconds to 80.92 seconds, with an
average duration of 2.55 seconds.

3.2. Comparison to State-of-the-art Methods

We validated our proposed method through comparative analysis on the IMIGUE dataset. As
shown in Table 1, we compared our approach with state-of-the-art methods, including the
GCN-based Hyperformer method for the skeleton modality, the PoseC3D method based on
3D-CNN, and the Frozen CLIP method for the video modality. Compared to the DSCNet method,
which also employs CNNs in a multimodal approach, our method improved the Top-1 accuracy
by 6.37%. Moreover, compared to the Frozen CLIP method that uses a text encoder, our method
significantly enhanced the Top-1 accuracy by 11.11%, demonstrating the effectiveness of our
approach.



Table 1
Comparison with Other Methods on the iMiGUE Dataset

Methods Modality Top-1(%) Top-5(%)

ST-GCN [14] Skeleton 46.38 85.47
Hyperformer [15] Skeleton 57.01 87.86
PoseC3D [10] Skeleton+Joint 59.54 89.59
PoseC3D [10] Skeleton+Limb 60.74 90.51
TRN [16] RGB 55.24 89.17

Frozen clip [7] RGB 57.79 91.89
Froster clip [9] RGB 61.05 90.03
DSCNet [1] RGB+Skeleton 62.53 92.41

Ours RGB+Skeleton 68.90 92.43

Table 2
The Impact of Different Weights on the Results

RGB Skeleton(Joint) Skeleton(Limb) Top-1(%)

1.0 0.0 0.0 61.31
0.0 1.0 0.0 63.83
0.0 0.0 1.0 54.65
0.2 0.4 0.4 65.47
0.3 0.35 0.35 66.92
0.4 0.3 0.3 67.90
0.55 0.4 0.05 68.90
0.5 0.25 0.25 68.30
0.6 0.2 0.6 67.93

3.3. Ablation Study

We investigated the impact of different weights on the results, assigning different weights to
three models. As shown in Table 2, the results revealed that the highest accuracy was achieved
when the weights for RGB, Joint, and Limb models were set to 0.55, 0.4, and 0.05 respectively.
The accuracy on the IMIGUE dataset reached 68.90% under these weight configurations.

We explored the impact of the Attenuation token on the results. As shown in Table 3,
the Attenuation token strategy was adopted in the Transformer module, where tokens were
attenuated based on attention weights, filtering out unimportant tokens to make the model
focus more on crucial parts, thus enhancing the recognition accuracy. Additionally, reducing
the number of tokens can decrease computational complexity. On the IMIGUE test set, we
improved the accuracy by 0.26% while reducing memory usage to 1.28G, thus enhancing the
overall performance.



Table 3
The Impact of Attenuation Token on the Results

Model Attenuation token Top-1(%) Mem(G)

Froster clip × 61.05 1.88
Ours √ 61.31 1.28

4. Conclusions

In this paper, we presented our solution for the MIGA Challenge organized by IJCAI 2024. Our
approach involves a multimodal model based on CLIP. In the RGB modality, we proposed an
attenuation token strategy building upon Froster CLIP as the baseline. In the skeleton modality,
we integrated the text encoder from CLIP into PoseC3D to enhance interaction between the
two modalities. Ultimately, our multimodal approach achieved an accuracy of 68.9%. In the
future, we plan to address the strengths and weaknesses of both video and skeleton modalities
by implementing targeted complementary operations. For example, leveraging the sparsity of
skeletons to crop videos could improve the capture of detailed information in micro-gestures.
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